Electronic Supplementary Information (ESI) for

Facile access to 3,5-symmetrically disubstituted 1,2,4-thiadiazoles through phosphovanadomolybdic acids catalyzed aerobic oxidative dimerization of primary thioamides

Kazuhisa Yajima, Kazuya Yamaguchi, and Noritaka Mizuno*

Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. E-mail: tmizuno@mail.ecc.u-tokyo.ac.jp

Experimental details

General: HPLC analyses were performed on Shimadzu Prominence system with a UV detector (Shimadzu SPD-20A, 254 nm) equipped with a Shiseido CAPCELL PAK UG80 column (4.6 mm ID × 250 mm length) using a mixture of acetonitrile/water as an eluent (9/1 v/v). GC analyses were performed on Shimadzu GC-2014 with a FID detector equipped with an InertCap 1 capillary column. GCMS spectra were recorded on Shimadzu GCMS-QP2010 at an ionization voltage of 70 eV equipped with an InertCap 5MS/Sil capillary column. Liquid state ¹H and ¹³C NMR spectra were recorded on JEOL ECA-500. ¹H and ¹³C NMR spectra were measured at 500 and 125 MHz, respectively, with TMS as an internal standard ($\delta = 0$ ppm). H₃PW₁₂O₄₀, H₄SiW₁₂O₄₀, and PMo₁₂O₄₀ were obtained from Wako, and other heteropoly acids were obtained from Nippon Inorganic Colour & Chemical (the numbers of water of crystallization were 20–30 per polyanion). Solvents and substrates were obtained from Kanto Chemical, TCI, Wako, or Aldrich (reagent grade), and used as received.

Procedure for oxidative dimerization: 1 (0.5 mmol), $H_6PV_3Mo_9O_{40}$ (5 mol%), naphthalene (0.1 mmol, internal standard), and ethanol (4 mL) were placed in a Pyrex-glass tube reactor with a magnetic stir bar, and the reaction was carried out at 30 °C in 1 atm of O₂. The color of the reaction solution immediately after beginning was dark green for aromatic and heterocyclic thioamides (dark blue color of reduced $H_6PV_3Mo_9O_{40}$ + yellow color of thioamides) or dark blue (dark blue color of reduced $H_6PV_3Mo_9O_{40}$ + yellow color of thioamides) or dark blue (dark blue color of reduced $H_6PV_3Mo_9O_{40}$) and gradually changed to orange-yellow with the formation of elemental sulfur according to the consumption of 1 (Fig. S1). During the reaction, the conversion of 1 and the yield of 2 (based on 1) were periodically monitored by HPLC analysis. The typical HPLC charts are shown in Fig. S3. With regard to aliphatic thioamides, the conversion of 1 and the yield of 2 were periodically monitored by GC analysis.

As for product isolation, naphthalene was not used. For the isolation of 2a-2d, the reactions were carried out in acetonitrile. For other thiadiazoles, the reactions were carried out in ethanol. After complete conversion of 1, *n*-hexane (25 mL) and water (25 mL) were added

to the reaction mixture (without removal of elemental sulfur), followed by extraction with *n*-hexane (25 mL \times 3) to afford **2**. All products were confirmed by their MS and NMR data, and the data are summarized below.

Compound data

3,5-Diphenyl-1,2,4-thiadiazole (2a): As for isolation, the reaction was carried out in acetonitrile for 2 h. Melting point: 88.0–88.5 °C. MS (EI) *m/z* (%): 238 (37) [*M*⁺], 135 (100), 103 (18), 77 (19). ¹H NMR (500 MHz, CDCl₃, TMS): δ 8.39–8.41 (m, 2H), 8.05–8.07 (m, 2H), 7.50–7.55 (m, 6H). ¹³C{¹H} NMR (125 MHz, CDCl₃, TMS): δ 188.1, 173.8, 132.9, 131.9, 130.7, 130.3, 129.3, 128.7, 128.3, 127.5.

3,5-Bis(4-methoxyphenyl)-1,2,4-thiadiazole (2b): As for isolation, the reaction was carried out in acetonitrile for 2 h. Melting point: 138.5–139.0 °C. MS (EI) *m/z* (%): 299 (11), 298 (53) [*M*⁺], 166 (11), 165 (100), 150 (26), 133 (41), 103 (11), 90 (12). ¹H NMR (500 MHz, CDCl₃, TMS): δ 8.31–8.33 (m, 2H), 7.98–8.00 (m, 2H), 7.00–7.02 (m, 4H), 3.894 (s, 1H), 3.885 (s, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃, TMS): δ 187.4, 173.4, 162.5, 161.3, 129.9, 129.2, 126.0, 123.7, 114.5, 114.0, 55.5, 55.4.

