Supporting Information

Synthesis of alkylidene pyrrolo[3,4-b]pyridin-3-one derivatives via $\mathbf{R h}{ }^{\text {III }}$-catalyzed oxidative alkenylation/annulation of picolinamides

Ángel Manu Martínez, Nuria Rodríguez,, Ramón Gómez Arrayás,* and Juan Carlos Carretero*

Departamento de Química Orgánica. Facultad de Ciencias. Universidad Autónoma de Madrid.
Cantoblanco. 28049 Madrid. Spain

General Methods	S 2
1. Optimization studies	S 3
2. Typical procedure for the N-protection of amine derivatives	S 6
3. General procedures for the rhodium-catalyzed alkenylation and subsequent N-cyclization	S 9
4. Scale up of the Rh(III)-catalyzed 3-alkenylation and subsequent N - cyclization of 1a	S 15
5. Typical procedure for the cleavage of the benzyl group	S 16
6. Pd/C-Catalyzed chemoselective hydrogenation	S 16
7. Synthesis of the Rh (III)-intermediate A	S 18
8. NMR Spectra	

Experimental procedures and data

General Methods. The corresponding starting materials were synthetized using oven-dried glassware under a nitrogen atmosphere containing a teflon-coated stirrer bar and dry septum. All reactions were performed at ambient N_{2} pressure in oven-dried 20 mL vessel containing a teflon-coated stirrer bar and dry septum. All reactions were monitored by GC using n-hexadecane as an internal standard. Response factors of the products with regard to n-hexadecane were obtained experimentally by analyzing known quantities of the substances. GC analyses were carried out using an HP-5 capillary column (Phenyl Methyl Siloxane 30 mx $320 \times 0.25,100 / 2.3-30-300 / 3$) and a time program beginning with 2 min at $160^{\circ} \mathrm{C}$ followed by $30^{\circ} \mathrm{C} / \mathrm{min}$ ramp to $300^{\circ} \mathrm{C}$, then 9 min at this temperature. Flash column chromatography was performed using 230-400 mesh ultra-pure silica gel. NMR spectra were obtained on Bruker AC300 or on Bruker AMX-500 systems using acetone- d_{6} and CDCl_{3} as solvents, with proton and carbon resonances at $300 / 500 \mathrm{MHz}$ and $75 / 125 \mathrm{MHz}$, respectively. Mass spectral data were acquired on a VG AutoSpec mass spectrometer.
Solvents were purified by standard procedures prior to use. All other compounds are commercially available and were used without further purification.
All microwave irradiation experiments were carried out in a mono mode microwave apparatus equipped with a pressure control system and a vertically-focused IR temperature sensor (CEM).

1. Optimization studies

1.1. \quad Selected screening results (Table S1)

Entry	AgSbF_{6} (\%)	Oxidant (equiv)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	t (h)	Conv (\%) ${ }^{\text {a }}$	$2(\%)^{b}$	$3 \text { (\%) }{ }^{b}$
1	$10 \mathrm{~mol} \%$	$\mathrm{Cu}(\mathrm{OAc})_{2}$ (2.0 equiv)	120	0.5	45	42	3
2	$10 \mathrm{~mol} \%$	$\mathrm{Cu}(\mathrm{OAc})_{2}(2.0$ equiv)	120	1	51	47	4
3	$10 \mathrm{~mol} \%$	$\mathrm{Cu}(\mathrm{OAc})_{2}$ (2.0 equiv)	120	3	70	64	6
4	$10 \mathrm{~mol} \%$	$\mathrm{Cu}(\mathrm{OAc})_{2}(2.0$ equiv)	120	5	98	$82(78)^{c}$	8
5	$7.5 \mathrm{~mol} \%$	$\mathrm{Cu}(\mathrm{OAc})_{2}(2.0$ equiv)	120	3	58	53	5
6	$5.0 \mathrm{~mol} \%$	$\mathrm{Cu}(\mathrm{OAc})_{2}$ (2.0 equiv)	120	3	48	43	4
7	$2.5 \mathrm{~mol} \%$	$\mathrm{Cu}(\mathrm{OAc})_{2}(2.0$ equiv)	120	3	46	43	3
8	$2.5 \mathrm{~mol} \%$	$\mathrm{Cu}(\mathrm{OAc})_{2}(2.0$ equiv)	120	5	88	76	12
9	-	$\mathrm{Cu}(\mathrm{OAc})_{2}(2.0$ equiv)	120	3	12	11	1
10	-	$\mathrm{Cu}(\mathrm{OAc})_{2}(2.0$ equiv)	120	5	25	23	2
11	$2.5 \mathrm{~mol} \%$	$\mathrm{Cu}(\mathrm{OAc})_{2}(2.0$ equiv)	100	3	25	24	1
12	$2.5 \mathrm{~mol} \%$	$\mathrm{Cu}(\mathrm{OAc})_{2} \text { (2.0 equiv) }$	80	3	2	2	0
13	$10 \mathrm{~mol} \%$	$\mathrm{Cu}(\mathrm{OAc})_{2} \text { (1.0 equiv) }$	120	1	37	26	9
14	$10 \mathrm{~mol} \%$	$\mathrm{Cu}(\mathrm{OAc})_{2}(1.0$ equiv)	120	3	90	63	37
15	$10 \mathrm{~mol} \%$	$\mathrm{Cu}(\mathrm{OAc})_{2}\left(1.0\right.$ equiv) $+\mathrm{O}_{2}$	120	3	17	18	0
16	$10 \mathrm{~mol} \%$	$\mathrm{Cu}(\mathrm{OAc})_{2}(0.5 \text { equiv })+\mathrm{O}_{2}$	120	3	3	3	0
17	-	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2.0 equiv)	120	3	0	-	

Conditions: N-benzylpicolinamide (1a) ($0.15 \mathrm{mmol}, 1.00$ equiv), methyl acrylate $(0.15 \mathrm{mmol}$, 1.00 equiv), $\left[\mathrm{RhCl}_{2} \mathrm{Cp}^{*}\right]_{2}$ ($2.5 \mathrm{~mol} \%$), AgSbF_{6}, oxidant, t - $\mathrm{AmyIOH}\left(0.1 \mathrm{M}\right.$), T ($\left.{ }^{\circ} \mathrm{C}\right)$, $\mathrm{t}(\mathrm{h}), \mathrm{N}_{2}$. ${ }^{a}$ Determined by GC on the crude mixture with respect to $\mathbf{1 a}$. ${ }^{b} \mathrm{GC}$ yields $\left(n-\mathrm{C}_{16} \mathrm{H}_{34}\right.$ as internal standard). ${ }^{c}$ Isolated yield.

