Copper-catalysed oxidative Csp³-H methylenation to terminal olefins using DMF

Jianming Liu,^{*a,b*} Hong Yi,^{*a*} Xin Zhang,^{*b*} Chao Liu,^{*a*} Ren Liu,^{*b*} Guoting Zhang,^{*a*} Aiwen Lei^{*a*,*} ^{*a*}College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China. E-mail: aiwenlei@whu.edu.cn; Tel: (+86)-27-68754672; ^{*b*}School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan

453007, P. R. China.

1. (General Info	ormation	•••••		• • • • • • • •	2
2.	General	Procedures	for	Terminal Olefins	of	the
Ke	tones2					
3. (General Pro	cedures for Su	bstitu	ent Benzylpyridines	• • • • • • • •	2
4. (Control Exp	eriments for t	he Me	chanism	•••••	2
5.	The Propos	sed Mechanisr	n of (Copper-Catalyzed	Oxida	ative
Me	ethylenation	n of 2-Phenyla	cetop	henone and DMF	••••	4
6.	. Characterization					of
Pro	oducts	•••••	•••••	4		
7. I	NMR Specti	ra of Products.			••••	10

1. General Information

All manipulations were carried out using standard Schlenk techniques. Unless otherwise stated, analytical grade solvents and commercially available reagents were used as received. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in *n*-hexane. Gradient flash chromatography was conducted eluting with a continuous gradient from *n*-hexane to the ethyl acetate. All new compounds were characterized by ¹H NMR, ¹³C NMR and HRMS. IR spectra were recorded on a Mettler Toledo React IRTM 15 spectrometer using a diamond comb.

2. General Procedures for Terminal Olefins of the Ketones

A mixture of ketones (0.50 mmol), Cu(TFA)₂·xH₂O (0.15 mmol), and K₂S₂O₈ (1.0 mmol) in DMF (2.0 mL) was stirred in N₂ at 100 °C for 24 h. After completion of the reaction, the solution was extracted with ethyl acetate (3×15 mL). The organic layers were combined, and dried over sodium sulfate. The pure product was obtained by flash column chromatography on silica gel to afford the desired product.

3. General Procedures for Substituent Benzylpyridines

A mixture of benzylpyridines (0.50 mmol), Cu(TFA)₂·xH₂O (0.15 mmol), and K₂S₂O₈ (2.0 mmol) in DMF (2.0 mL) was stirred in N₂ at 100 °C for 24 h. After completion of the reaction, the solution was extracted with ethyl acetate (3×15 mL). The organic layers were combined, and dried over sodium sulfate. The pure product was obtained by flash column chromatography on silica gel to afford the desired product.

4. Control Experiments for the mechanism

4.1 Copper-Catalyzed Oxidative Methylenation of 2-Phenylacetophenone and DMAc

A mixture of 2-phenylacetophenone (0.50 mmol), $Cu(TFA)_2 \cdot xH_2O$ (0.15 mmol), and $K_2S_2O_8$ (1.0 mmol) in DMAc (2.0 mL) was stirred in N₂ at 100 °C for 24 h. After completion of the reaction, the solution was extracted with ethyl acetate (3×15 mL). The organic layers were combined, and dried over sodium sulfate. The pure product was obtained by flash column

chromatography on silica gel to afford the desired product.

4.2 Copper-Catalyzed Oxidative Methylenation of 2-Phenylacetophenone and Amide

A mixture of 2-phenylacetophenone (0.50 mmol), $Cu(TFA)_2 \cdot xH_2O$ (0.15 mmol), and $K_2S_2O_8$ (1.0 mmol) in amide (2.0 mL) was stirred in N₂ at 100 °C for 24 h. After completion of the reaction, the solution was extracted with ethyl acetate (3×15 mL). The organic layers were combined, and dried over sodium sulfate. The residue was detected by GC-MS, no desired product was obtained.

