Supporting Information for

Use of Residual Dipolar Couplings in Conformational Analysis of Meta-Substituted Calix[4]arenes

Lukáš Vrzal,^a Karolína Flídrová,^b Tomáš Tobrman,^b Hana Dvořáková,^a and Pavel Lhoták*^b

^a Laboratory of NMR Spectroscopy, Institute of Chemical Technology Prague (ICTP), 166 28 Prague 8, Czech Republic

^bDepartment of Organic Chemistry, ICTP, Prague 6, Czech Republic

E-mail: <u>lhotakp@vscht.cz</u>

TABLE OF CONTENTS

TABLE OF CONTENTS	1
EXPERIMENTAL PROCEDURES AND CHARACTERIZATIONS	2
GENERAL EXPERIMENTAL PROCEDURES	2
GENERAL PROCEDURE FOR THE NITROSATION OF CHLOROMERCURIO CALIXARENES	2
CHARACTERIZATIONS OF COMPOUND 4	4
CHARACTERIZATIONS OF COMPOUND 5	7
NMR SECTION	10
USED CHEMICALS	10
MEASUREMENTS CONDITIONS	10
NMR CHARACTERIZATION	12
DYNAMIC NMR MEASUREMENTS	16
RDC SECTION	17
GPC ANALYSIS OF POLYACETYLENE ALIGNMENT MEDIUM	17
ANISOTROPIC SAMPLE PREPARATION	17
RDC ANALYSIS	17
DFT OPTIMIZATION OF 5(1) AND 5(11) CONFORMERS	35

EXPERIMENTAL PROCEDURES AND CHARACTERIZATIONS

GENERAL EXPERIMENTAL PROCEDURES

All chemicals were purchased from commercial sources and used without further purification. Solvents were dried and distilled using conventional methods. Melting points were measured on Heiztisch Mikroskop – Polytherm A (Wagner & Munz, Germany). NMR spectra were performed on Varian Gemini 300 (¹H: 300 MHz, ¹³C: 75 MHz) and on Bruker Advance DRX 500 (¹H: 500 MHz, ¹³C: 125 MHz) spectrometers. Deuterated solvents used are indicated in each case. Chemical shifts (δ) are expressed in ppm and are referred to the residual peak of the solvent or TMS as an internal standard; coupling constants (*J*) are in Hz. The mass analyses were performed using ESI technique on Q–TOF (Micromass) spectrometer. Elemental analyses were done on Perkin–Elmer 240, Elementar vario EL (Elementar, Germany) or Mitsubishi TOX–100 instruments. All samples were dried in the desiccator over P₂O₅ under vacuum (1 Torr) at 80 °C for 8 hours. The IR spectra were measured on an FT–IR spectrometer Nicolet 740 or Bruker IFS66 spectrometers equipped with a heatable Golden Gate Diamante ATR–Unit (SPECAC) in KBr. 100 Scans for one spectrum were co–added at a spectral resolution of 4 cm⁻¹. The courses of the reactions were monitored by TLC using TLC aluminum sheets with Silica gel 60 F₂₅₄ (Merck). The column chromatography was performed using Silica gel 60 (Merck).

General remark: All organomercury derivatives are considered potentially hazardous and require special consideration!

4, 17-BIS(CHLORO-MERCURIO)-25,26,27,28-TETRAPROPOXYCALIX[4]ARENE (2) AND 4, 18-BIS(CHLOROMERCURIO)-25,26,27,28-TETRAPROPOXYCALIX[4]ARENE (3)

They were prepared on a 0.5 g scale using procedure currently published by our group: Flídrová K., Böhm S., Dvořáková H., Eigner V., Lhoták P.: *Organic Letters*, **2014**, *16*, 138-141.

GENERAL PROCEDURE FOR THE NITROSATION OF CHLOROMERCURIO CALIXARENES

A corresponding chloromercurio calixarene **2** or **3** was dissolved in chloroform and cooled down in an ice-bath. Isoamyl nitrite (1.5 eq. per chloromercurio group), concentrated hydrochloric acid (3 eq.) and acetic acid (6 eq.) were added and the reaction mixture was stirred at 0 °C for 3 hours. Saturated solution of NaHCO₃ was poured into the reaction mixture and the two-phase system was vigorously stirred for 20 minutes. The organic layer was separated, washed with solution of NaHCO₃, then twice with water, and dried over MgSO₄. The crude reaction mixture was separated using short column of silica gel (CH₂Cl₂:hexane 1:1, v/v) to remove inorganic by-products. Yields were essentially quantitative.

4,17-DINITROSO-25,26,27,28-TETRAPROPOXYCALIX[4]ARENE (4)

Compound **4** was obtained according to General procedure in 96% yield (0.14 g, yellow-green glass) using: 0.23 g of calixarene **2**, 0.15 ml of isoamyl nitrite, 0.30 ml of concentrated HCl, 0.70 ml of glacial AcOH and 25 ml of CHCl₃. M.p. glass-like compound. ¹H-NMR (300 MHz, CDCl₃, 25 °C) δ 7.53 (br s, 1H, ArH), 7.43 (br s, 1H, ArH), 6.81 (d,1H, *J*=8.5 Hz, ArH), 6.49 (d, 2H, *J*=4.9 Hz, ArH), 6.33 (d, 2H, *J*=3.7 Hz, ArH), 6.26-6.30 (m, 2H, ArH), 5.70 (d, 1H, *J*=8.5 Hz, ArH), 5.59 (d, 1H, *J*=13.5 Hz, ArCH₂Ar), 4.77 (d, 1H, *J*=13.3 Hz, ArCH₂Ar), 4.50-4.62 (m, 3H, ArCH₂Ar), 4.10-4.24 (m, 4H, OCH₂), 3.72-

3.96 (m, 4H, OCH₂), 3.37 (d, 2H, *J*=13.8 Hz, ArCH₂Ar), 3.21 (d, 1H, *J*=13.5 Hz, ArCH₂Ar), 1.87-2.13 (m, 8H, OCH₂CH₂), 0.96-1.13 (m, 12 H, CH₃) ppm.

¹³C-NMR (75 MHz, CDCl₃, 25 °C) δ 166.0, 165.1, 163.9, 159.2, 156.1, 155.9, 146.5, 141.8, 137.5, 137.2, 134.0, 133.3, 132.8, 132.7, 129.3, 128.5, 128.3, 128.1, 127.8, 122.9, 122.8, 100.2, 77.5, 76.8, 31.6, 31.3, 31.2, 24.2, 23.7, 23.6, 23.5, 23.4, 10.8, 10.3 ppm.

HRMS (TOF MS ESI⁺): [M+H]+ calculated: 651.34286 found: 651.34260 (20%); [M+Na]⁺ calculated: 673.32481 found: 673.32451 (100%); [M+K]⁺ calculated: 689.29875 found: 689.29825 (20%).

4,18-DINITROSO-25,26,27,28-TETRAPROPOXYCALIX[4]ARENE (5)

Compound **5** was obtained according to General procedure in 95% yield (0.11 g, yellow-green glass) using: 0.19 g of calixarene **3**, 0.10 ml of isoamyl nitrite, 0.20 ml of concentrated HCl, 0.65 ml of concentrated AcOH and 25 ml of CHCl₃. M.p. 78-82 °C. ¹H-NMR (300 MHz, CDCl₃, 25 °C) δ 6.98 (d, 2H, *J*=8.5 Hz, ArH), 6.23 (t, 2H, *J*=7.6 Hz, ArH), 6.10-6.19 (m, 4H, ArH), 5.94 (d, 2H, *J*=8.2 Hz, ArH), 5.72 (d, 2H, *J*=13.5 HZ, ArCH₂Ar), 4.80 (d, 2H, *J*=13.5 Hz, ArCH₂Ar), 4.59 (d, 2H, *J*=13.2 Hz, ArCH₂Ar), 4.15-4.33 (m, 4H, OCH₂), 3.72-3.92 (m, 4H, OCH₂), 3.26 (d, 2H, *J*=13.4 Hz, ArCH₂Ar), 2.07-2.22 (m, 4H, OCH₂CH₂), 1.88-2.02 (m, 4H, OCH₂CH₂), 1.17 (t, 6H, *J*=7.3 Hz, CH₃), 1.02 (t, 6H, *J*=7.6 Hz, CH₃) ppm.

¹³C-NMR (75 MHz, CDCl₃, 25 °C) δ 166.6, 159.7, 155.9, 147.4, 142.5, 133.5, 132.0, 129.0, 127.9, 127.6, 122.8, 100.2, 77.5, 77.3, 31.7, 23.8, 23.5, 23.3, 11.0, 10.2 ppm.

HRMS (TOF MS ESI⁺): [M+H]+ calculated: 651.34286 found: 651.34290 (10%); [M+Na]⁺ calculated: 673.32481 found: 673.32483 (100%); [M+K]⁺ calculated: 689.29875 found: 689.29816 (20%). IR v=1584 cm⁻¹.

CHARACTERIZATIONS OF COMPOUND 4

CHARACTERIZATIONS OF COMPOUND 5

NMR SECTION

USED CHEMICALS

Chloroform- d_1 (CDCl₃) – degree of deuteration min. 99.8 % and dimethylsulfoxide- d_6 (DMSO) – degree of deuteration min. 99.8 % were purchased from Merck, Germany. Phenylalanine derived polyacetylene alignment medium (medium A) was prepared by our group from commercially available compounds (Sigma-Aldrich). High molecular weight poly(γ -benzyl-D-glutamate (medium B) was prepared and kindly provided by research group of C. M. Thiele. Poly(γ -ethyl-L-glutamate) – M>100 000 g/mol (medium C) was purchased from Sigma-Aldrich.

MEASUREMENTS CONDITIONS

All NMR data were acquired on Bruker Avance^{III} 600 MHz (proton frequency) NMR spectrometer equipped with triple resonance cryo-probe. Scalar coupling constants (${}^{I}J_{C-H}$) and total splitting (${}^{T}T_{C-H}$) were measured using heteronuclear (${}^{1}H-{}^{13}C$) CLIP-HSQC pulse sequence without proton decoupling in direct (F2) domain. Nine heteronuclear one bond RDCs were sufficient to obtain structural information, so it was unnecessary to measure any other type of RDCs.

1D | ¹H NMR SPECTRA

 $\pi/2$ pulse for ¹H nuclei was approximately 9 µs. Spectral width: 7 kHz, size of fid: 32k data points, relaxation period: 10 s, number of scans: 8.

1D | ²H NMR SPECTRA

 $\pi/2$ pulse for ²H nuclei was approximately 68 µs. Spectral width: 4 kHz, size of fid: 16k data points, relaxation period: 10 s, number of scans: 8.

1D | ¹³C-APT NMR SPECTRA

¹³C NMR spectra with proton decoupling - *waltz16* (decoupling pulse 100 μs, power level 23.6 dB). $\pi/2$ pulse for ¹³C nuclei was approximately 12 μs. Spectral width: 31.5 kHz, size of fid: 64k data points, polarization transfer: 7 ms, relaxation period: 2.0 s, number of scans: 20 000.

1D | ¹³C (DE)COUPLED NMR SPECTRA (Z-RESTORED)

Modified version of classical 1D ¹³C NMR experiment with straight baseline free of distortions. Spectral width: 19.5 kHz, size of fid: 64k data points, relaxation period: 1 s, number of scans: 4k - 16k.

For pulse sequence details see ref.: Y. Xia, S. Moran, E. P. Nikonowiczb, X. Gaoa, *Magn. Res. Chem.*, **2007**, *46*, 432.

2D | ¹H-¹H COSY SPECTRA

Spectral width: 3.8 kHz in both domains, size of fid: 1024 (F2) a 256 (F1) data points, relaxation period: 1.0 s, number of scans: 12.

2D | ¹H-¹³C HMQC SPECTRA

Spectral width: 4.0 kHz (F2) a 21.4 kHz (F1), size of fid: 2048 (F2) a 256 (F1) data points, polarization transfer: 3.5 ms, relaxation period: 1.0 s, number of scans: 16.

2D | CLIP ¹H-¹³C HSQC SPECTRA

2D ¹H-¹³C CLIP HSQC is a modification of classical F2-coupled HSQC experiment providing clear spectra without antiphase artefacts and other spectral distortions. Residual dipolar coupling constants were measured from splitting in the direct domain (F2). Spectral width: 4.7 kHz (F2) a 19.6 kHz (F1), size of fid: 8k (F2) a 256 (F1) data points, polarization transfer: 3,125 ms, relaxation period: 0.1 s, number of scans: 16.

For pulse sequence details see ref.: A. Enthart, J. C. Freudenberger, J. Furrer, H. Kessler, B. Luy, *J. Magn. Reson.*, **2008**, *192*, 314.

2D | ¹H-¹³C HMBC SPECTRA

Spectral width: 4,0 kHz (F2) a 27,7 kHz (F1), size of fid: 2k (F2) a 256 (F1) data points, polarization transfer: 70 ms, relaxation period: 1,0 s, number of scans: 64.

1D | ¹H DPFGSE – NOE SPECTRA

Nuclear Overhauser effect (NOE) based experiment with selective inversion – DPFGSE sequence. Selective inversion was performed via 80ms *q3-gaussian cascade*. Spectral width: 12.0 kHz, size of fid: 32k data points, mixing time: 0.2-1.6 s, relaxation period: 2.0 s, number of scans: 128.

DYNAMIC ¹H NMR MEASUREMENTS

Dynamic NMR spectra were acquired on Bruker Avance^{III} 500 MHz (proton frequency) NMR spectrometer equipped with BBOF probe in temperature range 193-298K.

NMR CHARACTERIZATION

¹H-¹³C HMBC SPECTRUM OF 5 (600 MHZ, CDCl₃)

DYNAMIC NMR MEASUREMENTS

TEMPERATURE DEPENDENT ¹H NMR SPECTRA OF 4 (500 MHZ, CDCl₃)

TEMPERATURE DEPENDENT ¹H NMR SPECTRA OF 5 (500 MHZ, CDCl₃)

RDC SECTION

GPC ANALYSIS OF POLYACETYLENE ALIGNMENT MEDIUM

Waters chromatograph, 2xPL Mixed C columns, 5 µm, 0.8 ml/min CHCl₃, 35°C, PS calibration.

Analysis results were out of calibration \rightarrow M_w ~ 10⁶ g/mol (approximately).

ANISOTROPIC SAMPLE PREPARATION

Alignment medium was prepared due to high viscosity of liquid crystalline solution in the NMR tube. Weighted amount of alignment medium (polyacetylene or polyglutamate) and calixarene derivative was placed into the NMR tube and added deuterated chloroform. To obtain well resolved spectra it is necessary to homogenise the sample. After a few hours NMR tube was centrifuged upside down to mix up the viscous content. Then the capillary with DMSO- d_6 as the external standard was added. Homogeneity of the anisotropic sample was monitored via ²H NMR spectra measurement (quadrupolar splitting of CDCl₃). Mixing procedure was repeated till the lines in ²H NMR spectrum was narrow and no signal of residual non-aligned solvent was observed.

Tab. 1: Preparation of anisotropic solutions.