Those factors that could significantly influence this reaction were systematically screened in the model reaction of the N-benzylpicolinamide 1a with methyl acrylate. Some selected examples are presented in Table S1. In the presence of $2.5 \mathrm{~mol} \%$ of $\left[\mathrm{RhCl}_{2} \mathrm{Cp}^{*}\right]_{2}$ and $10 \mathrm{~mol} \%$ of AgSbF_{6} as the catalyst system, it was found that the use of 2.0 equiv of $\mathrm{Cu}(\mathrm{OAc})_{2}$ as oxidant furnished the desired product $\mathbf{2}$ in 64% GC yield in conjunction with 6% of the reduced product 3, after 3 h at $120^{\circ} \mathrm{C}$ using t-AmylOH as solvent (entry 3). Longer reaction times led to isolate 78% of the desired product (entry 4). Any attempt to reduce the amount of silver led to lower conversions after 3 h (entries $3,5-7$). In the case of using $2.5 \mathrm{~mol} \%$ of AgSbF_{6}, 5 h were required to achieve a synthetic useful yield (entry 8). Nevertheless, almost no reaction was observed in the absence of the silver salt (entries 9-10). Likewise, any attempt to reduce the amount of $\mathrm{Cu}(\mathrm{OAc})_{2}$ led to increase the amount of $\mathbf{3}$ detected in the reaction mixture (entries 13-14). Remarkably, the use of O_{2} as an external co-oxidant reduced considerable the reactivity (entries 15-16). Likewise, the use of 2.0 equiv of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ inhibited any reactivity and the starting material was recovered unaltered (entry 17).

1.2. \quad Stoichiometric experiments (Table S2)

Entry	$\mathrm{Cu}(\mathrm{OAc})_{2}$ (equiv)	NaOAc (equiv)	Conv (\%) ${ }^{\text {a }}$	2 (\%) ${ }^{b}$	$3(\%){ }^{b}$
1	-	-	0	-	-
2	2.00	-	>99	80	18
3	-	4.00	78	36	42

Conditions: N-benzylpicolinamide (1a) ($10.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.00$ equiv), methyl acrylate ($9.0 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 2.00$ equiv), $\left[\mathrm{RhCl}_{2} \mathrm{Cp}^{*}\right]_{2}(15.5 \mathrm{mg}$, $0.025 \mathrm{mmol}, 0.50$ equiv), $\mathrm{AgSbF}_{6}(34.3 \mathrm{mg}, 0.10 \mathrm{mmol}, 2.00$ equiv), $\mathrm{Cu}(\mathrm{OAc})_{2}, \mathrm{NaOAc}$, p-xylene (0.2 M), $120{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, \mathrm{~N}_{2} .{ }^{a}$ Determined by GC on the crude mixture with respect to 1a. ${ }^{b} \mathrm{GC}$ yields $\left(n-\mathrm{C}_{16} \mathrm{H}_{34}\right.$ as internal standard).
1.3. Plausible mechanistic pathways

1.3.1 Reactivity of product 3

1.3.2 Rh (III)-catalyzed synthesis of methyl-2-(6-benzyl-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-yl)acetate (3). An oven-dried, nitrogen-flushed 20 mL vessel was charged with N -
 $2.5 \mathrm{~mol} \%)$, copper(II) acetate ($27.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv), and silver hexafluoroantimonate ($5.35 \mathrm{mg}, 10 \mathrm{~mol} \%$). The reaction vessel was sealed with a Teflon lined cap, then evacuated and flushed with nitrogen three times. Under the atmosphere of nitrogen, 1,4-dioxane (1.00 mL) and methyl acrylate ($13.5 \mu \mathrm{~L}$, $0.15 \mathrm{mmol}, 1.00$ equiv) were added via syringe. The resulting mixture was stirred at room temperature for 10 min . Then the reaction vessel was placed in an aluminium block preheated at $120^{\circ} \mathrm{C}$. After 4 h the reaction was complete, the volatiles were removed in vacuo and the residue was purified by column chromatography (n-hexane-EtOAc $4: 1$), yielding 3 as a white solid; yield: $31.1 \mathrm{mg}(70 \%) ; \mathrm{mp}=114-115{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta: 8.81(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~s}$, 1 H), $7.42-7.26$ (m, 6H), $5.32(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.65(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{dd}, \mathrm{J}=16.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta \text { : }}$ $170.4,136.5,129.0,128.2,128.0,54.07,52.3,44.7,36.8 . \mathrm{FB}^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$: 297.1239; Found: 297.1246. In this experiment, compound $\mathbf{2}$ is also isolated in 25% yield.

1.3.3 Reactivity of styrene (Table S3)

Conditions: N-benzylpicolinamide (1a) ($31.8 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv), olefin (1.00 equiv), $\left[\mathrm{RhCl}_{2} \mathrm{Cp}^{*}\right]_{2}$ ($2.32 \mathrm{mg}, 2.5 \mathrm{~mol} \%$), AgSbF_{6} (5.35 mg , $10 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(54.5 \mathrm{mg}, 0.30 \mathrm{mmol}, 2.00$ equiv), p-xylene (0.2 M), $120^{\circ} \mathrm{C}, 4 \mathrm{~h}, \mathrm{~N}_{2} .{ }^{\text {a }}$ Determined by GC on the crude mixture with respect to 1a. ${ }^{b} \mathrm{GC}$ yields ($n-\mathrm{C}_{16} \mathrm{H}_{34}$ as internal standard).

In this table it is shown that no reactivity is observed when using styrene instead of methyl acrylate. Nonetheless, the presence styrene slows the rhodium-catalyzed reaction of N benzylpicolinamide (1a) with methyl acrylate from a 98% conversion of $\mathbf{1 a}$ to a 68%.