4.3 Copper-Catalyzed Oxidative Methylenation of 2-Phenylacetophenone and *d₇*-DMF

A mixture of 2-phenylacetophenone (0.25 mmol), $Cu(TFA)_2 \cdot xH_2O$ (0.075 mmol), and $K_2S_2O_8$ (0.50 mmol) in d_7 -DMF (1.0 mL) was stirred in N₂ at 100 °C for 24 h. After completion of the reaction, the solution was extracted with ethyl acetate (3×15 mL). The organic layers were combined, and dried over sodium sulfate. The pure product was obtained by flash column chromatography on silica gel to afford the desired product (**Figure 1**).

Figure S1: The MS data of d_2 -1, 2-diphenylprop-2-en-1-one

4.4 Procedure for the IR Experiments of Copper-catalyzed Oxidative Methylenation of 2-Phenylacetophenone and DMF

A three necked reaction vessel was fitted with a magnetic stirring bar. The IR probe was inserted through an adapter into the middle neck; the other two necks were capped by septa for

injections and a nitrogen line. Following evacuation under vacuum and flushing with nitrogen for three times, the three necked vessel was charged with 2-phenylacetophenone (1.0 mmol), $Cu(TFA)_2 \cdot xH_2O$ (0.15 mmol), and $K_2S_2O_8$ (2.0 mmol) in *N*,*N*-dimethyformamide (3.0 mL). The reaction mixture was stirred at 100 °C. After the temperature was stable, the data collection was started. IR spectra were recorded over the course of the reaction. The standard IR spectrums of **1a** and **2a** are shown in **Figure 2**.

Figure S2: The standard spectrum of 2-phenylacetophenone and 1, 2-diphenylprop-2-en-1-one

5. The Proposed Mechanism of Copper-Catalyzed Oxidative Methylenation of 2-Phenylacetophenone and DMF

Based on the previous reports and our results,¹ a proposed mechanism is depicted in **Figure 3**. The iminium species was generated by the reaction between the DMF and $K_2S_2O_8$ in the presence of copper catalyst. The in situ generated enolate attacked the iminium species A to form the intermediate B, which then underwent elimination to give the product **2a**.

Figure S3. The proposed mechanism of copper-catalyzed oxidative methylenation of 2phenylacetophenone and DMF

6. Characterization of Products

1, 2-diphenylprop-2-en-1-one (2a)

¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.0 Hz, 2H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.46-7.42 (m, 4H), 7.36-7.34 (m, 3H), 6.08 (s, 1H), 5.65 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 148.3, 137.1, 137.0, 133.1, 130.0, 128.7, 128.4, 127.1, 121.0. HRMS, calculated for C₁₅H₁₃O [M+H⁺]: 209.0961, found: 209.0961.

1, 2-bis(4-methoxyphenyl)prop-2-en-1-one (2b)

¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 12.0 Hz, 2H), 6.91-6.85 (m, 4H), 5.90 (s, 1H), 5.45 (s, 1H), 3.85 (s, 3H), 3.80 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 163.7, 159.8, 147.9, 132.5, 129.9, 129.7, 128.1, 117.0, 114.0, 113.7, 55.5, 55.3. HRMS, calculated for C₁₇H₁₇O₃ [M+H⁺]: 269.1172, found: 269.1172.

1-(5-bromothiophen-2-yl)-2-phenylprop-2-en-1-one (2c)

¹H NMR (400 MHz, CDCl₃) δ 7.47-7.45 (m, 2H), 7.40-7.38 (m, 3H), 7.35 (d, J = 4.0 Hz, 1H), 7.09 (d, J = 4.0 Hz, 1H), 6.03 (s, 1H), 5.80 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 188.1, 147.4, 145.4, 136.5, 135.2, 131.3, 128.8, 128.7, 127.1, 124.0, 120.6. HRMS, calculated for C₁₃H₉BrSNaO [M+Na⁺]: 316.9429, found: 316.9433.