Alignment medium	Α	В	С
m _{medium} [mg]	190.5	80.4	71.1
m _{calixarene} [mg]	26.5	20.7	25.2
m _{CDCl3} [mg]	881.0	900.0	870.0
w _{medium} [%]	17.3	8.0	7.4
$\nu_Q [Hz]$	~60	~265	~239

RDC ANALYSIS

We utilized 9 independent values of one bond heteronuclear (¹H-¹³C) coupling constants. RDC constant were elucidated from the line splitting in ¹³C NMR spectrum without proton decoupling as the contribution to the scalar coupling. In case of signal overlaps CLIP HSQC spectra were used. Total line splitting in anisotropic solution (¹T_{C-H}) is expressed by the following equation: ¹T_{C-H} = $2^{1}D_{C-H} + {}^{1}J_{C-H}$ (Figure 1), where ¹D_{C-H} is residual dipolar coupling constant and ¹J_{C-H} represents scalar coupling constant elucidated from ¹³C NMR spectrum without proton decoupling of isotropic solution (compound in an organic solvent).

Figure 1: RDC computation scheme.

The measurement of RDCs has two steps (Figure 2) – NMR spectra acquisition of isotropic solution (compound in an organic solvent) and of anisotropic solution (liquid crystalline solution). Residual dipolar coupling constants were calculated by subtraction of scalar coupling constant in isotropic solution from the total splitting in liquid crystalline solution.

Figure 2: ¹H-¹³C CLIP HSQC spectrum of isotropic solution (red) and anisotropic sample (blue).

STATISTICAL FORMULAS

$$\begin{aligned} x_{\rm rms} &= \sqrt{\frac{1}{n} \left(x_1^2 + x_2^2 + \dots + x_n^2 \right)} \\ r_{xy} &= \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_x s_y} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2 \sum_{i=1}^n (y_i - \bar{y})^2}}, \\ r_{xy} &= \frac{\sum_{i=1}^n (x_i - n\bar{x}\bar{y})}{(n-1)s_x s_y} = \frac{n \sum_{i=1}^n (x_i - \bar{x})^2 \sum_{i=1}^n (y_i - \bar{y})^2}{\sqrt{n \sum_{i=1}^n (x_i - \bar{x})^2} \sqrt{n \sum_{i=1}^n (y_i - \bar{y})^2}}, \end{aligned}$$

5(1) @ POLYACETYLENE WITH PHENYLALANINE SIDE CHAIN (MEDIUM A)

.....

EVALUATION OF RDCs

	¹ Ј _{С-Н} [Hz]	¹ Т _{С-Н} [Hz]	RDC [Hz]	¹ D _{С-н} [Hz]
CH-A4	164.6	168.1	3.5	1.8
CH-A5	160.9	131.2	-29.7	-14.9
CH-B3	157.0	149.0	-8.0	-4.0
CH-B4	161.1	130.9	-30.2	-15.1
CH-B5	157.6	167.4	9.8	4.9
CH ₂ -AB (up)	131.8	191.4	59.6	29.8
CH ₂ -AB (dn)	132.0	114.2	-17.8	-8.9
CH₂-AD (up)	128.6	86.9	-41.7	-20.9
CH₂-AD (dn)	132.1	108.8	-23.3	-11.7

FITTING RESULTS

¹ D _{с-н}	¹ D _{C-H,exp}	${}^{1}D_{C-H,calc}$
A4	1.8	-4.7
C4	1.8	-4.6
A5	-14.9	-7.1
С3	-14.9	-6.5
B3	-4.0	19.6
D5	-4.0	17.8
B4	-15.1	-8.6
D4	-15.1	-7.8
B5	4.9	-1.9
D3	4.9	0.1
CH ₂ -AB (up)	29.8	20.3
CH ₂ -AB (up)	29.8	20.7
CH ₂ -AB (dn)	-8.9	-5.1
CH ₂ -AB (dn)	-8.9	-5.1
CH ₂ -AD (up)	-20.8	-12.7
CH ₂ -AD (up)	-20.9	-12.7
CH ₂ -AD (dn)	-11.7	-5.6
CH ₂ -AD (dn)	-11.7	-5.4

5(11) @ POLYACETYLENE WITH PHENYLALANINE SIDE CHAIN (MEDIUM A)

EVALUATION OF RDCs

Subtraction of scalar coupling constants in isotropic solution (chloroform) from total splitting in liquid crystalline solution (phenylalanine polyacetylene).

	¹ Ј _{С-Н} [Нz]	¹ Т _{с-н} [Hz]	RDC [Hz]	¹ D _{С-н} [Hz]
CH-A4	164.6	168.1	3.5	1.8
CH-A5	160.9	131.2	-29.7	-14.9
CH-B3	157.0	149.0	-8.0	-4.0
CH-B4	161.1	130.9	-30.2	-15.1
CH-B5	157.6	167.4	9.8	4.9
CH ₂ -AB (up)	131.8	191.4	59.6	29.8
CH ₂ -AB (dn)	132.0	114.2	-17.8	-8.9
CH ₂ -AD (up)	128.6	86.9	-41.7	-20.9
CH ₂ -AD (dn)	132.1	108.8	-23.3	-11.7

FITTING RESULTS

¹ D _{с-н}	¹ D _{C-H.exp}	¹ D _{C-H.calc}
A4	1.8	-0.5
C4	1.8	-0.4
A5	-14.9	-13.8
С3	-14.9	-13.8
B3	-4.0	-1.5
D5	-4.0	-1.5
B4	-15.1	-12.0
D4	-15.1	-12.0
B5	4.9	5.4
D3	4.9	5.4
CH ₂ -AB (up)	29.8	30.4
CH ₂ -AB (up)	29.8	30.4
CH ₂ -AB (dn)	-8.9	-12.3
CH ₂ -AB (dn)	-8.9	-12.3
CH ₂ -AD (up)	-20.9	-21.1
CH ₂ -AD (up)	-20.9	-21.1
CH ₂ -AD (dn)	-11.7	-10.6
CH ₂ -AD (dn)	-11.7	-10.6

n =	18
RMS =	1.998
R(xy) =	0.991
R ² =	98.1%

PALES output file (fitting procedure results)

REMARK Molecular Alignment Simulation.

REMARK Simulation parameters.

DATA PALES MODE DC

DATA TENSOR MODE SVD (Order Matrix Method)

REMARK Order matrix.

 DATA SAUPE_MATRIX
 S(zz)
 S(xx-yy)
 S(xy)
 S(xz)
 S(yz)

 DATA SAUPE
 -2.5607e-004
 1.0917e-003
 -3.2036e-004
 -2.9514e-008
 6.8403e-008

 DATA IRREDUCIBLE_REP
 A0
 A1R
 A1I
 A2R
 A2I

 DATA IRREDUCIBLE
 -4.0596e-004
 3.8203e-008
 8.8542e-008
 7.0653e-004
 4.1468e

 004
 DATA IRREDUCIBLE GENERAL MAGNITUDE
 1.2276e-003
 1.2276e-003
 1.2276e-003

REMARK Mapping of coordinates.

DATA	MAPPING_	COOR	Szz_d(x)	Szz_d(y)	Syy_d(x)	Syy_d(y)	Sxx_d(x)	Sxx_d(y)
DATA	MAPPING		-0.26538	-0.00005	1.30542	-0.00023	0.00027	1.57056
DATA	MAPPING	INV	2.87622	0.00005	-1.83617	0.00023	-0.00048	-1.57056

REMARK Eigensystem & Euler angles for clockwise rotation about z. y'. z''.

DATA EIGENVALUES (Sxx_d.Syy_d.Szz_d) -2.5607e-004 -5.0486e-004 7.6093e-004 DATA EIGENVECTORS (x_coor y_coor z_coor) DATA EIGENVECTORS X_AXIS 1.0547e-004 2.1404e-004 1.0000e+000 DATA EIGENVECTORS Y_AXIS 2.6227e-001 9.6499e-001 -2.3421e-004 DATA EIGENVECTORS Z_AXIS 9.6499e-001 -2.6227e-001 -4.5644e-005

DATA	Q_EULER_SOLUTIO	NS	ALPHA	BETA	GAMMA
DATA	Q_EULER_ANGLES	1	180.01	90.00	195.20
DATA	Q_EULER_ANGLES	2	0.01	90.00	195.20
DATA	Q_EULER_ANGLES	3	359.99	90.00	15.20
DATA	Q_EULER_ANGLES	4	179.99	90.00	15.20

REMARK Euler angles (psi/theta/phi) for rotation about x. y. z.

DATA EULER_SOLUTIONS 6 DATA EULER_ANGLES -1.#J -74.80 -1.#J DATA EULER_ANGLES 90.00 254.80 -89.97 DATA EULER_ANGLES 90.00 254.80 -89.97 DATA DA 3.804661e-004 DATA DA 3.804661e-004 DATA Aa 7.609322e-004 DATA Aa 7.609322e-004 DATA Aa 1.658580e-004 DATA DA HN 8.212436e+000

DATA Rhombicity 2.179669e-001

REMARK Dipolar couplings. DATA N 18 DATA RMS 1.998 DATA Chi2 71.859 DATA CORR R 0.991 DATA Q SAUPE 0.086 0.280 +/- 0.512 [Hz] DATA REGRESSION OFFSET DATA REGRESSION SLOPE 0.988 +/- 0.034 [Hz] DATA REGRESSION BAX SLOPE 0.997 +/- 0.024 [Hz] VARS RESID_I RESNAME_I ATOMNAME_I RESID_J RESNAME_J ATOMNAME_J DI D_OBS D D_DIFF DD W FORMAT %4d %4s %4s %4d %4s %9.2f %9.3f %9.3f %9.3f %.2f %.2f 1 CAL H41 47292.49 2.2503 1.0000 1.00 1 CAL C40 1.8000 -0.4503 1.8000 -0.4495 1 CAL C13 1 CAL H22 47292.49 2.2495 1.0000 1.00 1 CAL C54 1 CAL H51 47052.89 -14.9000 -13.8186 -1.0814 1.0000 1.00 1 CAL C19 H7 47052.89 -14.9000 -13.8145 -1.0855 1.0000 1.00 1 CAL 1 CAL C31 1 CAL H26 46972.77 -4.0000 -1.4570 -2.5430 1.0000 1.00 46972.77 1 CAL C45 1 CAL H30 -4.0000 -1.4559 -2.5441 1.0000 1.00 CAL C39 1 CAL H55 47181.87 -15.1000 -11.9874 -3.1126 1.0000 1.00 1 1 CAL C46 1 CAL H43 47187.93 -15.1000 -11.9885 -3.1115 1.0000 1.00 4.9000 4.9000 5.3806 1 CAL C16 1 CAL H6 46923.96 -0.4806 1.0000 1.00 1 CAL H61 1 CAL C35 46923.96 5.3804 -0.4804 1.0000 1.00 1 CAL C4 1 CAL Н25 46417.77 29.8000 30.3701 -0.5701 1.0000 1.00 1 CAL H56 46417.77 29.8000 30.3673 C2 -0.5673 1.0000 1.00 1 CAL H3 46609.84 -8.9000 -12.3230 1 CAL C4 1 CAL 3.4230 1.0000 1.00 1 CAL C2 1 CAL H1 46609.84 -8.9000 -12.3212 3.4212 1.0000 1.00 1 CAL H24 45715.64 -20.9000 C37 -21.1225 0.2225 1.0000 1.00 1 CAL 1 CAL 1 CAL 1 CAL C10 Н32 45715.64 -20.9000 -21.1198 0.2198 1.0000 1.00 -11.7000 -10.5931 -1.1069 1 CAL C37 Н8 46602.07 1.0000 1.00 1 CAL H14 46602.07 -11.7000 -10.5935 -1.1065 1.0000 1.00 1 CAL C10

ROTATED STRUCTURE

 B_0 (external magnetic field induction vector) passes through the plane of the paper.

5(1) @ POLY(γ -BENZYL-D-GLUTAMATE) WITH HIGH MOLECULAR WEIGHT (MEDIUM B)

EVALUATION OF RDCs						
Ċ	¹ Ј _{С-Н} [Hz]	¹ Т _{с-н} [Hz]	RDC [Hz]	¹ D _{С-Н} [Hz]		
CH-A4	164.6	161.9	-2.7	-1.3		
CH-A5	160.9	218.0	57.1	28.6		
CH-B3	157.0	179.7	22.7	11.4		
CH-B4	161.1	195.5	34.4	17.2		
CH-B5	157.6	139.9	-17.7	-8.8		
CH ₂ -AB (up)	131.8	n/a	n/a	n/a		
CH ₂ -AB (dn)	132.0	165.3	33.3	16.7		
CH ₂ -AD (up)	128.6	224.8	96.2	48.1		
CH₂-AD (dn)	132.1	157.2	25.1	12.6		

FITTING RESULTS

¹ D _{с-н}	¹ D _{C-H.exp}	${}^{1}D_{C-H.calc}$
A4	-1.3	1.9
C4	-1.3	2.2
A5	28.6	9.7
С3	28.6	9.0
B3	11.4	-25.3
D5	11.4	-21.9
B4	17.2	10.5
D4	17.2	8.6
В5	-8.8	5.0
D3	-8.8	1.2
CH ₂ -AB (up)	n/a	n/a
CH ₂ -AB (up)	n/a	n/a
CH ₂ -AB (dn)	16.7	2.8
CH ₂ -AB (dn)	16.7	2.5
CH ₂ -AD (up)	48.1	19.1
CH ₂ -AD (up)	48.1	19.2
CH ₂ -AD (dn)	12.6	3.5
CH₂-AD (dn)	12.6	3.3

5(11) @ POLY(γ-BENZYL-D-GLUTAMATE) WITH HIGH MOLECULAR WEIGHT (MEDIUM B)

EVALUATION OF RDCs						
	¹ J _{С-Н} [Hz]	¹ Т _{с-н} [Hz]	RDC [Hz]	¹ D _{С-Н} [Hz]		
CH-A4	164.6	161.9	-2.7	-1.3		
CH-A5	160.9	218.0	57.1	28.6		
CH-B3	157.0	179.7	22.7	11.4		
CH-B4	161.1	195.5	34.4	17.2		
CH-B5	157.6	139.9	-17.7	-8.8		
CH ₂ -AB (up)	131.8	n/a	n/a	n/a		
CH ₂ -AB (dn)	132.0	165.3	33.3	16.7		
CH ₂ -AD (up)	128.6	224.8	96.2	48.1		
CH₂-AD (dn)	132.1	157.2	25.1	12.6		

FITTING RESULTS

¹ D _{с-н}	¹ D _{C-H.exp}	${}^{1}D_{C-H.calc}$
A4	-1.3	3.1
C4	-1.3	3.1
A5	28.6	30.2
С3	28.6	30.2
B3	11.4	7.1
D5	11.4	7.1
B4	17.2	15.8
D4	17.2	15.8
B5	-8.8	-7.2
D3	-8.8	-7.2
CH ₂ -AB (up)	n/a	n/a
CH ₂ -AB (up)	n/a	n/a
CH ₂ -AB (dn)	16.7	17.2
CH ₂ -AB (dn)	16.7	17.2
CH ₂ -AD (up)	48.1	47.7
CH ₂ -AD (up)	48.1	47.7
CH ₂ -AD (dn)	12.6	13.6
CH ₂ -AD (dn)	12.6	13.6

PALES output file (fitting procedure results)

REMARK Molecular Alignment Simulation.

REMARK Simulation parameters.

DATA PALES MODE DC

DATA TENSOR_MODE SVD (Order Matrix Method)

REMARK Order matrix.

 DATA
 SAUPE_MATRIX
 S(zz)
 S(xx-yy)
 S(xy)
 S(xz)
 S(yz)

 DATA
 SAUPE
 3.3770e-004
 -2.2367e-003
 7.5176e-004
 2.3915e-008
 -4.3174e-008

 DATA
 IRREDUCIBLE_REP
 A0
 A1R
 A1I
 A2R
 A2I

 DATA
 IRREDUCIBLE
 5.3536e-004
 -3.0956e-008
 -5.5885e-008
 -1.4476e-003
 -9.7310e

 004
 DATA
 IRREDUCIBLE
 GENERAL
 MAGNITUDE
 2.5242e-003

REMARK Mapping of coordinates.

