Supporting Materials

Facile Synthesis of Water-Soluble Au_{25-x}Ag_x Nanoclusters Protected by Mono- and Bi-Thiolate Ligands

Xinyue Dou, Xun Yuan, Qiaofeng Yao, Zhentao Luo, Kaiyuan Zheng, and Jianping

Xie*

Department of Chemical and Biomolecular Engineering, National University of

Singapore, 4 Engineering Drive 4, 117576, Singapore

CORRESPONDING AUTHOR FOOTNOTE. * To whom the correspondence should be addressed.

E-mail: chexiej@nus.edu.sg; Tel: +65 6516 1067

EXPERIMENTAL SECTION

Materials. Ultrapure water (18.2 M Ω) was used in this study. All glassware and magnetic stir bars were washed with *aqua regia*, and rinsed with ethanol and ultrapure water. The following chemicals were used as received: Hydrogen tetrachloroaurate (III) hydrate (HAuCl₄·3H₂O) from Alfa Aesar; sodium hydroxide (NaOH) and silver nitrate (AgNO₃) from Merck; 6-mercaptohexanoic acid (MHA), 8-mercaptooctanoic acid (MOA), 11-mercaptoundecanoic acid (MUA), cysteamine hydrocholoride (Cystm), 2-mercaptoethanol (MetH), and sodium borohydride (NaBH₄), from Sigma-Aldrich.

Instrumentation. UV-vis absorption spectra were recorded on a Shimadzu UV-1800 spectrometer. The molecular formulas of the as-synthesized NCs were determined by electrospray ionization (ESI) mass spectrometry on a Bruker microTOF-Q system. Transmission electron microscopy (TEM) images were obtained on a JEOL JEM 2010 microscope operating at 200 kV. X-ray photoelectron spectroscopy (XPS) was conducted on a Kratos AXIS Ultra^{DLD} spectrometer.

Synthesis of mono-thiolate-protected $Au_{25-x}Ag_x$ NCs. Mono-thiolate-protected $Au_{25-x}Ag_x$ NCs were synthesized according to our recent developed NaOH-mediated NaBH₄ reduction method with minor modifications. In a typical synthesis of MHA-protected $Au_{25-x}Ag_x$ NCs, an aqueous solution of MHA (5 mM, 2 mL) was first mixed with water (2.35 mL), followed by the introduction of a mixture (0.25 mL) of HAuCl₄ (20 mM) and AgNO₃ (20 mM) with different feeding ratios of Au^{3+}/Ag^+ or $R_{Au/Ag}$ (24/1, 22/3, 18/7, 16/9, and 14/11) under rigorous stirring, leading to the formation of MHA-Au(I)/Ag(I) complexes. Aqueous solutions of NaOH (1 M, 0.3 mL) and NaBH₄ (~112 mM, 0.1 mL, prepared by dissolving 43 mg of NaBH₄ powder in NaOH solution (10 mL,

0.2 M)) were then separately introduced to the reaction mixture. The MHA-protected Au_{25-x}Ag_x NCs were collected after 3 h of reaction. MHA-protected Au_{25-x}Ag_x NCs synthesized by using different feeding $R_{Au/Ag}$ (24/1, 22/3, 18/7, 16/9, and 14/11) were referred to as NC 1-5. When the volume of NaOH solution was varied from 0.3 to 0.08 mL, and the other synthetic conditions were kept as constant, we can produce Au_{25-x}Ag_x(MOA)₁₈ and Au_{25-x}Ag_x(MUA)₁₈ NCs. It should be noted that the MUA was dissolved in ethanol.

Synthesis of bi-thiolate-protected Au_{25-x}Ag_x NCs. Bi-thiolate-protected Au_{25-x}Ag_x NCs were synthesized by keeping all the experimental conditions unchanged except for the introduction of the second thiolate ligand. In a typical synthesis, the total volume of thiolate ligands was kept at 2 mL, and the amount of MHA (from 1.75, 1.5, 1.25, to 1 mL) and MetH (from 0.25, 0.5, 0.75, to 1 mL) was gradually adjusted. MHA/MetH-protected Au_{25-x}Ag_x NCs with different ligand and/or metal proportions can be obtained. Au_{25-x}Ag_x(MHA/Cystm)₁₈ NCs were prepared by using the same strategy.

Figure S1. (a) UV-vis absorption and (b) ESI mass spectra of the as-synthesized MHAprotected Au_{25} NCs. The lower panel in (b) shows the isotope patterns of $[Au_{25}(MHA)_{18} 2H]^{3-}$ acquired theoretically (red) and experimentally (black).

Figure S2. Zoom-in ESI mass spectra and representative isotope patterns (theoretical / red and experimental / black) of the MHA-protected $Au_{25-x}Ag_x$ NCs carrying 4- charges: (a) NC-1, (b) NC-2, (c) NC-3, (d) NC-4, and (e) NC-5. The numbers within the bracket are the number of Au and Ag atoms in $Au_{25-x}Ag_x$ NCs. For example, (21,4) is denoted as $Au_{21}Ag_4$ NC species.

Figure S3. Representative TEM images of the as-synthesized MHA-protected $Au_{25-x}Ag_x$ NCs: (a) NC-1, (b) NC-2, (c) NC-3, (d) NC-4, and (e) NC-5.