3,5-Bis(4-chlorophenyl)-1,2,4-thiadiazole (2c): As for isolation, the reaction was carried out in acetonitrile for 6 h. Melting point: 145.0–146.0 °C. MS (EI) *m/z* (%): 308 (20), 306 (28), 171 (38), 169 (100), 102 (13), 75 (12). ¹H NMR (500 MHz, CDCl₃, TMS): δ 8.31–8.33 (m, 2H), 7.98–7.99 (m, 2H), 7.47–7.52 (m, 4H). ¹³C{¹H} NMR (125 MHz, CDCl₃, TMS): δ 187.1, 172.8, 138.2, 136.6, 131.2, 129.7, 129.6, 129.0, 128.7.

3,5-Bis(4-trifluoromethylphenyl)-1,2,4-thiadiazole (2d): As for isolation, the reaction was carried out in acetonitrile for 2 h. Melting point: 98.5–99.0 °C. MS (EI) m/z (%): 374 (25) $[M^+]$, 204 (10), 203 (100), 145 (12), 77 (19). ¹H NMR (500 MHz, CDCl₃, TMS): δ 8.51 (d, J = 8.0 Hz, 2H), 8.18 (d, J = 8.0 Hz, 2H), 7.81 (d, J = 8.0 Hz, 2H), 7.78 (d, J = 8.0 Hz, 2H). ¹³C{¹H} NMR (125 MHz, CDCl₃, TMS): δ 187.0, 172.8, 138.1, 136.5, 131.1, 129.6, 128.9, 128.6, 128.2.

3,5-Bis(furan-2-yl)-1,2,4-thiadiazole (2e): As for isolation, the reaction was carried out in ethanol for 2 h. Melting point: 101.5–102.0 °C. MS (EI) m/z (%) : 219 (10), 218 (76) $[M^+]$, 125 (100), 97 (10), 93 (14), 70 (10). ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.64 (dd, J = 2.0, 0.5 Hz, 1H), 7.61 (dd, J = 2.0, 0.5 Hz, 1H), 7.29 (dd, J = 3.5, 0.5 Hz, 1H), 7.23 (dd, J = 3.5, 0.5 Hz, 1H), 6.64 (dd, J = 3.5, 2.0 Hz, 1H), 6.57 (dd, J = 3.5, 2.0 Hz, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃, TMS): δ 177.0, 164.9, 148.1, 146.5, 145.6, 144.5, 112.71, 112.68, 112.6, 111.8.

3,5-Bis(thiophen-2-yl)-1,2,4-thiadiazole (2f): As for isolation, the reaction was carried out in ethanol for 2 h. Melting point: 90.0–91.0 °C. MS (EI): m/z (%): 250 (51) [M^+], 141 (100), 109 (24). ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.93 (dd, J = 3.5, 1.0 Hz, 1H), 7.70 (dd, J = 3.5, 1.0 Hz, 1H), 7.59 (dd, J = 5.0, 1.0 Hz, 1H), 7.46 (dd, J = 5.0, 1.0 Hz, 1H), 7.17 (dd, J = 5.0, 3.5 Hz, 1H), 7.15 (dd, J = 5.0, 3.5 Hz, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃, TMS): δ 180.7, 168.4, 136.2, 133.1, 130.6, 129.9, 129.2, 128.8, 128.4, 127.9.

3,5-Dimethyl-1,2,4-thiadiazole (2g): MS (EI) m/z (%): 114 (38) [M^+], 73 (100). The reaction was carried out in CD₃OD, and the NMR spectra of the filtrate were measured after the reaction. ¹H NMR (500 MHz, CD₃OD, TMS): δ 2.79 (s, 3H), 2.58 (s, 3H). ¹³C{¹H} NMR (125 MHz, CD₃OD, TMS): δ 189.1, 174.1, 18.3, 16.4.

3,5-Diethyl-1,2,4-thiadiazole (2h): MS (EI) m/z (%): 142 (35) $[M^+]$, 87 (100), 86 (24), 59 (10). The reaction was carried out in CD₃OD, and the NMR spectra of the filtrate were measured after the reaction. ¹H NMR (500 MHz, CD₃OD, TMS): δ 3.14 (q, J = 7.5 Hz, 2H), 2.94 (q, J = 7.5 Hz, 2H), 1.41 (t, J = 7.5 Hz, 3H), 1.34 (t, J = 7.5 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CD₃OD, TMS): δ 195.6, 179.3, 27.0, 25.5, 13.8, 12.6.