1-(5-bromothiophen-2-yl)-2-(4-(tert-butyl)phenyl)prop-2-en-1-one (2d)

¹H NMR (400 MHz, CDCl₃) δ 7.44-7.39 (m, 4H), 7.38 (d, J = 4.0 Hz, 1H), 7.09 (d, J = 4.0 Hz, 1H), 6.02 (s, 1H), 5.74 (s, 1H), 1.35 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 188.4, 151.9, 147.1, 145.5, 135.1, 133.5, 131.3, 126.8, 125.7, 123.9, 119.7, 34.7, 31.3. HRMS, calculated for C₁₇H₁₇BrSNaO [M+Na⁺]: 373.0056, found: 373.0059.

1-(5-bromothiophen-2-yl)-2-(4-methoxyphenyl)prop-2-en-1-one (2e)

¹H NMR (400 MHz, CDCl₃) δ 7.40-7.38 (m, 2H), 7.36 (d, *J* = 4.0 Hz, 1H), 7.08 (d, *J* = 4.0 Hz, 1H), 6.92-6.90 (m, 2H), 5.93 (s, 1H), 5.69 (s, 1H), 3.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 188.5, 160.0, 146.8, 145.4, 135.1, 131.3, 128.9, 128.4, 123.8, 118.8, 114.1, 55.4. HRMS, calculated for C₁₄H₁₁BrSNaO₂ [M+Na⁺]: 346.9535, found: 346.9538.

2-methylene-2,3-dihydro-1H-inden-1-one (2f)

¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.0 Hz, 1H), 7.65-7.61 (m, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.45-7.41 (m, 1H), 6.39 (s, 1H), 5.67 (s, 1H).¹³C NMR (100 MHz, CDCl₃) δ 193.5, 149.9, 143.3, 138.3, 134.9, 127.6, 126.4, 124.7, 119.3, 31.8. HRMS, calculated for C₁₀H₈NaO [M+Na⁺]: 167.0467, found: 167.0469.

6-methoxy-2-methylene-2,3-dihydro-1H-inden-1-one (2g)

¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 8.0 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.23-7.20 (m, 1H), 6.33 (s, 1H), 5.59 (s, 1H), 3.87 (s, 3H), 3.69 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.5, 159.5, 144.1, 142.8, 139.4, 127.2, 124.4, 119.2, 105.8, 55.6, 31.1. HRMS, calculated for C₁₁H₁₀NaO₂ [M+Na⁺]: 197.0573, found: 197.0576.

4-(1-phenylvinyl)pyridine (4a)

¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, *J* = 4.0 Hz, 2H), 7.37-7.35 (m, 3H), 7.30-7.28 (m, 2H), 7.25-7.23 (m, 2H), 5.61 (s, 1H), 5.60 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 148.9, 147.9, 139.8, 128.5, 128.3, 128.2, 122.8, 117.0. HRMS, calculated for C₁₃H₁₁N [M+H⁺]: 182.0964, found: 182.0970.

4-(1-(4-chlorophenyl)vinyl)pyridine (4b)

¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, J = 4.0 Hz, 2H), 7.33-7.30 (m, 2H), 7.22-7.20 (m, 4H), 5.61 (s, 1H), 5.58 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 148.4, 146.9, 138.2, 134.2, 129.5, 128.7, 122.7, 117.4. HRMS, calculated for C₁₃H₁₁Cl N [M+H⁺]: 216.0575, found: 216.0574.

2-(1-phenylvinyl)pyridine (4c)

¹H NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 7.65 (d, J = 4.0 Hz, 1H), 7.39-7.37 (m, 5H), 7.24 (d, J = 8.0 Hz, 1H), 6.02 (s, 1H), 5.63 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 149.4, 149.1, 140.4, 136.4, 128.5, 128.3, 127.9, 122.9, 122.5, 117.9. HRMS, calculated for C₁₃H₁₁N [M+H⁺]: 182.0964, found: 182.0966.