2. Typical procedure for the \mathbf{N}-protection of amine derivatives

2.1. Synthesis of pyridinecarboxamide derivatives

Synthesis of \boldsymbol{N}-benzylpicolinamide (1a). ${ }^{1}$ A 50 mL round-bottomed flask immersed in a $0^{\circ} \mathrm{C}$
 bath (ice and water) was charged with picolinic acid (616 mg , $5.00 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. To the stirred suspension was added oxalyl chloride ($0.472 \mathrm{~mL}, 5.50 \mathrm{mmol}$) dropwise over a 15-minute period followed by addition of DMF (0.1 mL , catalytic amount) in one portion, producing a rust-red color and the evolution of a gas. The mixture was kept in the cooling bath for 1 h and then allowed to warm to room temperature. After gas evolution ceased, the mixture was again cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{NEt}_{3}(1.40 \mathrm{~mL}, 10.0 \mathrm{mmol})$ was added dropwise over a 15 -minute period followed by benzylamine ($0.60 \mathrm{~mL}, 5.50 \mathrm{mmol}$) added dropwise over a 15 -minute period. The brown mixture was left in the cooling bath for 30 minutes and then allowed to warm to room temperature. Stirring was continued at room temperature for 2 h . Removal of solvent in vacuo gave the crude product as a brown solid that was extracted with $\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phases were combined and concentrated under reduced pressure to give 1 a as a white solid; yield: 1.04 g (98%); $\mathrm{mp}=219-221^{\circ} \mathrm{C}$. The analytical data (NMR, HRMS analysis) matched those reported in the literature for N -

[^0]benzylpicolinamide [CAS: 18904-38-6]. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta: 8.52$ (ddd, $J=4.8,1.7,0.9$ $\mathrm{Hz}, 1 \mathrm{H}$), $8.39(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{dt}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.25(\mathrm{~m}$, $6 \mathrm{H}), 4.67(\mathrm{~d}, 1 \mathrm{H}), 4.66(\mathrm{~d}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta: 164.3,149.9,148.1,138.3,137.4$, 128.8, 127.9, 127.5, 126.3, 122.4, 43.6. ESI ${ }^{+}$calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}: 213.1022$; Found: 213.1022.
\boldsymbol{N}-(4-Methoxybenzyl)picolinamide (1b). Compound 1b was prepared following the typical
 procedure from (4-methoxyphenyl)methanamine (0.650 mL , 5.00 mmol), to give 1 b as a white solid; yield: 0.758 g (63%); $\mathrm{mp}=52-53{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathbf{3 0 0} \mathrm{MHz}\right) \delta: 8.88(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.77 (s, 1H), 7.67 (d, J = $8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.25 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta: 164.2,159.1,150.0,148.1,137.4,130.4,129.3,126.2,122.4$, 114.2, 55.3, 43.0. ESI $^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 243.1128$; Found: 243.1138.
\boldsymbol{N}-(4-(Trifluoromethyl)benzyl)picolinamide (1c). Compound 1c was prepared following the
 typical procedure from (4-(trifluoromethyl)phenyl)methanamine ($0.713 \mathrm{~mL}, 5.00 \mathrm{mmol}$), to give 1 c as a yellow solid; yield: $1.02 \mathrm{~g}(73 \%) ; \mathrm{mp}=83-84{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta: 8.61-8.41(\mathrm{~m}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{t}, \mathrm{J}=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.38(\mathrm{~m}, 3 \mathrm{H}), 4.72$ (d,
 125.7 ($q, J=3.8 \mathrm{~Hz}$), 122.5, 43.1. ESI ${ }^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$: 281.0896; Found: 281.0886.

N-Benzyl-6-methylpicolinamide (13). Compound 13 was prepared following the typical
 procedure from 6-methylpicolinic acid ($685 \mathrm{mg}, 5.00 \mathrm{mmol}$), to give 13 as a pale orange solid; yield: $0.670 \mathrm{~g}(59 \%) ; \mathrm{mp}=104-105{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, \mathbf{3 0 0} \mathbf{M H z}\right) \delta: 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.23(\mathrm{~m}, 6 \mathrm{H}), 4.68(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta: 164.5,157.3,149.2,138.6,137.7$, 128.8, 128.0, 127.5, 126.1, 119.6, 43.5, 24.3. El ${ }^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M})^{+}: 226.1106$; Found: 226.1112.
N-Benzyl-6-chloropicolinamide (14). Compound 14 was prepared following the typical
 procedure from 6-chloropicolinic acid ($788 \mathrm{mg}, 5.00 \mathrm{mmol}$), to give 14 as a pale orange solid; yield: $0.825 \mathrm{mg}(67 \%) ; \mathrm{mp}=116-117{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, \mathbf{3 0 0} \mathbf{M H z}\right) \delta: 8.25-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.65(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta: 162.9,150.5,150.1,140.1,138.0,128.8$, 127.9, 127.6, 127.1, 121.2, 43.6. El^{+}calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}(\mathrm{M})^{+}$: 246.0560; Found: 246.0558.