MS spectra

MS spectra

lable S1 Comp.	arison of the present phosphov	/anadomolybdic acids catalyze	ed system with previou	usly reported	ones (for	dimeriz	ation of 1a to 2a)	
Catalyst	Oxidant	Additive	Solvent	Temp.(°C)	Time	Yield	NOL	Ref.
						(%)		
$\mathrm{H_6PV_3Mo_9O_{40}}$	O ₂ (1 atm)		EtOH	30	5 h	93	233	This
(0.4 mol%)							(Fig. 1, entry 2)	work
	Ar ₂ SeO (1.2 equiv.)		AcOH	75	24 h	84	Stoichiometric	6
	Ar ₂ TeO (1.2 equiv.)		AcOH	RT	12 h	53	Stoichiometric	9
	PhTeOSO ₂ CF ₃ (1 equiv)		CH ₂ Cl ₂	RT	0.5 h	71	Stoichiometric	L
	Iodobenzene diacetate		CH ₂ Cl ₂	RT	3 min	95	Stoichiometric	8a
	(1 equiv.)							
	Iodobenzene diacetate		1-n-butylpyridinium	75	15 min	91	Stoichiometric	8b
	(1 equiv.)		tetrafluoroborate					
	λ^3 -Iodane (1 equiv.)		CH ₃ CN	Reflux	1 h	82	Stoichiometric	8c
	o-iodoxybenzoic acid	Et4NBr (1.1 eq.)	CH ₃ CN	RT	5 min	95	Stoichiometric	8d
	(1.1 equiv.)							
	Pentylpyridinium tribromide			RT	4 min	76	Stoichiometric	6
	(1 equiv., prepared from							
	pentylpyridinium bromide							
	and Br ₂)							
	2,3-Dicyano-5,6-dichloro-		CICH ₂ CH ₂ CI	RT	<5 min	95	Stoichiometric	10
	1,4-benzoquinone (1 equiv.)							
	N-bromosuccinimide	Al_2O_3		RT	5 min	92	Stoichiometric	11
	(1.05 equiv.)	(500 mg)						
	DMSO (large excess)	1-Methyl-2-chloro	DMSO	60	2.5 h	>99	Stoichiometric	12a
		pyridinium iodide						
		(0.03 equiv.)						

(Continued)								
Catalyst	Oxidant	Additive	Solvent	Temp.(°C)	Time	Yield	NOT	Ref.
						(%)		
	DMSO (1 equiv.)	2-chloro-1,3-dimethylimida	CH ₂ Cl ₂	RT	26 h	93	Stoichiometric	12b
		zolinium chloride (1 equiv.)						
	DMSO (1 equiv.)	2,4,6-trichloro-1,3,5-	$[bmim]BF_4$	RT	10 min	96	Stoichiometric	12c
		triazine (0.3 equiv.)						
	DMSO (large excess)	HCl (0.6 equiv.)	DMSO	35	3 h	>99	Stoichiometric	12d
CuBr	TBHP (1.4 equiv.)		CICH ₂ CH ₂ CI	RT	0.5 h	6 <i>L</i>	7.9	13
(10 mol%)								
Eosin Y	Air (1 atm)	Photoirradiation	DMF	RT	4 h	91	45.5	14
(2 mol%)		(18 W fluorescent lamp)						

Fig. S1 Pictures of the reaction solution (a) immediately after beginning of the reaction and (b) at the end of the reaction (for the oxidative dimerization of **2g**, see entry 8 in Fig. 1) and (c) elemental sulfur retrieved after the reaction. Elemental sulfur was retrieved by filtration and washed with ethanol and water (69 % yield with respect to **2g**, 98.3 % purity by elemental analysis).

Fig. S2 Reaction profiles for the $H_6PV_3Mo_9O_{40}$ -catalyzed oxidative dimerization of 1a to 2a with or without a radical scavenger of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO). Reaction conditions: 1 (0.5 mmol), $H_6PV_3Mo_9O_{40}$ (1 mol%), TEMPO (0 or 0.5 mmol), ethanol (4 mL), O_2 (1 atm), 30 °C.

Fig. S3 HPLC charts for the $H_6PV_3Mo_9O_{40}$ -catalyzed oxidative dimerization of **1a** to **2a** under the conditions described in Fig. S2. The asterisks indicate the signals due to $H_6PV_3Mo_9O_{40}$. Reaction conditions: **1** (0.5 mmol), $H_6PV_3Mo_9O_{40}$ (1 mol%), TEMPO (0 or 0.5 mmol), ethanol (4 mL), O_2 (1 atm), 30 °C.

Scheme S1 Possible reaction mechanism (HPA = heteropoly acid, HPA_{red} = reduced heteropoly acid).