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I. General information

All reactions were carried out under air. Urea (A. R. grade) was purchased from
Shantou Xilong Chemical Factory (Guangdong, China). Cu(NOj;),-:3H,O was
obtained from Sinopharm Chemical Reagent Co. Ltd. Sodium hydroxide, potassium
hydroxide, dimethyl sulfoxide, petroleum ether, ethyl acetate were purchased from
Beijing Chemical Reagent Company. Cesium hydroxide solution (50 wt%) and all
other reagents were provided by Aldrich Alfa Chemical Company. All of the
chemicals were analytical grade and used without further purification.

The 'H NMR and '*C NMR spectra were recorded on a Bruker Avance III 400
HD or Brucker Fourier 300 spectrometer in CDCl; with TMS as an internal standard.
Chemical shifts for protons are referenced to tetramethylsilane (TMS, 'H NMR: 0.00
ppm), chemical shifts for carbons are referenced to the residual solvent peaks (CDCl;,
BC NMR: 77.16 ppm). FT-IR spectra were recorded on Bruker Tensor 27
spectrometer with a resolution of 1 cm™ and 32 scans. Powder X-ray diffraction
patterns (XRD) were recorded on Rigaku D/max-2500 X-ray diffractometer using
CuKa radiation (A= 0.15406 nm). The tube voltage was 40 kV and current was 200
mA. Gas chromatography was operated on Agilent 6820 equipped with a FID detector
and a PEG-20M capillary column (30 mx0.25 mmx0.25 pm). Pore volumes and
Brunauer—Emmett-Teller (BET) surface areas were measured on a Micromeritics
ASAP 2020 sorptometer by using nitrogen adsorption at 77 K. Thermogravimetrical
analysis (TGA) was studied using Netzsch STA 409 PC under an N, flow of 60
mL/min at a heating rate of 10 K/min up to 1173 K. X-ray photoelectron spectroscopy
data (XPS) were obtained with an ESCALab220i-XL electron spectrometer from VG
Scientific using 300 W AlKa radiation. The base pressure was about 3x10* mbar.
The binding energies were referenced to the Cls line at 284.8 eV from adventitious
carbon. The content of the Cu in the catalyst was analyzed by ICP-AES (PROFILE.
SPEC, Leeman).
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II. Preparation of the catalyst Cu-g-C;N,4

The catalyst Cu-g-CsN,; was prepared according to the procedures in our
previous work 31, Typically, 12.0 g of urea dissolved in 100 mL of distilled
water was heated with desired amount of Cu(NOs),-3H,0, and stirred at 353 K
for 1 h. The mixed solution was then heated at 373 K to remove water. The
resulting mixtures were then heated at a rate of 3.0 K/min to reach a
temperature of 573 K, and tempered at this temperature for 2 h in a flowing-
nitrogen atmosphere. The mixture was then continuously heated to 823 K over
1.5 h, and tempered at this temperature for 4 h. This was followed by cooling
the sample naturally to room temperature with nitrogen gas. The final powder
was collected and labeled as Cu-g-C;Ny4. The Copper content in the Cu-g-C;Ny
determined by ICP-AES was 2.7 mmol/g (Cu 17.2 wt%).

II1. Procedures for the synthesis of phenol from iodobenzene (Table 1)

A teflotion-lined stainless steel reactor of 15 mL was used. In the experiment,
iodobenzene (1.0 mmol), suitable amounts of DMSO, water, base, and Cu-g-
C3N4 were loaded into the reactor. The reactor was placed in an oil bath of
desired temperature and the reaction mixture was stirred. The reaction
mixture was cooled to room temperature after a desired reaction time. The
reaction mixture was carefully acidified with dilute aqueous HCI, and then 10
mL ethyl acetate was added. After centrifuged, the reaction mother liquid was
analyzed by gas chromatography (Agilent 6820) equipped with a FID detector
and a PEG-20M capillary column (30 mx0.25 mmx0.25 pum). An internal
standard 1, 4-dioxane was used to quantify the generated phenol. GC-MS
analysis indicated that phenol was the only product under the reaction
conditions. In the experiments to test the reusability of the catalyst, the Cu-g-
C;N4 was separated by centrifugation and reused in the next run without any

further treatment.
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IV. General procedures for synthesis of phenols from aryl iodides (Table 2)