N-Benzyl-5-(trifluoromethyl)picolinamide (15). Compound 15 was prepared following the
 typical procedure from 5-(trifluoromethyl)picolinic acid ($0.343 \mathrm{~mL}, 2.40 \mathrm{mmol}$), to give 15 as a yellow solid; yield: $0.468 \mathrm{~g}(71 \%) ; \mathrm{mp}=71-72{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathbf{3 0 0} \mathrm{MHz}\right) \delta: 8.79$ ($\mathrm{s}, 1 \mathrm{H}$), 8.38 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $8.33(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.41-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta: 163.0,152.9$, 145.3 ($q, J=3.9 \mathrm{~Hz}$), 137.9, 134.9 (dd, $J=6.8,3.4 \mathrm{~Hz}$), 129.2, 128.9, 128.7, 127.9, 127.8, 122.3, 43.8. ESI ${ }^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$: 281.0896; Found: 281.0897.
N-Benzyl-4-methylpicolinamide (16). Compound 16 was prepared following the typical
 procedure from 4-methylpicolinic acid ($250 \mathrm{mg}, 1.80 \mathrm{mmol}$), to give 16 as a pale green solid; yield: $0.325 \mathrm{~g}(80 \%) ; \mathrm{mp}=81-82{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$
NMR (CDCl $\left.{ }_{3}, \mathbf{3 0 0} \mathbf{M H z}\right) \delta: 8.42(\mathrm{~s}, 2 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.26(\mathrm{~m}$, $6 \mathrm{H}), 4.70(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (acetone- $\mathrm{d}_{6}, 75$
$\mathrm{MHz}) \delta: 140.5,129.2,128.4,127.8,43.6,21.1$. ESI^{+}calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$: 227.1178; Found: 227.1174.
N-Ethylpicolinamide (28). Compound 28 was prepared following the typical procedure from a 2.0 M solution of ethylamine in THF ($2,50 \mathrm{~mL}, 5.00 \mathrm{mmol}$), to give 28 as a
 colorless oil; yield: $0.654 \mathrm{~g}(87 \%) .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathbf{3 0 0} \mathbf{~ M H z) ~} \delta: 8.42$ (d, J = $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ - $7.25(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.34(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 75 MHz) $\delta: 164.1,150.0,147.9,137.2,125.9,122.0,34.2,14.7$. El^{+}calcd. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M})^{+}$: 150.0793; Found: 150.0800.
\boldsymbol{N}-Phenylpicolinamide (29). Compound 29 was prepared following the typical procedure from aniline ($0.50 \mathrm{~mL}, 5.50 \mathrm{mmol}$), to give 29 as a yellow solid; yield: 1.05 g (53\%); mp $=76-77^{\circ} \mathrm{C}$. The analytical data (NMR, HRMS analysis) matched those reported in the literature for N-phenyl-2-pyridinecarboxamide [CAS: 10354-53-7]. ${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathbf{3 0 0} \mathbf{~ M H z) ~} \delta: 10.03(\mathrm{~s}, 1 \mathrm{H}), 8.65-8.60\right.$ $(\mathrm{m}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49$ (ddd, J $=7.6,4.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H})$. EI^{+}calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$ $(\mathrm{M})^{+}: 198.0793 ;$ Found: 198.0794.
\mathbf{N}-Phenethylpicolinamide (30). Compound 30 was prepared following the typical procedure
 from 2-phenylethanamine ($0.630 \mathrm{~mL}, 5.00 \mathrm{mmol}$), to give 30 as a yellow oil; yield: $0.789 \mathrm{~g}(70 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right) \delta: 8.52$ (d, J = 4.7 Hz, 1H), 8.35-8.13 (m, 2H), $7.84(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-$ 7.37 (m, 1H), $7.37-7.22(\mathrm{~m}, 5 \mathrm{H}), 3.78(\mathrm{dd}, \mathrm{J}=13.6,7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.98(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta: 164.2,149.9,148.0,138.9,137.2,128.7$, 128.5, 126.4, 126.0, 122.1, 40.7, 35.9. El $^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M})^{+}$: 226.1106; Found: 226.1110.

2.3. Synthesis of N-benzyl-2-heteroaryl carboxamide derivatives

Synthesis of \boldsymbol{N}-benzylquinoline-2-carboxamide (17). Compound 17 was prepared following
 the typical procedure for the synthesis of pyridinecarboxamide derivatives but from quinoline-2-carboxylic acid (960 mg , $5.00 \mathrm{mmol})$, to give 17 as a pale orange solid; yield: 0.720 g (55%); $\mathrm{mp}=123-124{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right) \delta: 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}$, $J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7 . \mathrm{k} 82-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.26(\mathrm{~d}, \mathrm{~J}=55.9 \mathrm{~Hz}, 5 \mathrm{H}), 4.75(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta \text { : }}$ 164.5, 149.7, 146.5, 138.4, 137.5, 130.1, 129.7, 129.3, 128.7, 127.9, 127.7, 127.5, 118.9, 43.6. ESI ${ }^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$: 263.1178; Found: 263.1186.
N-Benzylbenzo[b]thiophene-2-carboxamide (18). Compound 18 was prepared following the
 typical procedure from benzo[b]thiophene-2-carboxylic acid ($891 \mathrm{mg}, 5.00 \mathrm{mmol}$), to give 18 as a yellow solid; yield: 0.909 g (68\%); $\mathrm{mp}=146-147{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathbf{3 0 0} \mathrm{MHz}\right) \delta: 7.89-7.75$ (m, 3H), 7.47-7.27(m, 7H), $6.44(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$
NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta: 162.3,141.0,139.2,138.3,138.0,129.0$, 128.1, 127.9, 126.5, 125.5, 125.2, 125.1, 122.9, 44.4. El calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NOS}(\mathrm{M})^{+}: 267.0718$; Found: 267.0706.

N-Benzyl-5-methylthiophene-2-carboxamide (19). Compound 19 was prepared following the
 typical procedure from 5-methylthiophene-2-carboxylic acid (711 mg , 5.00 mmol), to give 19 as a yellow solid; yield: 0.885 g (76\%); mp= $145-146{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (acetone- $\mathrm{d}_{6}, \mathbf{3 0 0} \mathbf{~ M H z}$) $\delta: 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=$ $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.15(\mathrm{~m}, 6 \mathrm{H}), 6.89-6.66(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.48(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta: 162.0,145.4$, $138.4,136.2,128.8,128.6,127.9,127.6,126.1,43.9,15.7$. EI^{+}calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NOS}(\mathrm{M})^{+}$: 231.0718; Found: 231.0719.
3. General procedures for the rhodium-catalyzed alkenylation and subsequent \boldsymbol{N}-cyclization

3.1. Scope with regard to the olefin (Scheme 1)

Synthesis of (E)-methyl 2-(6-benzyl-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5ylidene)acetate (2). An oven-dried, nitrogen-flushed 20 mL vessel was charged with N -
 benzylpicolinamide (1a) ($31.8 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv), pentamethylcyclopentadienylrhodium(III) chloride dimer $(2.32 \mathrm{mg}, 0.00375 \mathrm{mmol}$, 0.025 equiv), copper(II) acetate ($54.5 \mathrm{mg}, 0.3 \mathrm{mmol}, 2.00$ equiv), and silver hexafluoroantimonate ($5.35 \mathrm{mg}, 0.015 \mathrm{mmol}, 0.10$ equiv). The reaction vessel was sealed with a Teflon lined cap, then evacuated and flushed with nitrogen three times. Under the atmosphere of nitrogen, p-xylene (1.00 mL) and methyl acrylate ($13.5 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.00$ equiv) were added via syringe. The resulting mixture was then stirred at $120^{\circ} \mathrm{C}$ for 5 h . After the reaction was complete, the volatiles were removed in vacuo and the residue was purified by column chromatography (n-hexane-EtOAc

4:1), yielding 2 as a white solid; yield: 36.6 mg (83%); mp=219-222 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta: 9.35$ (dd, $J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=8.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ $-7.22(\mathrm{~m}, 5 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (acetone- $\left.\mathrm{d}_{6}, 75 \mathrm{MHz}\right) \delta: 142.3$, 141.5, 129.2, 124.9, 121.6, 112.3, 111.9, 105.3, 104.2, 103.2, $77.5,28.1,19.8$. El^{+}calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}(M)^{+}: 294.1004$; Found: 294.1011. The (E)-isomerism of this compound was confirmed by X-ray diffraction.