DATA	MAPPING_	COOR	Szz_d(x)	Szz_d(y)	Syy_d(x)	Syy_d(y)	Sxx_d(x)	Sxx_d(y)
DATA	MAPPING		-0.29591	-0.00002	1.27488	-0.00004	0.00004	1.57075
DATA	MAPPING	INV	2.84568	0.00002	-1.86671	0.00004	-0.00010	-1.57075

REMARK Eigensystem & Euler angles for clockwise rotation about z. y'. z''.

 DATA EIGENVALUES (Sxx_d.Syy_d.Szz_d)
 3.3770e-004
 1.1787e-003
 -1.5164e-003

 DATA EIGENVECTORS
 (x_coor
 y_coor
 z_coor)

 DATA EIGENVECTORS X_AXIS
 3.0199e-005
 3.3461e-005
 1.0000e+000

 DATA EIGENVECTORS Y_AXIS
 2.9161e-001
 9.5654e-001
 -4.0813e-005

 DATA EIGENVECTORS Z_AXIS
 9.5654e-001
 -2.9161e-001
 -1.9129e-005

DATA	Q_EULER_SOLUTIO	NS	ALPHA	BETA	GAMMA
DATA	Q_EULER_ANGLES	1	180.00	90.00	196.95
DATA	Q_EULER_ANGLES	2	0.00	90.00	196.95
DATA	Q_EULER_ANGLES	3	360.00	90.00	16.95
DATA	Q_EULER_ANGLES	4	180.00	90.00	16.95

REMARK Euler angles (psi/theta/phi) for rotation about x. y. z.

DATA EULER_SOLUTIONS 8 DATA EULER_ANGLES -1.#J -73.05 -1.#J DATA EULER_ANGLES -1.#J 253.05 -1.#J

DATA Da -7.581946e-004 DATA Dr -2.803313e-004

DATA Aa -1.516389e-003 DATA Ar -5.606627e-004

DATA Da_HN -1.636578e+001 DATA Rhombicity 3.697353e-001

REMAI	REMARK Dipolar couplings.									
DATA DATA DATA DATA DATA DATA DATA DATA	N RMS Chi2 CORR Q SAU REGRE REGRE	R JPE SSION SSION SSION	OFFSI SLOPI BAX	ET E SLOPE	16 2.410 92.929 0.990 0.051 1.049 0.957 0.967	5 +/- 0.839 +/- 0.037 +/- 0.026	[Hz] [Hz] [Hz]			
VARS DD W	RE	SID_I	RESN	AME_I	ATOMN	AME_I RESI	D_J RESNAM	E_J ATOMNA	ME_J DI D_	OBS D D_DIFF
FORMA	AT 84	ld %4s	84s	84d 84	4s %4s	%9.2f %9.	3f %9.3f %9	9.3f %.2f	%.2f	
1	1 CAI	C40	1	CAL	H41	47292.49	-1.3000	3.1173	-4.4173	1.0000 1.00
1	1 CAI	_ C13	1	CAL	Н22	47292.49	-1.3000	3.1173	-4.4173	1.0000 1.00
1	1 CAI	_ C54	1	CAL	Н51	47052.89	28.6000	30.1798	-1.5798	1.0000 1.00
1	l cai	L C19	1	CAL	Н7	47052.89	28.6000	30.1771	-1.5771	1.0000 1.00
1	l cai	C31	1	CAL	H26	46972.77	11.4000	7.1091	4.2909	1.0000 1.00
1	1 CAI	_ C45	1	CAL	Н30	46972.77	11.4000	7.1088	4.2912	1.0000 1.00
1	l cai	_ C39	1	CAL	Н55	47181.87	17.2000	15.7704	1.4296	1.0000 1.00
1	l CAI	_ C46	1	CAL	Н4З	47187.93	17.2000	15.7718	1.4282	1.0000 1.00
1	1 CAI	_ C16	1	CAL	НG	46923.96	-8.8000	-7.1848	-1.6152	1.0000 1.00
1	1 CAI	_ C35	1	CAL	H61	46923.96	-8.8000	-7.1851	-1.6149	1.0000 1.00
1	1 CAI	_ C4	1	CAL	ΗЗ	46609.84	16.7000	17.1711	-0.4711	1.0000 1.00
1	1 CAI	L C2	1	CAL	H1	46609.84	16.7000	17.1701	-0.4701	1.0000 1.00
1	1 CAI	_ C37	1	CAL	H24	45715.64	48.1000	47.7110	0.3890	1.0000 1.00
1	1 CAI	_ C10	1	CAL	Н32	45715.64	48.1000	47.7093	0.3907	1.0000 1.00
1	l CAI	_ C37	1	CAL	Н8	46602.07	12.6000	13.6107	-1.0107	1.0000 1.00
1	l CAI	_ C10	1	CAL	H14	46602.07	12.6000	13.6112	-1.0112	1.0000 1.00

ROTATED STRUCTURE

 B_0 (external magnetic field induction vector) passes through the plane of the paper.

5(1) @ POLY(γ-BENZYL-L-GLUTAMATE), COMMERCIALLY AVAILABLE (MEDIUM C)

EVALUATION OF RDCs						
	¹ Ј _{С-Н} [Hz]	¹ Т _{с-н} [Hz]	RDC [Hz]	¹ D _{с-н} [Hz]		
CH-A4	164.6	162,8	-1,8	-0,9		
CH-A5	160.9	210,7	49,8	24,9		
CH-B3	157.0	177,4	20,4	10,2		
CH-B4	161.1	190,8	29,7	14,9		
CH-B5	157.6	143,3	-14,3	-7,1		
CH ₂ -AB (up)	131.8	n/a	n/a	n/a		
CH ₂ -AB (dn)	132.0	161,0	29,0	14,5		
CH ₂ -AD (up)	128.6	213,0	84,4	42,2		
CH₂-AD (dn)	132.1	156,0	23,9	12,0		

FITTING RESULTS

¹ D _{с-н}	¹ D _{C-H.exp}	${}^{1}D_{C-H.calc}$
A4	-0,9	2,0
C4	-0,9	2,2
A5	24,9	8,0
С3	24,9	7,4
B3	10,2	-22,0
D5	10,2	-19,2
B4	14,9	9,0
D4	14,9	7,4
B5	-7,1	4,7
D3	-7,1	1,4
CH ₂ -AB (up)	n/a	n/a
CH ₂ -AB (up)	n/a	n/a
CH ₂ -AB (dn)	14,5	2,8
CH ₂ -AB (dn)	14,5	2,5
CH ₂ -AD (up)	42,2	16,9
CH ₂ -AD (up)	42,2	17,0
CH₂-AD (dn)	12,0	3,3
CH ₂ -AD (dn)	12,0	3,2

5(11) @ POLY(γ-BENZYL-L-GLUTAMATE), COMMERCIALLY AVAILABLE (MEDIUM C)

EVALUATION OF RDCs						
	¹ Ј _{С-Н} [Hz]	¹ Т _{с-н} [Hz]	RDC [Hz]	¹ D _{с-н} [Hz]		
CH-A4	164.6	162,8	-1,8	-0,9		
CH-A5	160.9	210,7	49,8	24,9		
CH-B3	157.0	177,4	20,4	10,2		
CH-B4	161.1	190,8	29,7	14,9		
CH-B5	157.6	143,3	-14,3	-7,1		
CH ₂ -AB (up)	131.8	n/a	n/a	n/a		
CH₂-AB (dn)	132.0	161,0	29,0	14,5		
CH₂-AD (up)	128.6	213,0	84,4	42,2		
CH₂-AD (dn)	132.1	156,0	23,9	12,0		

FITTING RESULTS

¹ D _{с-н}	¹ D _{C-H.exp}	¹ D _{C-H.calc}
A4	-0,9	3,1
C4	-0,9	3,1
A5	24,9	26,2
С3	24,9	26,2
B3	10,2	6,6
D5	10,2	6,6
B4	14,9	14,0
D4	14,9	14,0
B5	-7,1	-6,0
D3	-7,1	-6,0
CH ₂ -AB (up)	14,5	15,2
CH ₂ -AB (up)	14,5	15,2
CH ₂ -AB (dn)	n/a	n/a
CH ₂ -AB (dn)	n/a	n/a
CH ₂ -AD (up)	42,2	41,8
CH ₂ -AD (up)	42,2	41,8
CH₂-AD (dn)	12,0	12,1
CH ₂ -AD (dn)	12,0	12,1

PALES output file (fitting procedure results)

REMARK Molecular Alignment Simulation.

REMARK Simulation parameters.

DATA PALES MODE DC

DATA TENSOR_MODE SVD (Order Matrix Method)

REMARK Order matrix.

 DATA SAUPE_MATRIX
 S(zz)
 S(xx-yy)
 S(xy)
 S(xz)
 S(yz)

 DATA SAUPE
 2.9984e-004
 -1.9588e-003
 6.7079e-004
 1.5864e-008
 -2.8279e-008

 DATA IRREDUCIBLE_REP
 A0
 A1R
 A1I
 A2R
 A2I

 DATA IRREDUCIBLE
 4.7535e-004
 -2.0534e-008
 -3.6604e-008
 -1.2677e-003
 -8.6828e

 004
 DATA IRREDUCIBLE GENERAL MAGNITUDE
 2.2244e-003
 -1.2677e-003
 -8.6828e

REMARK Mapping of coordinates.

DATA	MAPPING_	COOR	Szz_d(x)	Szz_d(y)	Syy_d(x)	Syy_d(y)	Sxx_d(x)	Sxx_d(y)
DATA	MAPPING		-0.30026	-0.00001	1.27054	-0.00003	0.00003	1.57076
DATA	MAPPING	INV	2.84133	0.00001	-1.87106	0.00003	-0.00008	-1.57076

REMARK Eigensystem & Euler angles for clockwise rotation about z, y', z''.

 DATA EIGENVALUES (Sxx_d,Syy_d,Szz_d)
 2.9984e-004
 1.0372e-003
 -1.3370e-003

 DATA EIGENVECTORS
 (x_coor
 y_coor
 z_coor)

 DATA EIGENVECTORS X_AXIS
 2.2679e-005
 2.4670e-005
 1.0000e+000

 DATA EIGENVECTORS Y_AXIS
 2.9577e-001
 9.5526e-001
 -3.0274e-005

 DATA EIGENVECTORS Z_AXIS
 9.5526e-001
 -2.9577e-001
 -1.4368e-005

DATA	Q_EULER_SOLUTIO	NS	ALPHA	BETA	GAMMA
DATA	Q_EULER_ANGLES	1	180.00	90.00	197.20
DATA	Q_EULER_ANGLES	2	0.00	90.00	197.20
DATA	Q_EULER_ANGLES	3	360.00	90.00	17.20
DATA	Q_EULER_ANGLES	4	180.00	90.00	17.20

REMARK Euler angles (psi/theta/phi) for rotation about x, y, z.

 DATA EULER_SOLUTIONS 8

 DATA EULER_ANGLES
 -1.#J
 -72.80
 -1.#J

 DATA EULER_ANGLES
 -1.#J
 252.80
 -1.#J

DATA Da -6.685039e-004 DATA Dr -2.457743e-004

DATA Aa -1.337008e-003 DATA Ar -4.915485e-004

DATA Da_HN -1.442979e+001 DATA Rhombicity 3.676482e-001 REMARK Dipolar couplings. DATA N 16 DATA RMS 2.034 DATA Chi2 66.200 DATA CORR R 0.990 DATA Q SAUPE 0.048 DATA REGRESSION OFFSET 0.864 +/- 0.720 [Hz] 0.959 +/- 0.036 [Hz] DATA REGRESSION SLOPE DATA REGRESSION BAX SLOPE 0.969 +/- 0.025 [Hz] VARS RESID_I RESNAME_I ATOMNAME_I RESID_J RESNAME_J ATOMNAME_J DI D_OBS D D_DIFF DD W %4d %4s %4s %4d %4s %4s %9.2f %9.3f %9.3f %9.3f %.2f %.2f FORMAT -0.9000 -3.9634 1.0000 1.00 1 CAL C40 1 CAL H41 47292.49 3.0634 -0.9000 C13 H22 47292.49 3.0634 -3.9634 1.0000 1.00 1 CAL 1 CAL 1 CAL C54 1 CAL H51 47052.89 24.9000 26.2056 -1.3056 1.0000 1.00 47052.89 1 CAL C19 1 CAL H7 24.9000 26.2039 -1.3039 1.0000 1.00 6.6042 C31 H26 46972.77 10.2000 3.5958 1.0000 1.00 1 CAL 1 CAL 1 C45 1 CAL Н30 46972.77 10.2000 6.6040 3.5960 1.0000 1.00 CAL1 CAL C39 1 CAL H55 47181.87 14.9000 14.0014 0.8986 1.0000 1.00 1 CAL C46 1 CAL Н4З 47187.93 14.9000 14.0029 0.8971 1.0000 1.00 1 CALC16 1 CAL НG 46923.96 -7.1000 -5.9785 -1.1215 1.0000 1.00 -7.1000 46923.96 -5.9787 1.0000 1.00 CAL C35 1 CAL H61 -1.1213 1 14.5000 15.2347 -0.7347 1 CAL С4 1 CAL HЗ 46609.84 1.0000 1.00 1 CAL C2 1 CAL Η1 46609.84 14.5000 15.2340 -0.7340 1.0000 1.00

CAL 1.00Rotated structure

CAL

CAL

CAL

C37

C10

C37

C10

1

1

1

1

CAL

CAL

CAL

CAL

1

1

1

1

B₀ (external magnetic field induction vector) passes through the plane of the paper.

H24

H32

Н8

H14

45715.64

45715.64

46602.07

46602.07

42.2000

42.2000

12.0000

12.0000

41.8218

41.8207

12.1106

12.1109

0.3782

0.3793

-0.1106

-0.1109 1.0000

1.0000 1.00

1.0000 1.00

1.0000 1.00

SUMMARY (COMPARISON OF THE RESULTS)

	¹ J _{CH} (CDCl₃)	¹ D _{сн} (А)	¹ D _{CH} (В)	¹ D _{CH} (С)
CH-A4	164,6	1,8	-1,3	-0,9
CH-A5	160,9	-14,9	28,6	24,9
CH-B3	157,0	-4,0	11,4	10,2
CH-B4	161,1	-15,1	17,2	14,9
CH-B5	157,6	4,9	-8,8	-7,1
CH ₂ -AB (up)	131,8	29,8	n/a	n/a
CH ₂ -AB (dn)	132,0	-8,9	16,7	14,5
CH ₂ -AD (up)	128,6	-20,9	48,1	42,2
CH₂-AD (dn)	132,1	-11,7	12,6	12,0

Tab. 2: Comparison of RDC values of structure 5 in various alignment media.

Fig. 1: Comparison of selected region of ¹³C Z-restored proton coupled spectra of 5 in various alignment media.

Tab. 3: Comparison of fitting quality of structures 5 (*I*) and 5(*II*) in various alignment media.

Tab. 4: Comparison of molecular orientations within the magnetic field.

Alignment medium	Orientation of 5 within the magnetic field
A PhePAC	L L
B HMW-PBDG	
C PBLG	

DFT OPTIMIZATION OF 5(1) AND 5(11) CONFORMERS

Ab initio geometry optimizations were performer by program Gaussian03

(M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, **2004**.)