Figure S4. A representative TEM image of the as-synthesized Au₂₅(MHA)₁₈ NCs.

Figure S5. XPS spectra of (a) Au 4f species of MHA-protected Au₂₅ NCs, MHAprotected Au_{25-x}Ag_x NCs, and Au(0) film, and (b) Ag 3d species of MHA-protected Au_{25-x}Ag_x NCs and Ag(0) film.

Figure S6. (a) UV-vis absorption and (b) ESI mass spectra of the MHA-protected AuAg NCs synthesized with the feeding $R_{Au/Ag}$ of 12/13 (upper panel, black lines) and 5/20 (lower panel, blue lines).

Figure S7. (a) UV-vis absorption spectra, (b) ESI mass spectra, and (c) the compositional distributions of MOA-protected Au_{25-x}Ag_x NCs prepared at the feeding $R_{Au/Ag}$ of 24/1 (pink), 14/11 (blue), and 12/13 (green). Insets in (b) are zoom-in ESI spectra of 5-charged species of the as-synthesized AuAg NCs (upper panel) and representative isotope patterns (lower panel) acquired theoretically (red) and experimentally (black). (c) indicates that the as-synthesized MOA-protected Au_{25-x}Ag_x NCs have different metal compositions: Au₂₃₋₂₅Ag₂₋₀ NCs ($R_{Au/Ag}$ =24/1, pink), Au₂₀₋₂₃Ag₅₋₂ NCs ($R_{Au/Ag}$ =14/11, blue), and Au₁₅₋₁₉Ag₁₀₋₆ NCs ($R_{Au/Ag}$ =12/13, green).

Figure S8. (a) UV-vis absorption spectra, (b) ESI mass spectra, and (c) the compositional distributions of MUA-protected Au_{25-x}Ag_x NCs prepared at different feeding $R_{Au/Ag}$ of 24/1 (pink), 16/9 (blue), and 14/11 (green). Insets in (b) are zoom-in ESI spectra of 4-charged species of the as-synthesized AuAg NCs (upper panel) and representative isotope patterns (lower panel) acquired theoretically (red) and experimentally (black). (c) indicates that the as-synthesized MUA-protected Au_{25-x}Ag_x NCs have different metal compositions: Au₂₃₋₂₅Ag₂₋₀ NCs ($R_{Au/Ag}$ =24/1, pink), Au₁₉₋₂₃Ag₆₋₂ NCs ($R_{Au/Ag}$ =16/9, blue), and Au₁₆₋₂₂Ag₉₋₃ NCs ($R_{Au/Ag}$ =14/11, green).

Figure S9. Zoom-in ESI mass spectra and representative isotope patterns (theoretical / red, and experimental / black) of 3- charged MHA/MetH-protected Au_{25-x}Ag_x NCs prepared by keeping the feeding $R_{Au/Ag} = 22/3$, and varying the feeding $R_{MHA/MetH}$ from (a)1.75/0.25, (b)1.5/0.5, (c)1.25/0.75, to (d) 1.0/1.0. The numbers within the bracket are the number of Au atom, Ag atom, MHA, and MetH in Au_{25-x}Ag_x(MHA/MetH)₁₈ NCs. For example, (21, 4, 13, 5) is denoted as Au₂₁Ag₄(MHA)₁₃(MetH)₅ NC species.

Figure S10. (a) UV-vis absorption, (b) ESI mass spectra, and (c) the hetero-ligand distributions of MHA/Cystm-protected Au_{25-x}Ag_x NCs synthesized by keeping the feeding $R_{Au/Ag} = 22/3$, and varying the feeding $R_{MHA/Cystm}$ from 1.75/0.25 (red), 1.5/0.5 (blue), 1.25/0.75 (green), to 1.0/1.0 (black). (c) indicates that the as-synthesized MHA/Cystm-protected Au_{25-x}Ag_x NCs have different hetero-ligand distributions: MHA₁₄. 18Cystm₄₋₀ ($R_{MHA/Cystm}$ =1.75/0.25, pink), MHA₁₃₋₁₅Cystm₅₋₃ ($R_{MHA/Cystm}$ =1.5/0.5, blue), MHA₁₂₋₁₄Cystm₆₋₄ ($R_{MHA/Cystm}$ =1.25/0.75, green), and MHA₁₀₋₁₁Cystm₈₋₇ ($R_{MHA/Cystm}$ =1.0/1.0, black).

Figure S11. Zoom-in ESI mass spectra and representative isotope patterns (theoretical / red, and experimental / black) of 4- or 3- charged MHA/Cystm-protected Au_{25-x}Ag_x NCs prepared by keeping the feeding $R_{Au/Ag} = 22/3$, and varying the feeding $R_{MHA/MetH}$ from (a) 1.75/0.25, (b) 1.5/0.5, (c) 1.25/0.75, to (d) 1.0/1.0. The numbers within the bracket are the number of Au atom, Ag atom, MHA, and Cystm in Au_{25-x}Ag_x(MHA/Cystm)₁₈ NCs. For example, (21, 4, 14, 4) is denoted as Au₂₁Ag₄(MHA)₁₄(MetH)₄ NC species.