ORTEP view of 2, hydrogen atoms have been removed for simplicity
(E)-n-Butyl 2-(6-benzyl-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)acetate (4).
 Compound 4 was prepared following the general protocol from n-butyl acrylate ($23.7 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.00$ equiv), to give 4 as a white solid; yield: $41.9 \mathrm{mg}(83 \%) ; \mathrm{mp}=131-132{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: \delta 9.53-9.28$ $(\mathrm{m}, 1 \mathrm{H}), 8.90(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.17(\mathrm{~m}, 5 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H})$, $5.13(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{dt}, J=14.6,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.37$ $(\mathrm{m}, 2 \mathrm{H}), 0.98(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta: 165.7,165.3$, 152.9, 148.5, 145.2, 136.3, 135.4, 129.0, 127.9, 127.1, 126.8, 101.9, 64.9, 43.7, 30.7, 19.3, 13.8. ESI ${ }^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 337.1546$; Found: 337.1557.
(E)-tert-Butyl-2-(6-benzyl-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)acetate (5).

Compound 5 was prepared following the general protocol from tert-butyl acrylate ($24.2 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.00$ equiv), to give 5 as a white solid; yield: $43.5 \mathrm{mg}(86 \%) ; \mathrm{mp}=156-157^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 9.32(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.85 (s, 1H), 7.55 (s, 1H), 7.37-7.22 (m, 5H), 5.74 (s, 1H), 5.07 (s , $2 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathbf{1 2 6 ~ M H z}\right)$ ס: 165.0, 152.7, 148.5, 144.3, 136.3, 135.6, 129.0, 127.9, 127.1, 104.1, 81.5, 43.6, 28.3. FB^{+}calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 337.1552$; Found: 337.1558.
(E)-2-(6-Benzyl-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)acetonitrile (6). Com-

pound 6 was prepared following the general protocol from acrylonitrile ($11.4 \mu \mathrm{~L}, \quad 0.30 \mathrm{mmol}, \quad 2.00$ equiv) and increasing the amount of pentamethylcyclopentadienylrhodium(III) chloride dimer (4.64 mg , 0.05 equiv) and silver hexafluoroantimonate ($10.7 \mathrm{mg}, 0.2$ equiv), to give 6 as a pale yellow solid; yield: $27.2 \mathrm{mg}(69 \%)$; $\mathrm{mp}=88-89^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 500 MHz) $\delta: 9.04-8.86(\mathrm{~m}, 1 \mathrm{H}), 8.75(\mathrm{dd}, \mathrm{J}=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=$ 8.0, $4.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.39-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta$:
164.3, 154.0, 148.6, 147.8, 134.5, 131.8, 129.4, 128.5, 127.2, 127.1, 116.4, 76.0, 44.0, 1.2. FB^{+} calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$: 262.0980; Found: 262.0991.
(E)-Dimethyl ((6-benzyl-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)methyl)phosphonate (7). Compound 7 was prepared following the general protocol from dimethyl vinylphosphonate ($35.6 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 2.00$ equiv) and increasing the amount of pentamethylcyclopentadienylrhodium(III) chloride dimer ($4.64 \mathrm{mg}, \quad 0.05$ equiv) and silver hexafluoroantimonate (10.7 mg , 0.2 equiv), to give 7 as a pale yellow solid; yield: 43.0 mg (83%); $\mathrm{mp}=101-$ $102{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 300 \mathrm{MHz}\right) \delta: 9.17(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.87(\mathrm{~s}, 1 \mathrm{H})$, 7.56 (s, 1H), $5.30(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.18(\mathrm{~m}, 5 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{dd}, \mathrm{J}=$ $11.4,1.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta: 165.0,152.9,148.3,147.4,147.1,135.2,134.7$, 129.1, 128.0, 127.1, $95.2,92.5,52.8,52.7,43.5$. ESI ${ }^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}(\mathrm{M}+\mathrm{H})^{+}: 345.0998$; Found: 345.0999.
(E)-2-(6-Benzyl-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)-N,N-dimethyl-
acetamide (8). Compound 8 was prepared following the general protocol $\mathrm{Me}_{2} \mathrm{NOC} \quad$ from N, N-dimethylacrylamide $(30.9 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 2.00$ equiv) and increasing the amount of pentamethylcyclopentadienylrhodium(III) ($4.64 \mathrm{mg}, 0.05$ equiv), silver hexafluoroantimonate ($10.7 \mathrm{mg}, 0.2$ equiv) and copper(II) acetate ($108.9 \mathrm{mg}, 4.00$ equiv), to give 8 as a pale yellow solid; yield: $40.0 \mathrm{mg}(87 \%) ; \mathrm{mp}=154-155^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathbf{3 0 0} \mathrm{MHz}\right) \delta: 8.60$ $(\mathrm{m}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.16(\mathrm{~m}, 5 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (acetone- $\mathrm{d}_{6}, 126 \mathrm{MHz}$) $\delta: 165.7$, 152.9, 149.2, 139.8, 137.7, 135.0, 129.7, 128.3, 127.9, 105.6, 43.6, 37.8, 35.1. EI^{+}calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M})^{+}$: 307.1321; Found: 307.1315.
(E)-6-Benzyl-5-(2-oxopropylidene)-5H-pyrrolo[3,4-b]pyridin-7(6H)-one (9). Compound 9 was
 prepared following the general protocol from but-3-en-2-one ($24.9 \mu \mathrm{~g}$, $0.30 \mathrm{mmol}, 2.00$ equiv) and using pentamethylcyclopentadienylrhodium(III) ($4.64 \mathrm{mg}, 0.05$ equiv), silver hexafluoroantimonate ($10.7 \mathrm{mg}, 0.2$ equiv) and copper (II) acetate ($108.9 \mathrm{mg}, 4.00$ equiv), to give 9 as a white solid; yield: 40.0 mg (96%); $\mathrm{mp}=158-159{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathbf{3 0 0} \mathrm{MHz}\right) \delta: 9.26(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.09(\mathrm{~m}, 5 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}$, 2H), 2.29 (s, 3H). ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, \mathbf{1 2 6 ~ M H z) ~ \delta : ~ 1 9 6 . 5 , ~ 1 6 5 . 7 , ~ 1 5 3 . 3 , ~ 1 4 8 . 5 , ~ 1 4 3 . 8 , ~ 1 3 6 . 0 , ~ 1 3 5 . 4 , ~}\right.$ 129.1, 128.1, 127.0, 109.0, 43.8, 32.7. ESI ${ }^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$: 279.1128; Found: 279.1134.