FINAL GEOMETRY of 5(1)

DFT method: RB3LYP/6-31G*

0 0 Н 0 Η Η С 0 С Η С С С C C С C C С С

REMARK	Thi	s PDB	file was	created by	CS Chem3D	•	
ATOM	1	01	1	1.159	1.488	1.366	
ATOM	2	02	1	-0.879	0.316	-1.816	
ATOM	3	нЗ	1	2.294	-4.698	-0.033	
ATOM	4	04	1	-2.418	1.652	0.543	
ATOM	5	Н5	1	-3.275	-3.089	2.645	
ATOM	6	НG	1	-2.770	-4.074	-3.962	
ATOM	7	C7	1	-2.550	0.372	1.052	
ATOM	8	08	1	2.551	0.372	-1.392	
ATOM	9	С9	1	-3.493	2.522	0.935	
ATOM	10	H10	1	1.861	-1.589	5.546	
ATOM	11	C11	1	-2.371	-3.181	-3.489	
ATOM	12	C12	1	-3.201	-2.379	-2.707	
ATOM	13	C13	1	-2.712	-1.212	-2.105	
ATOM	14	C14	1	-3.223	-0.606	0.293	
ATOM	15	C15	1	-3.488	-1.843	0.917	
ATOM	16	C16	1	-3.030	-2.126	2.210	
ATOM	17	C17	1	-2.270	-1.188	2.881	
ATOM	18	C18	1	-2.010	0.076	2.320	
ATOM	19	C19	1	2.272	-3.649	-0.305	
ATOM	20	C20	1	1.644	-3.197	-1.449	

ATOM	21	C21	1	1 698	-1 841	-1 818		
ATION	22	C 2 2	1	0 002	1 200	2 002		
ATOM	22	CZZ	1	0.993	-1.390	-3.093		
ATOM	23	C23	1	-3.251	3.903	0.343		
ATOM	24	H24	1	-3.546	2.575	2.033		
ATOM	25	Н25	1	-4.449	2.109	0.580		
ATOM	26	C26	1	2 896	-2 728	0 547		
ATOM	20	020	1	2.090	2.720	0.347		
ATOM	27	C27	T	-1.3/0	-0.86/	-2.330		
ATOM	28	C28	1	2.632	-1.001	3.624		
АТОМ	29	C29	1	-4.360	4.893	0.716		
ATTOM	20	1120	1	2 176	2 010	0 740		
AIOM	50	поо	1	-3.170	3.012	-0.748		
ATOM	31	H31	1	-2.280	4.273	0.695		
ATOM	32	Н32	1	-4.165	5.879	0.281		
АТОМ	33	нзз	1	-4 437	5 019	1 802		
	24	1100	- 1	E 227	0.010 4 EEC	0.250		
ATOM	34	H34	1	-5.337	4.556	0.350		
ATOM	35	C35	1	2.383	-0.939	-0.980		
ATOM	36	C36	1	2.915	-1.346	0.261		
АТОМ	37	C37	1	3,412	-0.331	1,290		
	20	001	1	2 440	0.001	2 460		
ATOM	38	638	T	2.440	-0.234	2.408		
ATOM	39	C39	1	-3.587	-0.377	-1.171		
ATOM	40	C40	1	-1.022	-2.856	-3.638		
ATOM	41	C41	1	-0 496	-1 702	-3 048		
7 T O M	10	010	1	1 200	1 011	1 (11)		
A.I.OM	42	C42	Ţ	1.682	-1.011	4.644		
ATOM	43	C43	1	-1.118	1.068	3.068		
ATOM	44	C44	1	1.282	0.559	2.387		
ATOM	45	C45	1	0 484	-0 316	4 483		
7 T O M	10	CAC	1	0.704	0.010	2 240		
ATOM	40	C46	1	0.250	0.456	3.340		
ATOM	47	C47	1	3.769	0.567	-2.131		
ATOM	48	C48	1	3.864	2.024	-2.560		
ΔΨΟΜ	49	нд 9	1	3 777	-0 095	-3 010		
ATOM		1140	1	1.000	0.000	1 504		
ATOM	50	HSU	Ţ	4.629	0.290	-1.504		
ATOM	51	Н51	1	3.829	2.659	-1.666		
ATOM	52	Н52	1	2.981	2.276	-3.160		
АТОМ	53	C53	1	5 142	2 306	-3 358		
	5 J	115/	- 1	5 100	2 2 5 0	2 6 5 9		
AIOM	54	п54	1	5.190	3.330	-3.000		
ATOM	55	H55	1	5.187	1.698	-4.269		
ATOM	56	Н56	1	6.040	2.088	-2.768		
АТОМ	57	Н57	1	-4.234	-2.665	-2.542		
λ TOM	5.8	u5.8	1	-1 863	-1 126	3 858		
AIOM	50	1150	1	1.005	1.420	5.050		
ATOM	59	H59	Ţ	1.108	-3.895	-2.086		
ATOM	60	H60	1	1.437	-1.911	-3.951		
ATOM	61	Н61	1	1.164	-0.322	-3.232		
ATOM	62	н62	1	3 529	-1 605	3 712		
ATOM	02 CD	1102	1	1 201	1.005	1 664		
ATOM	63	H63	Ţ	4.394	-0.633	1.664		
ATOM	64	H64	1	3.509	0.637	0.797		
ATOM	65	Н65	1	-4.632	-0.651	-1.338		
ΔTOM	66	нбб	- 1	-3 475	0 686	-1 390		
7 T O I I	00 C 7	1100	1	0.200		1 000		
A.I.OM	6/	ню/	Ţ	-0.369	-3.504	-4.220		
ATOM	68	H68	1	-1.022	1.974	2.470		
ATOM	69	Н69	1	-1.593	1.335	4.021		
Δ TΩM	70	ц70	- 1	_0 270	-0 369	5 256		
	70	071	1	0.219	1 410	0.200		
A'I'OM	/⊥	C/I	Ţ	-1.018	⊥.4⊥3	-2./33		
ATOM	72	C72	1	-0.320	2.624	-2.143		
ATOM	73	C73	1	-0.413	3.852	-3.054		
ΑПОМ	74	C74	1	1 742	2 743	1 759		
7 T O I'I	7 -	075		1 500	2 . 7 . 7 . 7	1.755		
A.I.OM	15	C/5	Ţ	1.539	3./8l	0.668		
ATOM	76	C76	1	2.176	5.125	1.036		
ATOM	77	Н77	1	-2.085	1.617	-2.910		
АТОМ	7 8	H78	1	-0 576	1 1 7 9	-3 704		
7 TO 11	70	11 / 0	- 1	0.070	1.1JJ	1 1 7 7		
ATOM	19	н/9	Ţ	-0./68	2.826	-1.10/		
ATOM	80	H80	1	0.724	2.353	-1.957		
ATOM	81	H81	1	0.102	4.710	-2.608		
ΔTOM	2 - 2 2	н82	- 1	_1 /55	<u>4</u> 1/9	-3 220		
	02	1102	1	1.400	7.140	J.ZZ9		
A'I'OM	83	нүз	Ţ	0.045	3.665	-4.034		
ATOM	84	H84	1	2.815	2.602	1.960		
ATOM	85	H85	1	1.281	3.080	2.701		
Δ.Π.Ο.Μ	00	110 C	1	- 1CF	2 005	0 100		
ATOM	80	ндр	T	0.465	3.903	0.492		

a trom	87	487		1		1 968	3 398	-0 264	н
	88	1107		1		2 016	5 864	0.201	ц
	89	1100 1189		1		3 258	5 029	1 186	ц
ATOM	90	110 J 110 J		1		1 7/9	5 534	1 960	и Ц
ATOM	90 Q1	NG1		1		-4 307	-2 765	0 186	N
ATOM	91	002		1		-4.307	-2.705	0.100	0
ATOM	92	NOS		1		-4.512	-3.039	0.742	U NI
ATOM	93	004		1		2.013	-3.133	1.715	
AIOM	94	094	74	T		3.373	-4.556	1.945	0
CONECT	Ţ	44	74						
CONECT	2	27	/ 1						
CONECT	3	19	0						
CONECT	4	1	9						
CONECT	5	16							
CONECT	6	11							
CONECT	7	4	14	18					
CONECT	8	35	47						
CONECT	9	4	23	24	25				
CONECT	10	42							
CONECT	11	6	12	40					
CONECT	12	11	13	57					
CONECT	13	12	27	39					
CONECT	14	7	15	39					
CONECT	15	14	16	91					
CONECT	16	5	15	17					
CONECT	17	16	18	58					
CONECT	18	7	17	43					
CONECT	19	3	20	26					
CONECT	20	19	21	59					
CONECT	21	20	22	35					
CONECT	22	21	41	60	61				
CONECT	23	9	29	30	31				
CONECT	24	9							
CONECT	25	9							
CONECT	26	19	36	93					
CONECT	27	2	13	41					
CONECT	2.8	38	42	62					
CONECT	29	23	32	33	34				
CONECT	30	23							
CONECT	31	23							
CONECT	32	29							
CONECT	33	29							
CONECT	34	29							
CONECT	35	8	21	36					
CONECT	36	26	35	37					
CONECT	37	36	38	63	64				
CONECT	38	28	37	44	01				
CONECT	39	13	14	65	66				
CONECT	40	11	41	67	00				
CONECT	11	22	27	40					
CONECT	41	10	29	40					
CONECT	42	1.0	20	-1J 68	69				
CONECT	40	1	20	46	09				
CONECT	44	12	16	70					
CONECT	40	42	40	15					
CONECT	40	43	44	40	50				
CONECT	4 /	8	48 E1	49	50				
CONECT	40 40	4/	ЭТ	JΖ	53				
CONECT	49 E0	4 /							
CONECT	2U 51	4/							
CONECT	51	48							
CONECT	52	48							
CONECT	53	48	54	55	56				
CONECT	54	53							
CONECT	55	53							
CONECT	56	53							
CONECT	57	12							
CONECT	58	17							

CONECT	59	20			
CONECT	60	22			
CONECT	61	22			
CONECT	62	28			
CONECT	63	37			
CONECT	64	37			
CONECT	65	39			
CONECT	66	39			
CONECT	67	40			
CONECT	68	43			
CONECT	69	43			
CONECT	70	45			
CONECT	71	2	72	77	78
CONECT	72	71	73	79	80
CONECT	73	72	81	82	83
CONECT	74	1	75	84	85
CONECT	75	74	76	86	87
CONECT	76	75	88	89	90
CONECT	77	71			
CONECT	78	71			
CONECT	79	72			
CONECT	80	72			
CONECT	81	73			
CONECT	82	73			
CONECT	83	73			
CONECT	84	74			
CONECT	85	74			
CONECT	86	75			
CONECT	87	75			
CONECT	88	76			
CONECT	89	76			
CONECT	90	76			
CONECT	91	15	92		
CONECT	92	91			
CONECT	93	26	94		
CONECT	94	93			
END					

FINAL GEOMETRY of 5(11)

DFT method: RB3LYP/6-31G*

REMARK	Thi	s PDB	file	was	created by	CS Chem3D	•
АТОМ	1	н1		1	-3 446	1 080	0 688
ATOM	2	C2		1	-3 536	0 885	-0 381
ATOM	3	Н3		1	3.446	-1.080	0.688
АТОМ	4	C4		1	3.536	-0.885	-0.381
ATOM	5	C5		1	1.927	0.668	2.050
ATOM	6	НG		1	-0.616	-3.137	-3.021
ATOM	7	Н7		1	-2.987	-4.302	-1.855
ATOM	8	Н8		1	0.682	3.373	0.739
ATOM	9	С9		1	2.225	-3.627	1.344
ATOM	10	C10		1	-0.895	-3.428	-0.329
ATOM	11	H11		1	3.221	-3.620	0.877
ATOM	12	C12		1	-3.481	-0.612	-0.663
ATOM	13	C13		1	-4.261	-2.578	-1.913
ATOM	14	H14		1	-0.682	-3.373	0.739
ATOM	15	H15		1	-3.221	3.620	0.877
ATOM	16	C16		1	0.243	-2.735	-2.488
ATOM	17	H17		1	-1.699	4.522	0.978
ATOM	18	C18		1	-4.415	-1.241	-1.515
ATOM	19	C19		1	-3.142	-3.283	-1.510
ATOM	20	C20		1	2.415	1.396	-0.179
ATOM	21	C21		1	2.188	2.702	-0.654
ATOM	22	H22		1	-5.016	-3.011	-2.561
ATOM	23	Н2З		1	2.999	0.435	2.080
ATOM	24	H24		1	1.012	4.487	-0.592
ATOM	25	H25		1	4.505	-1.264	-0.712
ATOM	26	H26		1	3.118	-1.025	-3.058
ATOM	27	C27		1	2.410	-1.607	-1.114
ATOM	28	C28		1	0.283	-2.826	-1.092
ATOM	29	C29		1	1.399	-2.297	-0.421
ATOM	30	Н30		1	-3.118	1.025	-3.058
ATOM	31	C31		1	2.335	-1.544	-2.510
ATOM	32	Н32		1	-1.012	-4.487	-0.592
ATOM	33	C33		1	3.481	0.612	-0.663
ATOM	34	C34		1	-2.415	-1.396	-0.179
ATOM	35	C35		1	-0.243	2.735	-2.488
A'TOM	36	036		1	-0.283	2.826	-1.092
A'LOW	37	C37		1	0.895	3.428	-0.329