A mixture of aryl iodides (1.0 mmol), Cu-g-CsN, (4 mol%) and NaOH (4.0
mmol) was stirred in DMSO aqueous solutions at 120°C for the desired
reaction time. The reaction mixture was cooled to room temperature, carefully
acidified with dilute aqueous HCIl. The resulting mixture was filtered and
extracted with ethyl acetate (3x15 mL). The combined organic layers were
dried over anhydrous MgSQ,, filtered and concentrated under reduced pressure.
The crude material was purified by column chromatography on silica gel

(eluting with ethyl acetate/petroleum ether mixtures) or by crystallization.

V. The effect of solvent

Table S1 The effect of solvent 2

Entry Solvents ® Yields ¢
1 CH;CN/H,0(1.5/1.5) 0
2 H;0 0
3 DMF 0
4 Glycol 4.5
5 DMSO 14.6
6 DMSO/H,0(2.0/1.0) 58.5
7 Dioxane 0
8 Dioxane/H,0(1.5/1.5) 0

2 All reactions were performed using 1.0 mmol of iodobenzene, 8 mol% Cu-

C3Ny, 120°C, 12 h; b3 mL solvent; ¢ GC yield based on the added iodobenzene.

VI. Characterization of the catalyst

XRD patterns of g-C3N,4 and the catalyst Cu-g-C;Ny4 are shown in Figure S1.
Both the samples showed similar diffraction peaks, though the diffraction peaks
of the catalyst Cu-g-C;Ny4 are not as strong as that of pure g-C5;Ny4. The strong

peak at 27.5° represents the stacking of the conjugated interlayers, which is
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indexed for graphitic materials as the (002) peak. Another peak at 12.9°
corresponds to in-plane ordering of tri-s-triazine units, which form 1D melon
strands. The two diffraction peaks are in good agreement with that of g-C;N,
reported in literature [52]. No diffraction peaks of copper species are observed in
Figure S1, The presence of the copper species in Cu-g-C;N4 is confirmed by

XPS analysis.
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Figure S1. The XRD patterns of the samples.

Figure S2 shows the XPS spectra of the catalyst Cu-g-C3N4. As indicated
in Figure S2a, the main elements on the surface of the sample are C, N, O and
Cu. The photoelectron peaks of these elements appear at binding energies of
287.7 eV (Cls), 398.4 eV (Nls), 532.2 eV (Ols) and 932.3 eV (Cu2p),
respectively. Figure S2b shows the high resolution Cu2p XPS spectrum of the
sample: two main peaks located at about 952.5 ¢V and 932.3 eV [83] corresponds

to Cu2p1/2 and Cu2p3/2, which confirms that the existence of Cu" species.
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Figure S2 The XPS patterns of the catalyst Cu-g-C5Ny

Figure S3 shows the FT-IR spectra of g-C3N4 and the catalyst Cu-g-C3;Ny.
Several bands in the 1200-1650 cm-! region corresponding to the typical
stretching modes of CN heterocycles are clearly seen for the two samples. The
characteristic mode of the triazine units (C¢N7) at 810 cm™! is also observed [S!],

indicating the presence of typical structure of g-C3;Nj.
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Figure S3 The FT-IR spectra of g-C3N4 and Cu-g-C3Ny

Figure S4 shows the N, adsorption-desorption isotherm. The catalyst Cu-g-C;Ny4
had a BET surface area of 31.9 m?/g, and a pore volume of 0.059 cm3-g-!. The BET
surface area of pure g-C3Ny was 96.6 m?/glS2l. The decrease in the BET surface area

of Cu-g-C3N, should be attributed to the loading of copper.
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Figure S4 Nitrogen adsorption-desorption isotherm of Cu-g-C;Ny
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Figure S5 demonstrates the results of thermogravimetrical analysis of Cu-g-
C3N,. It was showed that the catalyst Cu-g-C3N4 can bear high temperature up to
600°C. The weight loss of the sample at high temperature is mainly due to the

decomposition of carbon nitride matrix.
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Figure S5 Thermogravimetric analysis of Cu-g-C;N4under N, flow.
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VIII. Copies of '"H NMR and 3C NMR Spectra
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