6-Benzyl-5-methylene-5H-pyrrolo[3,4-b]pyridin-7(6H)-one (10). Compound 10 was prepared

in a 0.30 mmol -scale following the general protocol from (vinylsulfonyl)benzene ($55.5 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.00$ equiv), to give 10 as a pale yellow solid; yield: $24.4 \mathrm{mg}(70 \%) ; \mathrm{mp}=125-127^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta: 8.79(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (dd, $J=7.8,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34-7.19(\mathrm{~m}, 5 \mathrm{H}), 5.17(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}, \mathbf{1 2 6 ~ M H z) ~} \delta: 165.2,152.1,147.8,138.9,136.4,130.9,128.9,128.2,127.7,127.4$, 126.0, 92.6, 43.6. FB^{+}calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$: 237.1028; Found: 237.1021.

Compound 10 was also obtained following the general protocol from phenyl ethenesulfonate ($60.8 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.00$ equiv) to give 10 as a pale yellow solid; yield: 53.0 mg (75\%).
(E)-Methyl 2-(6-(4-methoxybenzyl)-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)-
 acetate (11). Compound 11 was prepared following the general protocol from N-(4-methoxybenzyl)picolinamide (1b) $(36.3 \mathrm{mg}$, $0.15 \mathrm{mmol}, 1.00$ equiv) and methyl acrylate ($13.5 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$, 1.00 equiv), to give 11 as a white solid; yield: 33.9 mg (69\%); $\mathrm{mp}=176-177{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right) \delta: 9.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.85(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$) $\delta: 166.1,165.2,159.3,152.9,148.6,145.4,136.2,128.6,127.4,126.8,114.4$, 101.3, 55.4, 51.9, 43.2. EI^{+}calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M})^{+}$: 324.1110; Found: 324.1108.
(E)-6-(4-Methoxybenzyl)-5-(2-oxopropylidene)-5H-pyrrolo[3,4-b]pyridin-7(6H)-one (12).
 Compound 12 was prepared following the general protocol from N -(4-methoxybenzyl)picolinamide (1b) $\quad(36.3 \mathrm{mg}, 0.15 \mathrm{mmol}$, 1.00 equiv) and but-3-en-2-one ($24.9 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 2.00$ equiv), using pentamethylcyclopentadienylrhodium(III) (4.64 mg , 0.05 equiv) and silver hexafluoroantimonate ($10.7 \mathrm{mg}, 0.2$ equiv), to give 12 as a yellow oil; yield: 27.0 mg (58%). ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}) $\delta: 9.25(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 196.5,165.7,159.3,153.2,148.5,143.8,135.9,129.3,128.4,127.4$, 127.0, 114.5, 109.0, 55.4, 43.2, 32.7. EI ${ }^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M})^{+}$: 308.1161; Found: 308.1152.

3.2. Scope with regard to the heteroaryl moiety (Scheme 2)

The general protocol is similar to the one used for evaluating the scope with regard to the olefin coupling partner (See section 3.1).
(E)-Methyl 2-(6-benzyl-2-methyl-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)acetate (20). Compound 20 was prepared following the general protocol
 from N-benzyl-6-methylpicolinamide (13) $\quad(33.9 \mathrm{mg}, \quad 0.15 \mathrm{mmol}$, 1.00 equiv), to give 20 as a white solid; yield: 40.0 mg (86%); mp=190$191{ }^{\circ}{ }^{\circ} \mathrm{C}^{1}{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathbf{3 0 0} \mathrm{MHz}\right) \delta: 9.22(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.22(\mathrm{~m}, 5 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.78$ ($\mathrm{s}, 3 \mathrm{H}$) ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta: 166.2,165.6,163.3,148.3,145.8$, $136.2,135.5,129.0,127.9,127.1,126.8,126.7,100.6,51.8,43.6,24.7$. EI $^{+}$calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$ $(\mathrm{M})^{+}: 308.1161 ;$ Found: 308.1150.
(E)-Methyl

2-(6-benzyl-2-chloro-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)acetate (21). Compound 21 was prepared following the general protocol from N-benzyl-6-chloropicolinamide (14) ($37.0 \mathrm{mg}, 0.15 \mathrm{mmol}$, 1.00 equiv) and using pentamethylcyclopentadienylrhodium(III) ($4.64 \mathrm{mg}, 0.05$ equiv), silver hexafluoroantimonate ($10.7 \mathrm{mg}, 0.2$ equiv). to give 21 as a white solid after 16 h at $140{ }^{\circ} \mathrm{C}$; yield: 19.7 mg (40\%); $\mathrm{mp}=192-194{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta: 9.33(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.18(\mathrm{~s}, 5 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$) $\delta: 166.0,163.9,155.8,144.5,138.7,135.2,129.2,128.1,127.7,127.1,102.1$, 52.1, 43.9. EI^{+}calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{3}(\mathrm{M})^{+}$: 328.0615; Found: 328.0602.
(E)-Methyl 2-(6-benzyl-7-oxo-3-(trifluoromethyl)-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-
 ylidene)acetate (22). Compound 22 was prepared following the general protocol from N -benzyl-5-(trifluoromethyl)picolinamide (15) ($42.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv) and using pentamethylcyclopentadienylrhodium(III) ($4.64 \mathrm{mg}, 0.05$ equiv), silver hexafluoroantimonate ($10.7 \mathrm{mg}, 0.2$ equiv). The reaction was performed at $140^{\circ} \mathrm{C}$ for 16 h to give 22 as a white solid; yield: 37.9 mg (90%); $\mathrm{mp}=172-173{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta: 9.73(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.19(\mathrm{~m}, 5 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}$,
 4.0 Hz), 145.0 (s$), 136.6$ (s$), 134.0(\mathrm{q}, ~ J=4.0 \mathrm{~Hz}$), 129.7 (s$), 128.5$ (s$), 127.8$ (s$), 103.0$ (s$), 52.3$ (s), 44.0 (s). El^{+}calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M})^{+}$: 362.0878; Found: 362.0871.
(E)-6-Benzyl-4-methyl-5-(2-oxopropylidene)-5H-pyrrolo[3,4-b]pyridin-7(6H)-one (23). Com-
 pound 23 was prepared following the general protocol from N-benzyl-4methylpicolinamide (16) ($33.9 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv), to give 23 with a 10% GC-yield; MS (EI 70 eV) m/z: 308.1 ($\mathrm{M}^{+}, 14 \%$), 280.1 (4\%), 277.1 (3\%), 249.0 (37\%), 221.0 (14\%), 187.0 (22\%), 91.0 (100\%). The stereochemistry has not been determined.
(E)-Methyl 2-(2-benzyl-3-oxo-2,3-dihydro-1H-pyrrolo[3,4-b]quinolin-1-ylidene)acetate (24).