НСНССНННССНССННСНССССНННННСССНСНССССС

ATOM 40 C43 1 1.2.73 -2.125 -3.198 ATOM 41 H41 1 5.016 3.011 -2.561 ATOM 42 C42 1 -1.393 2.297 -0.421 ATOM 45 C45 1 -2.355 1.544 -2.510 ATOM 45 C46 1 -1.571 2.449 0.956 ATOM 46 C46 1 -1.571 2.449 0.956 ATOM 46 C46 1 -1.511 2.4987 4.302 -1.855 ATOM 40 O48 1 -1.501 -0.849 0.686 ATOM 50 C50 1 4.415 1.241 -1.114 ATOM 50 C53 1 -2.225 3.628 1.344 ATOM 53 C53 1 1.223 -2.074 -4.282 ATOM 55 H55 1 1.233 -2.074 -4.282 ATOM 56 H5 1 -1.214 1.114<	ATOM	38	C38		1		-2.188	-2.702	-0.654	
ATOM 40 C40 1 4.261 2.578 -1.913 ATOM 42 C42 1 -1.399 2.297 -0.421 ATOM 42 C42 1 -1.233 2.074 -4.282 ATOM 44 044 1 1.501 -2.449 0.956 ATOM 46 C45 1 -2.335 1.544 -2.510 ATOM 46 C46 1 -1.501 2.449 0.956 ATOM 47 O47 1 -1.501 2.049 0.686 ATOM 49 O49 1 1.501 0.849 0.686 ATOM 50 C50 1 4.415 1.241 -1.515 ATOM 52 C52 1 -2.420 3.628 1.344 ATOM 56 H56 1 3.142 3.283 -1.510 ATOM 56 H56 1 -2.420 0.978 3.021 ATOM 56 H56 1 -3.820 0.972	ATOM	39	C39		1		1.273	-2.125	-3.198	
ATCM 41 1 5.014 5.016 5.016 5.016 ATCM 42 C42 1 -1.239 2.237 -0.421 ATCM 43 1 -1.233 2.074 -4.232 ATCM 44 044 1 1.501 -2.449 0.956 ATCM 45 C46 1 -1.273 2.124 -3.198 ATCM 46 C46 1 -1.501 -0.849 0.666 ATCM 49 049 1 1.501 0.849 0.666 ATCM 49 049 1 1.231 -2.212 3.628 1.344 ATCM 50 C53 1 -2.225 3.628 1.344 ATCM 54 C54 1 3.182 -0.210 -0.4103 ATCM 54 D55 1 -1.233 -2.207 -0.421 ATCM 57 B57 1 1.698 -4.522 0.978 ATCM 57 B58 1 1.322 -0.2403	ATOM	40	C40		1		4 261	2 578	-1 913	
ATOM 41 1 1 0.016 7.2.331 ATOM 43 H43 1 -1.339 2.237 -0.421 ATOM 44 044 1 1.501 -2.449 0.956 ATOM 45 C45 1 -2.335 1.544 -2.510 ATOM 46 C46 1 -1.501 2.449 0.956 ATOM 48 O47 1 -1.501 -0.849 0.686 ATOM 48 O48 1 -1.501 -0.849 0.686 ATOM 50 C50 1 4.415 1.241 -1.515 ATOM 52 C52 1 -2.420 1.607 -1.114 ATOM 54 C54 1 3.142 3.283 -1.510 ATOM 56 H56 1 -4.505 1.264 -0.712 ATOM 56 H56 1 -1.332 -0.214 -1.974 ATOM 56 H56 1 -1.320 -4.022 -2.676 <		10	11/1		1		F 010	2.011	2 EC1	
ATOM 42 C42 1 -1.239 2.297 -0.421 ATOM 44 044 1 1.501 -2.449 0.956 ATOM 46 C46 1 -1.273 2.124 -3.198 ATOM 46 C46 1 -1.501 2.449 0.956 ATOM 46 C46 1 -1.501 0.849 0.686 ATOM 46 O47 1 -1.501 0.849 0.686 ATOM 50 C50 1 4.415 1.241 1.515 ATOM 50 C50 1 4.415 1.241 1.515 ATOM 53 C53 1 -2.225 3.628 1.344 ATOM 54 C54 1 3.142 3.293 -1.510 ATOM 56 H56 1 -1.638 1.022 -2.676 ATOM 58 H58 1 1.322 -0.210 2.403 ATOM 60 N60 1 -5.512 -0.440 -1.974	ATOM	41	H41		1		5.016	3.011	-2.561	
ATOM 43 H43 1 1.233 2.074 -4.282 ATOM 45 C45 1 -2.335 1.544 -2.510 ATOM 46 C46 1 -1.273 2.124 -3.198 ATOM 47 047 1 -1.501 -0.849 0.686 ATOM 49 049 1 1.501 0.849 0.686 ATOM 50 C50 1 4.415 1.241 -1.515 ATOM 52 C52 1 -2.2410 1.607 -1.114 ATOM 53 C53 1 -2.225 3.628 1.344 ATOM 54 C54 1 3.142 3.283 -1.510 ATOM 56 B55 1 1.638 -0.210 2.403 ATOM 57 B57 1 1.698 -2.270 7.974 ATOM 59 O59 1 -6.331 -1.022 -2.676 ATOM 60 N60 1 -5.512 0.440 -1.974	ATOM	42	C42		1		-1.399	2.297	-0.421	
ATCM 44 044 1 1.501 -2.449 0.956 ATOM 46 C46 1 -2.335 1.544 -2.510 ATOM 46 C46 1 -1.501 2.124 -3.198 ATOM 48 047 1 -1.501 0.849 0.686 ATOM 49 049 1 1.501 0.849 0.686 ATOM 49 049 1 1.501 0.849 0.686 ATOM 50 C52 1 -2.410 1.607 -1.114 ATOM 51 B51 1 1.233 -2.074 -4.282 ATOM 54 C54 1 3.142 3.263 -1.510 ATOM 56 B56 1 -4.505 1.264 -0.712 ATOM 56 B57 1 1.6331 -1.022 -2.676 ATOM 61 B61 1 -1.927 -0.666 2.050 ATOM 62 B65 1 -1.320 0.410 1.974 <td>ATOM</td> <td>43</td> <td>Н4З</td> <td></td> <td>1</td> <td></td> <td>-1.233</td> <td>2.074</td> <td>-4.282</td> <td></td>	ATOM	43	Н4З		1		-1.233	2.074	-4.282	
ATOM 45 C45 1 -2.335 1.544 -2.510 ATOM 46 C46 1 -1.273 2.124 -3.198 ATOM 47 047 1 -1.501 2.449 0.956 ATOM 48 048 1 -1.501 0.849 0.666 ATOM 49 049 1 1.501 0.849 0.666 ATOM 50 C50 1 4.415 1.241 -1.515 ATOM 52 C52 1 -2.410 1.607 -1.114 ATOM 52 C52 1 -2.223 3.628 1.344 ATOM 54 C54 1 3.142 3.283 -1.510 ATOM 57 H57 1 1.698 -4.522 0.978 ATOM 58 H58 1 1.382 -0.210 2.403 ATOM 60 H61 1 0.668 2.050 ATOM 60 1.63131 -1.022 -2.676 ATOM 62 K62	ATOM	44	044		1		1,501	-2.449	0.956	
ATOM 46 C46 1 -1.273 2.124 -3.198 ATOM 47 O47 1 -1.501 2.449 0.956 ATOM 48 O48 1 -1.501 0.849 0.686 ATOM 49 O49 1 1.501 0.849 0.686 ATOM 50 C50 1 4.415 1.521 1.551 ATOM 51 H51 1 2.987 4.302 -1.855 ATOM 54 C54 1 3.142 3.2283 -1.510 ATOM 56 H56 1 -4.505 1.264 -0.712 ATOM 56 H56 1 -6.331 -1.022 -2.676 ATOM 50 D59 1 -6.331 -1.022 -2.676 ATOM 61 H61 0.616 3.137 -3.021 ATOM 62 N62 1 5.12 0.440 -1.974 ATOM 63 G63 1 6.331 1.022 -2.676 <t< td=""><td>λτοM</td><td>15</td><td>C15</td><td></td><td>1</td><td></td><td>-2 335</td><td>1 511</td><td>-2 510</td><td></td></t<>	λτοM	15	C15		1		-2 335	1 511	-2 510	
ATOM 440 C446 1 -1.273 2.124 -3.198 ATOM 440 O47 1 -1.501 -0.849 0.686 ATOM 49 O49 1 1.501 -0.849 0.686 ATOM 50 C50 1 4.415 1.241 -1.515 ATOM 50 C50 1 4.415 1.241 -1.515 ATOM 50 C53 1 -2.225 3.628 1.344 ATOM 53 C53 1 1.233 -2.074 -4.282 ATOM 55 H55 1 1.698 -4.522 0.978 ATOM 56 H56 1 -6.331 1.022 -2.676 ATOM 60 N60 1 -5.512 0.440 -1.974 ATOM 61 H61 1 0.668 2.050 ATOM 63 063 1 6.331 1.022 -2.676 ATOM 64 H61 1 -2.999 -0.435 2.080 <t< td=""><td>AIOM</td><td>45</td><td>C4J ~1C</td><td></td><td>1</td><td></td><td>2.555</td><td>1.344</td><td>2.510</td><td></td></t<>	AIOM	45	C4J ~1C		1		2.555	1.344	2.510	
ATOM 47 047 1 -1.501 2.449 0.956 ATOM 49 049 1 -1.501 -0.849 0.686 ATOM 50 050 1 4.415 1.241 -1.515 ATOM 51 H51 1 2.987 4.302 -1.855 ATOM 52 C52 1 -2.410 1.607 -1.114 ATOM 54 C54 1 3.142 3.283 -1.510 ATOM 54 C54 1 3.142 3.283 -1.510 ATOM 56 H55 1 1.233 -0.210 2.403 ATOM 59 059 1 -6.331 -1.022 -2.676 ATOM 60 N60 1 -5.512 0.440 -1.974 ATOM 62 N62 1 5.512 0.440 -1.974 ATOM 64 C64 1 -1.927 -0.668 2.050 ATOM 64 C64 1 -1.927 -0.668 2.050 </td <td>A'I'OM</td> <td>46</td> <td>C46</td> <td></td> <td>T</td> <td></td> <td>-1.2/3</td> <td>2.124</td> <td>-3.198</td> <td></td>	A'I'OM	46	C46		T		-1.2/3	2.124	-3.198	
ATOM 48 048 1 -1.501 -0.849 0.686 ATOM 50 C50 1 4.415 1.241 -1.515 ATOM 51 H51 1 2.987 4.302 -1.855 ATOM 52 C52 1 -2.410 1.607 -1.14 ATOM 53 C53 1 -2.225 3.628 1.344 ATOM 54 C54 1 3.142 3.283 -1.510 ATOM 56 H55 1 1.233 -0.210 2.403 ATOM 58 H58 1 1.382 -0.210 2.403 ATOM 59 059 1 -6.331 -1.022 -2.676 ATOM 61 H61 1 0.616 3.137 -3.021 ATOM 62 N62 1 -1.382 0.210 2.403 ATOM 64 C64 1 -1.327 -0.668 2.050 ATOM 64 C64 1 -1.320 0.210 2.403	ATOM	47	047		1		-1.501	2.449	0.956	
ATOM 49 0.49 1 1.501 0.849 0.686 ATOM 50 C50 1 4.415 1.241 -1.515 ATOM 52 C52 1 -2.410 1.607 -1.114 ATOM 52 C52 1 -2.225 3.628 1.344 ATOM 54 C54 1 3.142 3.283 -1.510 ATOM 55 H55 1 1.698 -4.522 0.978 ATOM 57 H57 1 1.698 -4.522 0.978 ATOM 59 O59 1 -6.331 -1.022 -2.676 ATOM 60 N60 1 -5.512 -0.440 -1.974 ATOM 63 063 1 6.331 1.022 -2.676 ATOM 64 C64 1 -1.927 -0.668 2.050 ATOM 65 R65 1 -1.340 -3.658 2.861 ATOM 67 C67 1 2.346 -3.658 3.299 </td <td>ATOM</td> <td>48</td> <td>048</td> <td></td> <td>1</td> <td></td> <td>-1.501</td> <td>-0.849</td> <td>0.686</td> <td></td>	ATOM	48	048		1		-1.501	-0.849	0.686	
ATOM 59 1 1.1.01 0.049 0.000 ATOM 51 H51 1 2.987 4.302 -1.855 ATOM 52 C52 1 -2.410 1.607 -1.114 ATOM 53 C53 1 -2.225 3.628 1.344 ATOM 54 C54 1 3.142 3.283 -1.510 ATOM 56 H55 1 1.268 -0.210 2.403 ATOM 56 H56 1 -4.505 1.264 -0.712 ATOM 59 O59 1 -6.331 -1.022 -2.676 ATOM 61 H61 1 0.616 3.137 -3.021 ATOM 62 N62 1 5.512 0.440 -1.974 ATOM 63 O63 1 6.331 1.022 -2.676 ATOM 64 C64 1 -1.382 0.210 2.403 ATOM 63 O63 1 6.331 1.022 -2.676	A TOM	10	010		1		1 501	0 940	0 696	
ATOM 50 CS0 1 4.415 1.241 -1.515 ATOM 52 CS2 1 -2.410 1.607 -1.114 ATOM 53 CS3 1 -2.225 3.628 1.344 ATOM 54 CS4 1 3.142 3.283 -1.510 ATOM 55 H55 1 1.233 -2.074 -4.282 ATOM 56 H56 1 -4.551 2.044 -0.712 ATOM 57 H57 1 1.698 -4.522 0.978 ATOM 50 D59 1 -6.331 -1.022 -2.676 ATOM 60 N60 1 -1.927 -0.668 2.050 ATOM 63 D63 1 -1.322 2.060 ATOM ATOM 64 H66 1 -2.999 -0.435 2.080 ATOM 66 H66 1 -2.346 -3.658 2.861 ATOM 70 C70 1 3.129 -4.889 2.953 </td <td>ATOM</td> <td>49</td> <td>049</td> <td></td> <td>1</td> <td></td> <td>1.301</td> <td>1 0 4 1</td> <td>1 515</td> <td></td>	ATOM	49	049		1		1.301	1 0 4 1	1 515	
ATCM 51 H51 1 2.987 4.302 -1.855 ATCM 52 C52 1 -2.410 1.607 -1.114 ATOM 54 C54 1 3.142 3.283 -1.510 ATOM 56 H55 1 1.233 -2.074 -4.282 ATOM 56 H56 1 -4.505 1.264 -0.712 ATOM 57 H57 1 1.688 -0.210 2.403 ATOM 59 059 1 -6.331 -1.022 -2.676 ATOM 61 H61 1 0.616 3.137 -3.021 ATOM 62 N62 1 5.512 0.440 -1.974 ATOM 63 063 1 6.311 1.022 -2.676 ATOM 64 C64 1 -1.927 -0.668 2.050 ATOM 64 C64 1 -1.320 2.403 3.14 ATOM 65 H65 1 2.346 -3.658 2.861 <td>ATOM</td> <td>50</td> <td>050</td> <td></td> <td>T</td> <td></td> <td>4.415</td> <td>1.241</td> <td>-1.515</td> <td></td>	ATOM	50	050		T		4.415	1.241	-1.515	
ATOM 52 C52 1 -2.410 1.607 -1.114 ATOM 53 C53 1 -2.225 3.628 1.344 ATOM 55 H55 1 1.233 -2.074 -4.282 ATOM 56 H56 1 1.698 -4.522 0.978 ATOM 58 H58 1 1.698 -0.210 2.403 ATOM 50 059 1 -6.331 -0.222 -2.676 ATOM 60 N60 1 -5.512 -0.440 -1.974 ATOM 62 N62 1 5.512 0.440 -1.974 ATOM 63 N63 1 -1.327 -0.668 2.050 ATOM 64 K64 1 -1.927 -0.668 2.050 ATOM 65 H65 1 -1.327 -0.668 2.050 ATOM 66 H66 1 -2.937 2.734 3.195 ATOM 70 C70 1 3.129 -4.882 4.447	ATOM	51	H51		1		2.987	4.302	-1.855	
ATOM 53 C53 1 -2.225 3.628 1.344 ATOM 54 C54 1 3.142 3.283 -1.510 ATOM 56 H55 1 1.233 -2.074 -4.282 ATOM 57 H57 1 1.698 -4.220 0.978 ATOM 59 059 1 -6.331 -1.022 -2.676 ATOM 60 N60 1 -5.512 0.440 -1.974 ATOM 62 N62 1 5.512 0.440 -1.974 ATOM 63 063 1 -1.382 0.210 2.403 ATOM 64 C64 1 -1.927 -0.668 2.050 ATOM 65 H65 1 -1.320 0.210 2.403 ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 70 C70 1 3.129 -4.879 3.354 </td <td>ATOM</td> <td>52</td> <td>C52</td> <td></td> <td>1</td> <td></td> <td>-2.410</td> <td>1.607</td> <td>-1.114</td> <td></td>	ATOM	52	C52		1		-2.410	1.607	-1.114	
ATOM 54 C54 1 3.142 3.283 -1.510 ATOM 55 H55 1 1.233 -2.074 -4.282 ATOM 56 H56 1 -4.505 1.264 -0.712 ATOM 58 H58 1 1.382 -0.210 2.403 ATOM 59 059 1 -6.331 -1.022 -2.676 ATOM 60 N60 1 -5.512 -0.440 -1.974 ATOM 62 N62 1 5.512 0.440 -1.974 ATOM 63 063 1 -1.322 -2.676 ATOM 64 C64 1 -1.927 -0.668 2.050 ATOM 65 H65 1 -1.382 0.210 2.403 ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 67 C67 1 2.337 -2.734 3.195 ATOM 70 C70 1 3.201 4.882 4.447 <t< td=""><td>ΔTOM</td><td>53</td><td>C53</td><td></td><td>1</td><td></td><td>-2 225</td><td>3 628</td><td>1 344</td><td></td></t<>	ΔTOM	53	C53		1		-2 225	3 628	1 344	
ATOM 54 C.54 1 3.142 5.263 -1.510 ATOM 56 H55 1 1.233 -2.074 -4.282 ATOM 57 H57 1 1.698 -4.222 0.978 ATOM 59 059 1 -6.331 -1.022 -2.676 ATOM 60 N60 1 -5.512 0.440 -1.974 ATOM 62 N62 1 5.512 0.440 -1.974 ATOM 63 063 1 6.331 1.022 -2.676 ATOM 63 063 1 -1.382 0.210 2.403 ATOM 64 C64 1 -1.927 -0.668 2.050 ATOM 65 H66 1 -2.999 -0.435 2.080 ATOM 66 H68 1 1.340 -3.658 2.861 ATOM 70 C70 1 3.129 4.879 3.354 ATOM 71 H71 1 3.201 4.883 2.861 <td></td> <td>55</td> <td>CDD CEA</td> <td></td> <td>1</td> <td></td> <td>2.225</td> <td>2.020</td> <td>1 510</td> <td></td>		55	CDD CEA		1		2.225	2.020	1 510	
ATOM 55 H55 1 1.233 -2.074 -4.282 ATOM 56 H56 1 -4.505 1.264 -0.712 ATOM 58 H58 1 1.382 -0.210 2.403 ATOM 59 059 1 -6.331 -1.022 -2.676 ATOM 60 N60 1 -5.512 -0.440 -1.974 ATOM 61 H61 1 0.616 3.137 -3.021 ATOM 63 063 1 6.331 1.022 -2.676 ATOM 64 C64 1 -1.927 -0.668 2.050 ATOM 65 H65 1 -1.322 0.210 2.403 ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 67 C67 1 2.346 -3.655 3.299 ATOM 70 C70 1 3.129 4.879 3.354 ATOM 71 H71 1 2.644 -5.815 3.051 </td <td>ATOM</td> <td>54</td> <td>054</td> <td></td> <td>T</td> <td></td> <td>3.142</td> <td>3.283</td> <td>-1.510</td> <td></td>	ATOM	54	054		T		3.142	3.283	-1.510	
ATOM 56 H56 1 -4.505 1.264 -0.712 ATOM 57 H57 1 1.698 -4.522 0.978 ATOM 59 059 1 -6.331 -1.022 -2.676 ATOM 61 H61 1 0.616 3.137 -3.021 ATOM 62 N62 1 5.512 0.440 -1.974 ATOM 62 N62 1 5.512 0.440 -1.974 ATOM 63 063 1 6.331 1.022 -2.676 ATOM 64 C64 1 -1.322 0.210 2.403 ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 66 H68 1 1.340 -3.658 2.861 ATOM 70 C70 1 3.129 -4.879 3.354 ATOM 71 H71 1 3.201 -4.882 4.447 ATOM 72 H72 1 -2.346 3.658 3.299	ATOM	55	H55		1		1.233	-2.074	-4.282	