2-(1-(4-chlorophenyl)vinyl)pyridine (4d)

¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, J = 4.0 Hz, 1H), 7.69-7.65 (m, 1H), 7.38-7.29 (m, 5H), 7.24-7.23 (m, 1H), 5.98 (s, 1H), 5.62 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 158.2, 149.4, 148.2, 138.8, 136.5, 133.8, 129.8, 128.5, 122.8, 122.7, 118.1. HRMS, calculated for C₁₃H₁₁Cl N[M+H⁺]:

216.0575, found: 216.0571.

4-(1-(4-nitrophenyl)vinyl)pyridine (4e)

¹H NMR (400 MHz, CDCl₃) δ 8.69 (s, 2H), 8.27 (d, *J* = 8.0 Hz, 2H), 7.48-7.46 (m, 4H), 5.94 (s, 1H), 5.89 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 149.6, 148.1, 147.7, 146.1, 146.0, 129.0, 123.9, 122.8, 120.3. HRMS, calculated for C₁₃H₁₁N₂O₂ [M+H⁺]: 227.815, found: 227.0820.

2-(1-(2,5-dimethylphenyl)vinyl)pyridine (4f)

¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, *J* = 4.0 Hz, 1H), 7.66 (dd, *J* = 8.0, 4.0 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.23 (d, *J* = 4.0 Hz, 1H), 6.98-6.96 (m, 3H), 5.96 (s, 1H), 5.58 (s, 1H), 2.32 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 149.3, 149.3, 140.3, 137.8, 136.4, 129.6, 126.3, 122.9, 122.4, 117.5, 21.3. HRMS, calculated for C₁₅H₁₆N [M+H⁺]: 270.1277, found: 210.1275.

2-(1-([1,1'-biphenyl]-4-yl)vinyl)pyridine (4g)

¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, *J* = 4.0 Hz, 1H), 7.72 (t, *J* = 8.0 Hz, 1H), 7.65-7.61(m, 4H), 7.49-7.45 (m, 4H), 7.40-7.38 (m, 2H), 6.01 (s, 1H), 5.71 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 149.3, 148.7, 140.8, 140.8, 139.2, 136.5, 128.8, 128.8, 127.4, 127.1, 123.0, 122.6, 117.9. HRMS, calculated for C₁₉H₁₆N [M+H⁺]: 258.1277, found: 258.1273.

4-(1-(pyridin-2-yl)vinyl)benzonitrile (4h)

¹H NMR (400 MHz, CDCl₃) δ 8.63 (ddd, J = 5.1, 1.9, 1.0 Hz, 1H), 7.70 (td, J = 7.7, 1.8 Hz, 1H), 7.65 (dd, J = 8.4, 1.8 Hz, 2H), 7.49-7.43 (m, 2H), 7.35-7.31 (m, 1H), 7.26 (td, J = 4.9, 2.5 Hz, 1H), 6.04 (s, 1H), 5.71 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 157. 5, 147.9, 144.9, 136.8, 132.1, 129.1, 122.9, 122.7, 119.9, 118.9, 115.3, 111.5. HRMS, calculated for C₁₄H₁₁N [M+H⁺]: 207.0917, found: 209.0920.

References

(a) Y. Li, D. Xue, W. Lu, C. Wang, Z.-T. Liu, and J. Xiao, *Org. Lett.*, 2014, 16, 66-69. (b) M.
Itoh, K. Hirano, T. Satoh and M. Miura, *Org. Lett.*, Org. Lett., 2014, 16, 2050-2053. (c) S.-J. Lou,
D.-Q. Xu, D.-F. Shen, Y.-F. Wang, Y.-K. Liu and Z.-Y. Xu, *Chem. Commun.*, 2012, 48, 11993-11995; (d) Y. Li, F. Guo, Z. Zha and Z. Wang, *Chem. Asian. J.*, 2013, 8, 534-537.

7. NMR Spectra of Products

- 2. 28 - 5. 62 - 5. 68