Compound 24 was prepared following the general protocol from N -benzylquinoline-2-carboxamide (17) ($39.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv), to give 24 as a pale yellow solid; yield: $39.0 \mathrm{mg}(76 \%) ; \mathrm{mp}=232-234{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta: 9.85(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-$ $7.16(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75$ MHz) $\delta: 166.4,165.2,149.5,148.3,146.0,137.8,135.2,132.0,130.9,130.1,129.3,129.1$, 128.8, 128.0, 127.1, 124.2, 99.8, 51.8, 44.1 .

In the same experiment, methyl 2-(2-benzyl-3-oxo-2,3-dihydro-1H-pyrrolo[3,4-b]quinolin-1-
 yl)acetate (27) was also isolated as a white solid; yield: 5.20 mg (10\%); $\mathrm{mp}=173-174{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathbf{3 0 0} \mathrm{MHz}\right) \delta: 8.40(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.25(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 1 \mathrm{H}$), $7.37-7.27$ (m, 5H), 5.41 (d, J = $15.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.96 (dd, $J=8.0$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{dd}, \mathrm{J}=16.5,4.4$
$\mathrm{Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, \mathrm{J}=16.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta: 170.5,166.2,150.4,149.2$, $136.2,133.9,131.2,130.9,130.6,129.1,128.9,128.4,128.3,128.2,128.1,53.9,52.3,45.0$, 37.3.
(Z)-Methyl 3-(2-(benzylcarbamoyl)benzo[b]thiophen-3-yl)acrylate (25). Compound 25 was $\begin{array}{ll}\mathrm{CO}_{2} \mathrm{Me} \text { prepared following the general protocol from } \mathrm{N} \text { - } \\ & \text { benzylbenzo[b]thiophene-2-carboxamide } \\ & (18)(40.0 \mathrm{mg}, \\ 0.15 \mathrm{mmol},\end{array}$ 1.00 equiv), to give 25 as a white solid; yield: 47.0 mg (89%); $\mathrm{mp}=133-$ $134{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta: 8.24(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-$ $7.92(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.28(\mathrm{~m}$, $5 \mathrm{H}), 6.50(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 75 MHz) $\delta: 166.9,162.5,139.1,137.7,137.5,136.9,136.3,132.8,129.0,128.0,127.9,126.9$, 125.7, 124.1, 123.7, 122.9, 52.0, 44.6. ESI ${ }^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}-2 \mathrm{H})^{+}: 349.0773$; Found: 349.0775.
(Z)-Methyl 3-(2-(benzylcarbamoyl)-5-methylthiophen-3-yl)acrylate (26). Compound 26 was
 prepared following the general protocol from N-benzyl-5-methylthiophene-2-carboxamide (19) ($34.7 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv), to give 26 as a white solid; yield: 39.0 g (83%); $\mathrm{mp}=161-160{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathbf{3 0 0} \mathrm{MHz}\right) \delta: 8.32(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.97(\mathrm{~s}$, $1 \mathrm{H}), 6.25(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 2.46$ (s, 3H). ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta: 167.4,162.0,142.2,139.4,137.9,137.1,133.8$, 128.9, 128.0, 127.8, 125.2, 120.8, 51.9, 44.3, 15.5. ESI calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}-2 \mathrm{H})^{+}$: 313.0773; Found: 313.0783.

3.3. Evaluation of different \boldsymbol{N}-substituents (Table 2)

(E)-Methyl 2-(6-ethyl-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)acetate (31).

Compound 31 was prepared following the general protocol from N ethylpicolinamide (28) ($22.5 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv), to give 31 as a white solid; yield: 20.0 mg (57\%); $\mathrm{mp}=139-141{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (acetone- $\mathrm{d}_{6}, 300$ MHz) $\delta: 9.37(d, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (acetone- $\mathrm{d}_{6}, 75$ MHz) $\delta: 181.2,167.0,153.4,149.7,146.0,136.2,135.7,114.6,100.0,52.0$,
35.1, 13.3.
(E)-Methyl 2-(7-oxo-6-phenethyl-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)acetate

(33). Compound 33 was prepared following the general protocol from N -ethylpicolinamide ($\mathbf{3 0}$) ($22.5 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv), to give $\mathbf{3 0}$ as a white solid; yield: 41.0 mg (89%); $\mathrm{mp}=155-157^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (acetone-d $\mathbf{d}_{6}, 300 \mathrm{MHz}$) $\delta: 9.35(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H}), 7.69$ (dd, $J=8.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 6 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 4.23-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.07-2.96(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (acetone-d $\left.\mathrm{d}_{6}, 75 \mathrm{MHz}\right) \delta: 167.0,165.0,153.6,149.6,146.2$, $139.2,136.3,129.7,129.4,127.4,100.4,52.0,41.7,34.5$. In the same experiment, 10% of the Z-33 compound was also detected by ${ }^{1} \mathrm{H}$ NMR of the crude.
(E)-Methyl 2-(7-oxo-6-(4-(trifluoromethyl)benzyl)-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-
 ylidene)acetate (34). Compound 34 was prepared following the general protocol from N -(4-(trifluoromethyl)benzyl)picolinamide (1c) ($42.0 \mathrm{mg}, 0.15 \mathrm{mmol}$), to give 34 as a white solid; yield: 43.1 mg (79%); $\mathrm{mp}=231-232{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathbf{3 0 0} \mathrm{MHz}\right) \delta: 9.38(\mathrm{~d}, \mathrm{~J}=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.95(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.72$ $(\mathrm{s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (acetone-d ${ }_{6}, 75 \mathrm{MHz}$) δ : $166.6,165.5,164.6,153.8,149.5,146.1,141.9,136.5,128.5,127.6$, $126.6(q, J=3.9 \mathrm{~Hz})$, 101.4, 52.1, 43.3. El^{+}calcd. for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M})^{+}$: 362.0878 ; Found: 362.0882.