ATOM 57 H57 1 1.698 -4.522 0.978 ATOM 58 H58 1 1.382 -0.210 2.403 ATOM 59 059 1 -6.531 -1.022 -2.676 ATOM 60 N60 1 -5.512 -0.440 -1.974 ATOM 61 H61 1 0.616 3.137 -3.021 ATOM 62 N62 1 5.512 0.440 -1.974 ATOM 63 063 1 -1.927 -0.668 2.050 ATOM 65 H65 1 -1.322 0.210 2.403 ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 67 C67 1 2.346 -3.655 3.299 ATOM 68 H69 1 2.837 -2.734 3.195 ATOM 70 C70 1 3.129 4.812 3.655 3.299 ATOM 71 H71 1 2.644 -5.815 <td>ATOM</td> <td>56</td> <td>Н56</td> <td></td> <td>1</td> <td></td> <td>-4.505</td> <td>1.264</td> <td>-0.712</td> <td></td>	ATOM	56	Н56		1		-4.505	1.264	-0.712	
ATOM 58 H58 1 1.382 0.210 2.403 ATOM 59 059 1 -6.331 -1.022 -2.676 ATOM 60 N60 1 -5.512 -0.440 -1.974 ATOM 62 N62 1 5.512 0.440 -1.974 ATOM 63 063 1 6.331 1.022 -2.676 ATOM 64 C64 1 -1.927 -0.668 2.050 ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 67 K67 1 2.346 -3.655 3.299 ATOM 68 H68 1 1.340 -3.655 3.299 ATOM 70 T7 1 3.129 -4.879 3.051 ATOM 71 H71 1 -2.044 5.815 3.051 <td>ATOM</td> <td>57</td> <td>н57</td> <td></td> <td>1</td> <td></td> <td>1 698</td> <td>-4 522</td> <td>0 978</td> <td></td>	ATOM	57	н57		1		1 698	-4 522	0 978	
ATOM 50 1059 1 1.382 -0.210 2.403 ATOM 60 N60 1 -5.512 -0.440 -1.974 ATOM 61 H61 1 0.616 3.137 -3.021 ATOM 63 063 1 6.331 1.022 -2.676 ATOM 63 063 1 6.331 1.022 -2.676 ATOM 64 C64 1 -1.927 -0.668 2.050 ATOM 65 H65 1 -1.382 0.210 2.403 ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 67 C67 1 2.346 -3.658 2.861 ATOM 69 H69 1 2.837 -2.734 3.195 ATOM 70 C70 1 3.129 -4.879 3.354 ATOM 71 H71 1 3.201 -4.882 2.953 ATOM 74 C77 1 -1.340 3.655 3.299 <td></td> <td>57</td> <td>11.0 /</td> <td></td> <td>1</td> <td></td> <td>1 200</td> <td>0 010</td> <td>2 400</td> <td></td>		57	11.0 /		1		1 200	0 010	2 400	
ATOM 59 059 1 -6.331 -1.022 -2.676 ATOM 60 N60 1 -5.512 -0.440 -1.974 ATOM 61 H61 1 0.616 3.137 -3.021 ATOM 62 N62 1 5.512 0.440 -1.974 ATOM 63 063 1 6.331 1.022 -2.676 ATOM 64 C64 1 -1.927 -0.668 2.050 ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 67 C67 1 2.346 -3.655 3.299 ATOM 69 H69 1 2.837 -2.734 3.195 ATOM 70 C70 1 3.129 -4.892 4.447 ATOM 71 H71 1 3.201 -4.882 4.447 ATOM 74 C74 1 -2.837 2.735 3.195 </td <td>ATOM</td> <td>58</td> <td>нэх</td> <td></td> <td>T</td> <td></td> <td>1.382</td> <td>-0.210</td> <td>2.403</td> <td></td>	ATOM	58	нэх		T		1.382	-0.210	2.403	
ATOM 60 N60 1 -5.512 -0.440 -1.974 ATOM 61 H61 1 0.616 3.137 -3.021 ATOM 62 N62 1 5.512 0.440 -1.974 ATOM 63 063 1 6.331 1.022 -2.676 ATOM 64 C64 1 -1.927 -0.668 2.050 ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 66 H68 1 1.340 -3.655 3.299 ATOM 69 H69 1 2.837 -2.734 3.195 ATOM 70 C70 1 3.129 -4.879 3.354 ATOM 71 H71 1 3.201 -4.889 2.953 ATOM 74 H72 1 2.644 5.815 3.051 ATOM 74 C74 1 -2.837 2.735 3.195 ATOM 76 H76 1 -2.843 2.644 5.815	ATOM	59	059		1		-6.331	-1.022	-2.676	
ATOM 61 H61 1 0.616 3.137 -3.021 ATOM 62 N62 1 5.512 0.440 -1.974 ATOM 63 063 1 6.331 1.022 -2.676 ATOM 64 C64 1 -1.927 -0.668 2.050 ATOM 65 H65 1 -1.382 0.210 2.403 ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 67 C67 1 2.346 -3.658 2.861 ATOM 67 L67 1 3.854 3.129 -4.879 3.354 ATOM 70 L70 1 3.201 -4.889 2.953 ATOM ATOM 71 H71 1 3.201 -4.889 2.953 ATOM ATOM 74 H72 1 2.346 3.655 3.299 ATOM 74 H73 1 -1.340 3.655 3.299 ATOM 76 H76 1	ATOM	60	N60		1		-5.512	-0.440	-1.974	
ATOM 62 N62 1 5.512 0.440 -1.974 ATOM 63 063 1 6.331 1.022 -2.676 ATOM 64 C64 1 -1.927 -0.668 2.050 ATOM 66 H65 1 -1.382 0.210 2.403 ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 68 H68 1 1.340 -3.655 3.299 ATOM 69 H69 1 2.837 -2.734 3.195 ATOM 70 C70 1 3.129 -4.879 3.354 ATOM 71 H71 1 3.201 -4.882 4.447 ATOM 72 H72 1 2.644 -5.815 3.051 ATOM 73 H73 1 -1.340 3.655 3.299 ATOM 76 H76 1 -2.837 2.735 3.195	АТОМ	61	Н61		1		0 616	3 1 3 7	-3 021	
ATOM 62 NO2 1 5.312 0.440 -1.974 ATOM 63 063 1 6.331 1.022 -2.676 ATOM 64 C64 1 -1.927 -0.668 2.050 ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 66 H66 1 2.346 -3.655 3.299 ATOM 69 H69 1 2.837 -2.734 3.195 ATOM 70 C70 1 3.129 -4.879 3.354 ATOM 71 H71 1 3.201 -4.882 4.447 ATOM 72 H72 1 2.644 -5.815 3.051 ATOM 73 H73 1 -1.340 3.655 3.299 ATOM 74 C74 1 -2.346 3.658 2.861 ATOM 75 H75 1 -1.340 3.655 3.299 ATOM 76 H76 1 -2.2837 3.154		C 0	MCO		1		0.010 5 510	0 1 1 0	1 07/	
ATOM 63 063 1 6.331 1.022 -2.676 ATOM 64 C64 1 -1.927 -0.668 2.050 ATOM 65 H65 1 -1.927 -0.668 2.080 ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 67 C67 1 2.346 -3.658 2.861 ATOM 69 H69 1 2.837 -2.734 3.195 ATOM 70 C70 1 3.129 -4.879 3.354 ATOM 72 H72 1 2.644 -5.815 3.051 ATOM 73 H73 1 4.150 -4.889 2.953 ATOM 74 C74 1 -2.346 3.655 3.299 ATOM 74 K74 1 -2.346 3.655 3.299 ATOM 76 H76 1 -2.837 2.735 3.195 ATOM 76 H78 1 -3.051 3.051	ATOM	62	N6Z		Ţ		5.512	0.440	-1.9/4	
ATOM 64 C64 1 -1.927 -0.668 2.050 ATOM 65 H65 1 -1.382 0.210 2.403 ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 67 C67 1 2.346 -3.658 2.861 ATOM 68 H68 1 1.340 -3.655 3.299 ATOM 69 H69 1 2.837 -2.734 3.195 ATOM 70 C70 1 3.129 -4.882 4.447 ATOM 71 H71 1 3.201 -4.882 4.847 ATOM 72 H72 1 2.644 -5.815 3.051 ATOM 74 C74 1 -2.346 3.655 3.299 ATOM 75 H75 1 -1.340 3.655 3.299 ATOM 76 H76 1 -2.837 2.735 3.195 ATOM 78 H78 1 -3.204 4.880 3.654	ATOM	63	063		1		6.331	1.022	-2.676	
ATOM 65 H65 1 -1.382 0.210 2.403 ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 67 C67 1 2.346 -3.655 3.299 ATOM 68 H68 1 1.340 -3.655 3.299 ATOM 69 H69 1 2.837 -2.734 3.195 ATOM 70 C70 1 3.129 -4.879 3.354 ATOM 71 H71 1 3.201 -4.882 4.447 ATOM 72 H72 1 2.644 -5.815 3.051 ATOM 73 H73 1 4.150 -4.889 2.953 ATOM 74 C74 1 -2.837 2.735 3.195 ATOM 76 H76 1 -2.837 2.735 3.195 ATOM 78 H78 1 -3.129 4.883 4.447 ATOM 78 H78 1 -2.644 5.815 3.051	ATOM	64	C64		1		-1.927	-0.668	2.050	
ATOM 66 H66 1 -2.999 -0.435 2.080 ATOM 67 C67 1 2.346 -3.658 2.861 ATOM 68 H68 1 1.340 -3.655 3.299 ATOM 69 H69 1 2.837 -2.734 3.195 ATOM 70 C70 1 3.129 -4.879 3.354 ATOM 71 H71 1 3.201 -4.882 4.447 ATOM 72 H72 1 2.644 -5.815 3.051 ATOM 74 C74 1 -2.346 3.658 2.861 ATOM 74 C74 1 -2.837 2.735 3.195 ATOM 76 H76 1 -3.201 4.880 3.354 ATOM 78 H78 1 -3.201 4.880 3.951 ATOM 78 H78 1 -1.638 1.885 2.926 ATOM 81 C81 1 -1.638 1.885 2.926	ATOM	65	H65		1		-1.382	0.210	2.403	
ATOM 67 C67 1 2.346 -3.658 2.861 ATOM 68 H68 1 1.340 -3.658 2.861 ATOM 69 H69 1 2.837 -2.734 3.195 ATOM 70 C70 1 3.129 -4.879 3.354 ATOM 71 H71 1 3.201 -4.882 4.447 ATOM 72 H72 1 2.644 -5.815 3.051 ATOM 73 H73 1 4.150 -4.889 2.953 ATOM 74 C74 1 -2.346 3.658 2.861 ATOM 75 H75 1 -1.340 3.655 3.299 ATOM 76 H76 1 -2.837 2.735 3.195 ATOM 76 H76 1 -2.867 2.735 3.195 ATOM 8 H78 1 -3.201 4.883 4.447 ATOM 80 H80 1 -4.149 4.883 2.953		60	1100 UCC		1		_2 000	_0 /2=	2 . 100	
ATOM 67 C67 1 2.346 -3.658 2.861 ATOM 68 H68 1 1.340 -3.655 3.299 ATOM 69 H69 1 2.837 -2.734 3.195 ATOM 70 C70 1 3.129 -4.879 3.354 ATOM 71 H71 1 3.201 -4.882 4.447 ATOM 72 H72 1 2.644 -5.815 3.051 ATOM 74 C74 1 -2.346 3.658 2.861 ATOM 74 C74 1 -2.837 2.735 3.195 ATOM 76 H76 1 -3.201 4.883 3.447 ATOM 78 H78 1 -3.201 4.883 3.54 ATOM 79 H79 1 -2.644 5.815 3.051 ATOM 80 H80 1 -4.149 4.889 2.953 ATOM 81 R81 1 -0.574 -2.131 2.836	ALOM	00	пор		1		-2.999	-0.435	2.080	
ATOM 68 H68 1 1.340 -3.655 3.299 ATOM 69 H69 1 2.837 -2.734 3.195 ATOM 70 C70 1 3.129 -4.879 3.354 ATOM 71 H71 1 3.201 -4.882 4.447 ATOM 72 H72 1 2.644 -5.815 3.051 ATOM 74 C74 1 -2.346 3.655 3.299 ATOM 74 C74 1 -2.346 3.655 3.299 ATOM 76 H76 1 -2.837 2.735 3.195 ATOM 76 H76 1 -2.837 2.735 3.195 ATOM 77 C77 1 -3.201 4.883 4.447 ATOM 79 H79 1 -2.644 5.815 3.051 ATOM 80 H80 1 -1.638 -1.885 2.926 ATOM 81 C81 1 -0.574 -2.131 2.836	ATOM	67	C67		1		2.346	-3.658	2.861	
ATOM 69 H69 1 2.837 -2.734 3.195 ATOM 70 C70 1 3.129 -4.879 3.354 ATOM 71 H71 1 3.201 -4.882 4.447 ATOM 72 H72 1 2.644 -5.815 3.051 ATOM 73 H73 1 4.150 -4.889 2.953 ATOM 74 C74 1 -2.346 3.658 2.861 ATOM 76 H76 1 -2.837 2.735 3.195 ATOM 76 H76 1 -3.129 4.880 3.354 ATOM 78 H78 1 -3.201 4.883 4.447 ATOM 79 H79 1 -2.644 5.815 3.051 ATOM 80 H80 1 -1.638 -1.885 2.926 ATOM 81 C81 1 -1.638 -1.825 4.392 ATOM 82 H82 1 -2.013 2.836	ATOM	68	H68		1		1.340	-3.655	3.299	
ATOM 70 C70 1 3.129 -4.879 3.354 ATOM 71 H71 1 3.201 -4.879 3.354 ATOM 72 H72 1 2.644 -5.815 3.051 ATOM 73 H73 1 4.150 -4.889 2.953 ATOM 74 C74 1 -2.346 3.658 2.861 ATOM 75 H75 1 -1.340 3.655 3.299 ATOM 76 H76 1 -2.837 2.735 3.195 ATOM 76 H76 1 -3.201 4.880 3.354 ATOM 78 H78 1 -3.201 4.883 3.447 ATOM 80 H80 1 -4.149 4.889 2.953 ATOM 81 C81 1 -1.638 -1.885 2.926 ATOM 81 R81 1 -0.574 -2.131 2.836 ATOM 84 C84 1 -2.008 -1.629 4.392	АТОМ	69	н69		1		2 837	-2 734	3 1 9 5	
ATOM 71 H71 1 3.129 -4.879 3.334 ATOM 71 H71 1 3.201 -4.882 4.447 ATOM 72 H72 1 2.644 -5.815 3.051 ATOM 73 H73 1 -2.346 3.658 2.993 ATOM 75 H75 1 -1.340 3.655 3.299 ATOM 76 H76 1 -2.837 2.735 3.195 ATOM 76 H78 1 -3.129 4.880 3.354 ATOM 78 H78 1 -3.201 4.883 4.447 ATOM 78 H78 1 -2.644 5.815 3.051 ATOM 80 H80 1 -4.149 4.889 2.953 ATOM 81 C81 1 -1.638 -1.885 2.926 ATOM 81 R82 1 -2.013 2.836 ATOM 82 H82 1 -2.013 2.836 ATOM	ATTOM	70	070		1		2 1 2 0	_1 970	2 254	
ATOM 71 H71 1 3.201 -4.882 4.447 ATOM 72 H72 1 2.644 -5.815 3.051 ATOM 73 H73 1 4.150 -4.889 2.953 ATOM 74 C74 1 -2.346 3.658 2.861 ATOM 75 H75 1 -1.340 3.655 3.299 ATOM 76 H76 1 -2.837 2.735 3.195 ATOM 76 H78 1 -3.201 4.880 3.354 ATOM 78 H78 1 -2.644 5.815 3.051 ATOM 79 H79 1 -2.644 5.815 3.051 ATOM 80 H80 1 -4.149 4.889 2.953 ATOM 81 C81 1 -1.638 -1.885 2.926 ATOM 81 R80 1 -2.008 -1.629 4.392 ATOM 82 H85 1 -3.075 -1.399 4.502	AIOM	70	070		1		5.129	-4.079	5.554	
ATOM 72 H72 1 2.644 -5.815 3.051 ATOM 73 H73 1 4.150 -4.889 2.953 ATOM 74 C74 1 -2.346 3.655 3.299 ATOM 75 H75 1 -1.340 3.655 3.299 ATOM 76 H76 1 -2.837 2.735 3.195 ATOM 76 H76 1 -3.129 4.880 3.354 ATOM 78 H78 1 -3.201 4.883 4.447 ATOM 78 H78 1 -1.638 5.815 3.051 ATOM 80 H80 1 -4.149 4.889 2.953 ATOM 80 H80 1 -1.638 -1.885 2.926 ATOM 81 C81 1 -0.574 -2.131 2.836 ATOM 84 C84 1 -2.008 -1.629 4.392 ATOM 86 H86 1 -1.794 -2.506 5.011	ATOM	71	H71		1		3.201	-4.882	4.447	
ATOM 73 H73 1 4.150 -4.889 2.953 ATOM 74 C74 1 -2.346 3.658 2.861 ATOM 75 H75 1 -1.340 3.655 3.299 ATOM 76 H76 1 -2.837 2.735 3.195 ATOM 76 H76 1 -3.129 4.880 3.354 ATOM 77 C77 1 -3.129 4.880 3.54 ATOM 78 H78 1 -2.644 5.815 3.051 ATOM 80 H80 1 -4.149 4.889 2.953 ATOM 81 C81 1 -1.638 -1.885 2.926 ATOM 82 H82 1 -2.001 -2.748 2.547 ATOM 83 H83 1 -0.574 -2.131 2.836 ATOM 84 C84 1 -2.008 -1.629 4.392 ATOM 86 H86 1 -1.794 -2.506 5.011	ATOM	72	H72		1		2.644	-5.815	3.051	
ATOM 74 C74 1 -2.346 3.658 2.861 ATOM 75 H75 1 -1.340 3.655 3.299 ATOM 76 H76 1 -2.837 2.735 3.195 ATOM 77 C77 1 -3.129 4.880 3.354 ATOM 78 H78 1 -3.201 4.883 4.447 ATOM 79 H79 1 -2.644 5.815 3.051 ATOM 80 H80 1 -4.149 4.889 2.953 ATOM 81 C81 1 -1.638 -1.885 2.926 ATOM 82 H82 1 -2.201 -2.748 2.547 ATOM 83 H83 1 -0.574 -2.131 2.836 ATOM 84 C84 1 -2.008 -1.629 4.392 ATOM 85 H85 1 -1.794 -2.506 5.011 ATOM 86 H86 1 1.629 4.805	АТОМ	73	Н73		1		4.150	-4.889	2,953	
ATOM 74 C74 1 -2.340 3.030 2.001 ATOM 76 H75 1 -1.340 3.655 3.299 ATOM 76 H76 1 -2.837 2.735 3.195 ATOM 77 C77 1 -3.129 4.880 3.354 ATOM 78 H78 1 -3.201 4.883 4.447 ATOM 79 H79 1 -2.644 5.815 3.051 ATOM 80 H80 1 -4.149 4.889 2.953 ATOM 81 C81 1 -1.638 -1.885 2.926 ATOM 82 H82 1 -2.201 -2.748 2.547 ATOM 83 H83 1 -0.574 -2.131 2.836 ATOM 86 H86 1 -1.794 -2.506 5.011 ATOM 87 H87 1 -1.442 -0.785 4.805 ATOM 88 C88 1 1.637 1.885 2.547		7 /	C71		1		-2 316	3 650	2 961	
ATUM 75 H75 1 -1.340 3.655 3.299 ATOM 76 H76 1 -2.837 2.735 3.195 ATOM 77 C77 1 -3.129 4.880 3.354 ATOM 78 H78 1 -3.201 4.883 4.447 ATOM 79 H79 1 -2.644 5.815 3.051 ATOM 80 H80 1 -4.149 4.889 2.953 ATOM 81 C81 1 -1.638 -1.885 2.926 ATOM 82 H82 1 -2.201 -2.748 2.547 ATOM 83 H83 1 -0.574 -2.131 2.836 ATOM 84 C84 1 -2.008 -1.629 4.392 ATOM 86 H86 1 -1.794 -2.506 5.011 ATOM 87 H87 1 -1.442 -0.785 4.805 ATOM 88 C88 1 1.637 1.885 2.926 <td>ATOM</td> <td>74</td> <td>C / 4</td> <td></td> <td>1</td> <td></td> <td>2.340</td> <td>3.000</td> <td>2.001</td> <td></td>	ATOM	74	C / 4		1		2.340	3.000	2.001	
ATOM 76 H76 1 -2.837 2.735 3.195 ATOM 77 C77 1 -3.129 4.880 3.354 ATOM 78 H78 1 -3.201 4.883 4.447 ATOM 79 H79 1 -2.644 5.815 3.051 ATOM 80 H80 1 -4.149 4.889 2.953 ATOM 81 C81 1 -1.638 -1.885 2.926 ATOM 82 H82 1 -2.201 -2.748 2.547 ATOM 83 H83 1 -0.574 -2.131 2.836 ATOM 84 C84 1 -2.008 -1.629 4.392 ATOM 86 H86 1 -1.794 -2.506 5.011 ATOM 86 H86 1 1.637 1.885 2.926 ATOM 88 C88 1 1.637 1.885 2.926 ATOM 90 H90 1 0.574 2.131 2.836	A'I'OM	15	Н/5		Ţ		-1.340	3.655	3.299	
ATOM 77 C77 1 -3.129 4.880 3.354 ATOM 78 H78 1 -3.201 4.883 4.447 ATOM 79 H79 1 -2.644 5.815 3.051 ATOM 80 H80 1 -4.149 4.889 2.953 ATOM 81 C81 1 -1.638 -1.885 2.926 ATOM 82 H82 1 -2.201 -2.748 2.547 ATOM 83 H83 1 -0.574 -2.131 2.836 ATOM 84 C84 1 -2.008 -1.629 4.392 ATOM 85 H85 1 -3.075 -1.399 4.502 ATOM 86 H86 1 -1.794 -2.506 5.011 ATOM 87 H87 1 2.001 2.748 2.547 ATOM 89 H89 1 2.001 2.748 2.547 ATOM 90 H90 1 0.574 2.131 2.836	ATOM	76	Н76		1		-2.837	2.735	3.195	
ATOM 78 1 -3.201 4.883 4.447 ATOM 79 H79 1 -2.644 5.815 3.051 ATOM 80 H80 1 -4.149 4.883 4.447 ATOM 80 H80 1 -4.149 4.889 2.953 ATOM 81 C81 1 -1.638 -1.885 2.926 ATOM 82 H82 1 -2.201 -2.748 2.547 ATOM 82 H82 1 -0.574 -2.131 2.836 ATOM 84 C84 1 -2.008 -1.629 4.392 ATOM 84 C84 1 -2.008 -1.629 4.805 ATOM 86 H86 1 -1.794 -2.506 5.011 ATOM 87 H87 1 -1.442 -0.785 4.805 ATOM 89 H89 1 2.201 2.748 2.547 ATOM 90 H90 1 0.574 2.131 2.836 <tr< td=""><td>ATOM</td><td>77</td><td>C77</td><td></td><td>1</td><td></td><td>-3.129</td><td>4.880</td><td>3.354</td><td></td></tr<>	ATOM	77	C77		1		-3.129	4.880	3.354	
ATOM 79 H79 1 -2.644 5.815 3.051 ATOM 80 H80 1 -4.149 4.889 2.953 ATOM 81 C81 1 -1.638 -1.885 2.926 ATOM 82 H82 1 -2.201 -2.748 2.547 ATOM 83 H83 1 -0.574 -2.131 2.836 ATOM 84 C84 1 -2.008 -1.629 4.392 ATOM 84 R85 1 -3.075 -1.399 4.502 ATOM 86 H86 1 -1.794 -2.506 5.011 ATOM 86 H86 1 -1.442 -0.785 4.805 ATOM 87 H87 1 -1.442 -0.785 4.805 ATOM 89 H89 1 2.201 2.748 2.547 ATOM 90 H90 1 0.574 2.131 2.836 ATOM 91 C91 1 2.008 1.629 4.391 <td></td> <td>70</td> <td>U70</td> <td></td> <td>1</td> <td></td> <td>-3 201</td> <td>∆ QO3</td> <td>Δ ΛΛ7</td> <td></td>		70	U70		1		-3 201	∆ QO3	Δ ΛΛ7	
ATOM 79 H79 1 -2.644 5.815 3.051 ATOM 80 H80 1 -4.149 4.889 2.953 ATOM 81 C81 1 -1.638 -1.885 2.926 ATOM 82 H82 1 -2.201 -2.748 2.547 ATOM 83 H83 1 -0.574 -2.131 2.836 ATOM 84 C84 1 -2.008 -1.629 4.392 ATOM 85 H85 1 -3.075 -1.399 4.502 ATOM 86 H86 1 -1.794 -2.506 5.011 ATOM 86 H86 1 -1.442 -0.785 4.805 ATOM 88 C88 1 1.637 1.885 2.926 ATOM 9 H99 1 2.201 2.748 2.547 ATOM 90 H90 1 0.574 2.131 2.836 ATOM 91 C91 1 2.008 1.629 4.391	AIOM	/ 0	п / õ		Ţ		-J.ZUI	4.003	4.44/	
ATOM 80 H80 1 -4.149 4.889 2.953 ATOM 81 C81 1 -1.638 -1.885 2.926 ATOM 82 H82 1 -2.201 -2.748 2.547 ATOM 83 H83 1 -0.574 -2.131 2.836 ATOM 84 C84 1 -2.008 -1.629 4.392 ATOM 85 H85 1 -3.075 -1.399 4.502 ATOM 86 H86 1 -1.794 -2.506 5.011 ATOM 87 H87 1 -1.442 -0.785 4.805 ATOM 87 H87 1 0.574 2.131 2.836 ATOM 88 C88 1 1.637 1.885 2.926 ATOM 90 H90 1 0.574 2.131 2.836 ATOM 90 H90 1 1.629 4.391 ATOM 92 H92 1 3.075 1.399 4.502	A'I'OM	79	Н/9		1		-2.644	5.815	3.051	
ATOM 81 C81 1 -1.638 -1.885 2.926 ATOM 82 H82 1 -2.201 -2.748 2.547 ATOM 83 H83 1 -0.574 -2.131 2.836 ATOM 84 C84 1 -2.008 -1.629 4.392 ATOM 85 H85 1 -3.075 -1.399 4.502 ATOM 86 H86 1 -1.794 -2.506 5.011 ATOM 87 H87 1 -1.442 -0.785 4.805 ATOM 87 H87 1 -1.442 -0.785 4.805 ATOM 88 C88 1 1.637 1.885 2.926 ATOM 89 H89 1 2.201 2.748 2.547 ATOM 90 H90 1 0.574 2.131 2.836 ATOM 91 C91 1 2.008 1.629 4.391 ATOM 92 H92 1 3.075 1.399 4.502	ATOM	80	H80		1		-4.149	4.889	2.953	
ATOM 82 H82 1 -2.201 -2.748 2.547 ATOM 83 H83 1 -0.574 -2.131 2.836 ATOM 84 C84 1 -2.008 -1.629 4.392 ATOM 85 H85 1 -3.075 -1.399 4.502 ATOM 86 H86 1 -1.794 -2.506 5.011 ATOM 86 H86 1 -1.794 -2.506 5.011 ATOM 87 H87 1 -1.442 -0.785 4.805 ATOM 87 H87 1 -1.442 -0.785 4.805 ATOM 88 C88 1 1.637 1.885 2.926 ATOM 90 H90 1 0.574 2.131 2.836 ATOM 91 C91 1 2.008 1.629 4.391 ATOM 92 H92 1 3.075 1.399 4.502 ATOM 93 H93 1 1.794 2.506 5.011	ATOM	81	C81		1		-1.638	-1.885	2,926	
ATOM 52 Ho2 1 -2.201 -2.746 2.547 ATOM 83 H83 1 -0.574 -2.131 2.836 ATOM 84 C84 1 -2.008 -1.629 4.392 ATOM 85 H85 1 -3.075 -1.399 4.502 ATOM 86 H86 1 -1.794 -2.506 5.011 ATOM 86 H87 1 -1.442 -0.785 4.805 ATOM 87 H87 1 -1.442 -0.785 4.805 ATOM 88 C88 1 1.637 1.885 2.926 ATOM 89 H89 1 2.201 2.748 2.547 ATOM 90 H90 1 0.574 2.131 2.836 ATOM 91 C91 1 2.008 1.629 4.391 ATOM 92 H92 1 3.075 1.399 4.502 ATOM 93 H93 1 1.794 2.506 5.011		0.7	U00		1		_2 201	-2 7/0	2.520	
ATOM 83 H83 1 -0.574 -2.131 2.836 ATOM 84 C84 1 -2.008 -1.629 4.392 ATOM 85 H85 1 -3.075 -1.399 4.502 ATOM 86 H86 1 -1.794 -2.506 5.011 ATOM 87 H87 1 -1.442 -0.785 4.805 ATOM 88 C88 1 1.637 1.885 2.926 ATOM 89 H89 1 2.201 2.748 2.547 ATOM 90 H90 1 0.574 2.131 2.836 ATOM 90 H90 1 0.574 2.131 2.836 ATOM 90 H90 1 0.574 2.131 2.836 ATOM 91 C91 1 2.008 1.629 4.391 ATOM 92 H92 1 3.075 1.399 4.502 ATOM 93 H93 1 1.794 2.506 5.011 </td <td>AIOM</td> <td>o Z</td> <td>по∠</td> <td></td> <td>1</td> <td></td> <td>-2.201</td> <td>-2./48</td> <td>2.34/</td> <td></td>	AIOM	o Z	по∠		1		-2.201	-2./48	2.34/	
ATOM 84 C84 1 -2.008 -1.629 4.392 ATOM 85 H85 1 -3.075 -1.399 4.502 ATOM 86 H86 1 -1.794 -2.506 5.011 ATOM 87 H87 1 -1.442 -0.785 4.805 ATOM 88 C88 1 1.637 1.885 2.926 ATOM 89 H89 1 2.201 2.748 2.547 ATOM 90 H90 1 0.574 2.131 2.836 ATOM 91 C91 1 2.008 1.629 4.391 ATOM 92 H92 1 3.075 1.399 4.502 ATOM 93 H93 1 1.794 2.506 5.011 ATOM 94 H94 1 1.442 0.785 4.805 CONECT 1 2 56 5.011 1.402 5.011 1.402 ATOM 94 H94 1 1.442 0.785 <t< td=""><td>ATOM</td><td>83</td><td>Н8З</td><td></td><td>1</td><td></td><td>-0.574</td><td>-2.131</td><td>2.836</td><td></td></t<>	ATOM	83	Н8З		1		-0.574	-2.131	2.836	
ATOM 85 H85 1 -3.075 -1.399 4.502 ATOM 86 H86 1 -1.794 -2.506 5.011 ATOM 87 H87 1 -1.442 -0.785 4.805 ATOM 88 C88 1 1.637 1.885 2.926 ATOM 89 H89 1 2.201 2.748 2.547 ATOM 90 H90 1 0.574 2.131 2.836 ATOM 91 C91 1 2.008 1.629 4.391 ATOM 92 H92 1 3.075 1.399 4.502 ATOM 93 H93 1 1.794 2.506 5.011 ATOM 94 H94 1 1.442 0.785 4.805 CONECT 1 12 52 56 5.011 CONECT 3 45 2.5 56 5.011 CONECT 5 2.3 49 58 88 5.01 CONECT 6	ATOM	84	C84		1		-2.008	-1.629	4.392	
ATOM 86 H86 1 -1.794 -2.506 5.011 ATOM 87 H87 1 -1.442 -0.785 4.805 ATOM 88 C88 1 1.637 1.885 2.926 ATOM 89 H89 1 2.201 2.748 2.547 ATOM 90 H90 1 0.574 2.131 2.836 ATOM 91 C91 1 2.008 1.629 4.391 ATOM 92 H92 1 3.075 1.399 4.502 ATOM 93 H93 1 1.794 2.506 5.011 ATOM 94 H94 1 1.442 0.785 4.805 CONECT 1 2 52 56 5.011 CONECT 2 1 12 52 56 CONECT 3 4 52 56 CONECT 4 3 25 27 33 CONECT 5 23 49 58 88 <	ATOM	85	H85		1		-3.075	-1.399	4.502	
ATOM 87 H87 1 -1.794 -2.506 5.011 ATOM 87 H87 1 -1.442 -0.785 4.805 ATOM 88 C88 1 1.637 1.885 2.926 ATOM 89 H89 1 2.201 2.748 2.547 ATOM 90 H90 1 0.574 2.131 2.836 ATOM 91 C91 1 2.008 1.629 4.391 ATOM 92 H92 1 3.075 1.399 4.502 ATOM 93 H93 1 1.794 2.506 5.011 ATOM 94 H94 1 1.442 0.785 4.805 CONECT 1 2 52 56 5.011 5.011 CONECT 3 4 2 57 53 2.5 CONECT 3 4 52 56 5.011 5.011 CONECT 4 3 2.5 2.7 33 5.011 5.011		06	пос		1		_1 704	-2 500	5 011	
ATOM 87 H87 1 -1.442 -0.785 4.805 ATOM 88 C88 1 1.637 1.885 2.926 ATOM 89 H89 1 2.201 2.748 2.547 ATOM 90 H90 1 0.574 2.131 2.836 ATOM 91 C91 1 2.008 1.629 4.391 ATOM 92 H92 1 3.075 1.399 4.502 ATOM 93 H93 1 1.794 2.506 5.011 ATOM 94 H94 1 1.442 0.785 4.805 CONECT 1 2 56 5.011 1.442 0.785 4.805 CONECT 1 12 52 56 5.011 1.442 0.785 4.805 CONECT 3 4 25 27 33 5.011 1.442 5.011 1.442 1.442 1.442 1.442 1.442 1.442 1.442 1.442 1.444 1.444 1.444 <td>AIOM</td> <td>00</td> <td>поо</td> <td></td> <td>1</td> <td></td> <td>-1./94</td> <td>-2.300</td> <td>5.UII</td> <td></td>	AIOM	00	поо		1		-1./94	-2.300	5.UII	
ATOM 88 C88 1 1.637 1.885 2.926 ATOM 89 H89 1 2.201 2.748 2.547 ATOM 90 H90 1 0.574 2.131 2.836 ATOM 91 C91 1 2.008 1.629 4.391 ATOM 92 H92 1 3.075 1.399 4.502 ATOM 93 H93 1 1.794 2.506 5.011 ATOM 94 H94 1 1.442 0.785 4.805 CONECT 1 2 52 56 5.011 5.011 CONECT 2 1 12 52 56 5.011 CONECT 3 4 - - - - CONECT 4 3 25 27 33 - - CONECT 5 2.3 49 58 88 - - - CONECT 7 19 - - - - -	ATOM	87	H87		1		-1.442	-0.785	4.805	
ATOM 89 H89 1 2.201 2.748 2.547 ATOM 90 H90 1 0.574 2.131 2.836 ATOM 91 C91 1 2.008 1.629 4.391 ATOM 92 H92 1 3.075 1.399 4.502 ATOM 93 H93 1 1.794 2.506 5.011 ATOM 94 H94 1 1.442 0.785 4.805 CONECT 1 2 52 56 56 56 CONECT 2 1 12 52 56 56 CONECT 3 4 4 58 88 58 58 CONECT 5 23 49 58 88 58 58 57 CONECT 6 16 57 67 57 57 57 CONECT 8 37 57 67 57 57 57	ATOM	88	C88		1		1.637	1.885	2.926	
ATOM 90 H90 1 0.574 2.131 2.836 ATOM 91 C91 1 2.008 1.629 4.391 ATOM 92 H92 1 3.075 1.399 4.502 ATOM 93 H93 1 1.794 2.506 5.011 ATOM 94 H94 1 1.442 0.785 4.805 CONECT 1 2 52 56 5.011 CONECT 2 1 12 52 56 CONECT 3 4 - - - CONECT 4 3 25 27 33 CONECT 5 23 49 58 88 CONECT 6 16 - - - CONECT 7 19 - - - - CONECT 8 37 - - - - CONECT 9 11 44 57 67	ATOM	89	Н89		1		2,201	2.748	2.547	
ATOM 90 H90 1 0.574 2.131 2.836 ATOM 91 C91 1 2.008 1.629 4.391 ATOM 92 H92 1 3.075 1.399 4.502 ATOM 93 H93 1 1.794 2.506 5.011 ATOM 94 H94 1 1.442 0.785 4.805 CONECT 1 2 52 56 56 56 CONECT 2 1 12 52 56 56 CONECT 3 4 6 6 6 6 CONECT 4 3 25 27 33 6 6 6 CONECT 5 23 49 58 88 6 6 6 CONECT 6 1.6 6 6 6 6 6 CONECT 8 37 6 7 6 7 7 7		00	1100		⊥ 1		0 57/	2 1 2 1	2.07/	
ATOM 91 C91 1 2.008 1.629 4.391 ATOM 92 H92 1 3.075 1.399 4.502 ATOM 93 H93 1 1.794 2.506 5.011 ATOM 94 H94 1 1.442 0.785 4.805 CONECT 1 2 2 56 2 2 2 1 CONECT 2 1 12 52 56 56 56 56 CONECT 3 4 2 58 88 58 58 58 CONECT 5 23 49 58 88 58 58 58 CONECT 6 16 57 67 57 57 57 CONECT 8 37 57 67 57 57 57	AIOM	90	пуО		Ţ		0.3/4	2.131	2.030	
ATOM 92 H92 1 3.075 1.399 4.502 ATOM 93 H93 1 1.794 2.506 5.011 ATOM 94 H94 1 1.442 0.785 4.805 CONECT 1 2 2 2 56 2 2 2 1 12 52 56 CONECT 2 1 12 52 56 2 2 2 1 <t< td=""><td>ATOM</td><td>91</td><td>C91</td><td></td><td>1</td><td></td><td>2.008</td><td>1.629</td><td>4.391</td><td></td></t<>	ATOM	91	C91		1		2.008	1.629	4.391	
ATOM 93 H93 1 1.794 2.506 5.011 ATOM 94 H94 1 1.442 0.785 4.805 CONECT 1 2 1 12 52 56 CONECT 2 1 12 52 56 CONECT 3 4	ATOM	92	Н92		1		3.075	1.399	4.502	
ATOM 94 H94 1 1.442 0.785 4.805 CONECT 1 2 2 1 12 52 56 CONECT 2 1 12 52 56 56 57 CONECT 3 4 4 3 25 27 33 CONECT 5 23 49 58 88 58 58 CONECT 6 16 57 67 57 57 CONECT 8 37 57 67	АТОМ	93	Ндз		1		1.794	2.506	5.011	
ATOM 54 1.94 1 1.442 0.785 4.805 CONECT 1 2 1 12 52 56 CONECT 2 1 12 52 56 CONECT 3 4 3 25 27 33 CONECT 5 23 49 58 88 CONECT 6 16 67 CONECT 8 37 67		0.1	UQ1		1		1 110	0 705	V 00E	
CONECT 1 2 CONECT 2 1 12 52 56 CONECT 3 4	AIUM	54	пу4		T		1.442	0./00	4.000	
CONECT 2 1 12 52 56 CONECT 3 4	CONECT	1	2							
CONECT 3 4 CONECT 4 3 25 27 33 CONECT 5 23 49 58 88 CONECT 6 16 - - CONECT 7 19 - - CONECT 8 37 - - CONECT 9 11 44 57 67	CONECT	2	1	12	52	56				
CONECT 4 3 25 27 33 CONECT 5 23 49 58 88 CONECT 6 16 CONECT 7 19 CONECT 8 37 CONECT 9 11 44	CONECT	З	Δ							
CONECT 4 5 2.5 2.7 5.5 CONECT 5 2.3 4.9 5.8 8.8 CONECT 6 1.6	CONTROL	1	т С	0 F	07	2.2				
CONECT 5 23 49 58 88 CONECT 6 16 CONECT 7 19 CONECT 8 37 CONECT 9 11 44	CONECT	4	3	20	21	33				
CONECT 6 16 CONECT 7 19 CONECT 8 37 CONECT 9 11 44 57 67	CONECT	5	23	49	58	88				
CONECT 7 19 CONECT 8 37 CONECT 9 11 44 57 67	CONECT	6	16							
CONECT 8 37 CONECT 9 11 44 57 67	CONFOT	7	19							
CONFCT & 37 CONFCT Q 11 44 57 67	CONECT	<i>'</i>								
CONFCT Q 11 AA 57 67	CONECT	8	31							
CONECT 9 II 44 57 07	CONECT	9	11	44	57	67				

CONECT	10	14	28	32	38
CONECT	11	9			
CONECT	12	2	18	34	
CONECT	13	18	19	22	
CONECT	14	10			
CONECT	15	53	0.0	2.0	
CONECT	10	6 50	28	39	
CONECT	10	10	1 0	<u> </u>	
CONECT	10	12	13	6U 20	
CONECT	19	21	22	38	
CONECT	20	20	22	49	
CONFCT	21	13	57	54	
CONFCT	22	10			
CONFCT	24	37			
CONECT	25	4			
CONECT	26	31			
CONECT	27	4	29	31	
CONECT	2.8	10	16	29	
CONECT	29	27	2.8	44	
CONECT	30	45			
CONECT	31	26	27	39	
CONECT	32	10			
CONECT	33	4	20	50	
CONECT	34	12	38	48	
CONECT	35	36	46	61	
CONECT	36	35	37	42	
CONECT	37	8	21	24	36
CONECT	38	10	19	34	
CONECT	39	16	31	55	
CONECT	40	41	50	54	
CONECT	41	40			
CONECT	42	36	47	52	
CONECT	43	46			
CONECT	44	9	29	- 0	
CONECT	45	30	46	52	
CONECT	40	30	43	45	
CONECT	4 /	4Z 24	55		
CONECT	40	54	20		
CONFCT	50	22	20	62	
CONECT	51	54	10	02	
CONECT	52	2	42	45	
CONECT	53	1.5	17	47	74
CONECT	54	21	40	51	, -
CONECT	55	39			
CONECT	56	2			
CONECT	57	9			
CONECT	58	5			
CONECT	59	60			
CONECT	60	18	59		
CONECT	61	35			
CONECT	62	50	63		
CONECT	63	62			
CONECT	64	48	65	66	81
CONECT	65	64			
CONECT	66	64			
CONECT	67	9	68	69	70
CONECT	68	67			
CONECT	69	67			
CONECT	70	67	71	72	73
CONECT	71	70			
CONECT	72	70			
CONECT	73	70			
CONECT	/4	53	15	/6	1.1
CONECT	15	/4			

CONECT	76	74			
CONECT	77	74	78	79	80
CONECT	78	77			
CONECT	79	77			
CONECT	80	77			
CONECT	81	64	82	83	84
CONECT	82	81			
CONECT	83	81			
CONECT	84	81	85	86	87
CONECT	85	84			
CONECT	86	84			
CONECT	87	84			
CONECT	88	5	89	90	91
CONECT	89	88			
CONECT	90	88			
CONECT	91	88	92	93	94
CONECT	92	91			
CONECT	93	91			
CONECT	94	91			
END					