4. Scale up of the $\mathbf{R h}$ (III)-catalyzed 3-alkenylation and subsequent \boldsymbol{N}-cyclization of 1a

An oven-dried, nitrogen-flushed 20 mL vessel was charged with N benzylpicolinamide (1a) ($424 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00$ equiv), pentamethylcyclopentadienylrhodium(III) chloride dimer $(31.0 \mathrm{mg}, 0.05 \mathrm{mmol}$, 0.025 equiv), copper(II) acetate ($727 \mathrm{mg}, 4.00 \mathrm{mmol}, 2.00$ equiv), and silver hexafluoroantimonate ($68.7 \mathrm{mg}, 0.2 \mathrm{mmol}, 0.1$ equiv). The reaction vessel was sealed with a Teflon lined cap, then evacuated and flushed with nitrogen three times. Under the atmosphere of nitrogen, p-xylene (15.0 mL) and methyl acrylate ($200 \mu \mathrm{~L}, 2.1 \mathrm{mmol}, 1.05$ equiv) were added via syringe. The resulting mixture was then stirred at $120^{\circ} \mathrm{C}$ for 4 h . After the reaction was complete, the volatiles were removed in vacuo and the residue was purified by column chromatography (n-hexane-EtOAc 3:1), yielding 2 as a white solid; yield: 494 mg (84%); $\mathrm{mp}=219-222^{\circ} \mathrm{C}$. The analytical data (NMR and HRMS analysis) matched those obtained previously for compound 2.

5. Typical procedure for the cleavage of the benzyl group ${ }^{2}$

Synthesis of (E)-methyl 2-(7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)acetate (35)

An oven-dried, argon flushed 10 mL microwave vessel was charged with (E)methyl 2-(6-benzyl-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5ylidene)acetate (2) ($88.2 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.00$ equiv) and then sealed with a Teflon lined cap, evacuated and flushed with argon three times. Under the atmosphere of argon, toluene (1.00 mL) and triflic acid ($106 \mu \mathrm{~L}, 1.20 \mathrm{mmol}$, 4.00 equiv) were added via syringe. The resulting solution was then stirred for 5 min at room temperature followed by microwave irradiation at $150^{\circ} \mathrm{C}$ for 5 min . Removal of solvent in vacuo gave the crude product as a brown solid that was extracted with $\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phases were combined and concentrated under reduced pressure. The residue was purified by column chromatography (n-hexane-EtOAc $1: 1$ with 10% of MeOH), yielding (35) as a white solid; yield: $42.8 \mathrm{mg}(70 \%)$; $\mathrm{mp}=221-222{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) $\delta: 9.88$ $(\mathrm{s}, 1 \mathrm{H}), 8.91(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl $\left.{ }_{3}, 75 \mathrm{MHz}\right)$ ©: 167.5, 165.7, 153.9, 148.5, 144.5, 130.3, 129.2, 126.5, 93.5, 52.2. El ${ }^{+}$ calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M})^{+}:$204.0535; Found: 204.0530.

6. Pd / C-Catalyzed chemoselective hydrogenation

Synthesis of methyl 2-(6-benzyl-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-yl)acetate (3)

After two vacuum $/ \mathrm{H}_{2}$ cycles to replace the air inside the reaction vessel with hydrogen, the mixture of $\mathbf{2}(60.9 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(7.23 \mathrm{mg}, 10$ $\mathrm{wt} \%$ of 2) in $\mathrm{MeOH}(2.0 \mathrm{~mL}$) was vigorously stirred at room temperature (ca. $20^{\circ} \mathrm{C}$) under ordinary hydrogen pressure (balloon) for 48 h . Then, the reaction mixture was filtered through a Celite ${ }^{\circledR}$ pad ($9 \mathrm{~cm} x$ inches) eluting with MeOH . The volatiles were subsequently removed in vacuo and the residue was purified by column chromatography (n-hexane-EtOAc $2: 1$) to afford $\mathbf{3}$ in 74% yield (43.7 mg). The analytical data (NMR and HRMS analysis) matched those obtained previously for compound $\mathbf{3}$.

7. Synthesis of the Rh (III)-complex, intermediate A

A

An oven-dried, nitrogen-flushed 20 mL vessel was charged with N benzylpicolinamide (1a) ($21.2 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv), pentamethylcyclopentadienylrhodium(III) chloride dimer ($30.5 \mathrm{mg}, 0.05 \mathrm{mmol}$, 0.5 equiv), sodium acetate ($61.5 \mathrm{mg}, 0.75 \mathrm{mmol}, 7.50$ equiv). The reaction vessel was sealed with a Teflon lined cap, then evacuated and flushed with nitrogen three times. Under the atmosphere of nitrogen, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ was added via syringe. After stirring the resulting mixture at room temperature for 16 h , the volatiles were partially removed in vacuo until observing the formation of an orange solid that

[^1]it was characterized as the Rh (III)-complex, intermediate \mathbf{A}; yield: 36.6 mg (83%); $\mathrm{mp}=219$ $222{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 300 \mathrm{MHz}\right) \delta: 8.61(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{q}, \mathrm{J}=15.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta: 169.6(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}), 156.4,149.3,141.5$, $138.8,128.0,128.0,126.6(d, J=1.1 \mathrm{~Hz}), 126.0,125.8(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 94.7(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 54.9$, 9.3. This compound was also characterized by X-ray diffraction.

ORTEP view of A, hydrogen atoms have been removed for simplicity

8. NMR Spectra

N-Benzylpicolinamide (1a)

${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

$\stackrel{\circ}{\stackrel{\circ}{3}}$

N-(4-Methoxybenzyl)picolinamide (1b)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

N-(4-(Trifluoromethyl)benzyl)picolinamide (1c)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

8

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

$\stackrel{\stackrel{\rightharpoonup}{\mathrm{M}}}{\substack{\text { ju }}}$

N-Benzyl-6-methylpicolinamide (13)

${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

N-Benzyl-6-chloropicolinamide (14)
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

N-Benzyl-5-(trifluoromethyl)picolinamide (15)
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

00

N-Benzyl-4-methylpicolinamide (16)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR (acetone- $\mathrm{d}_{6}, 75 \mathrm{MHz}$)

N -Ethylpicolinamide (28).

${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

-14.74

N-Phenylpicolinamide (29)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

N-Phenethylpicolinamide (30).
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

00

N-Benzylquinoline-2-carboxamide (17)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

N-Benzylbenzo[b]thiophene-2-carboxamide (18)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

N-Benzyl-5-methylthiophene-2-carboxamide (19).
${ }^{1} \mathrm{H}$ NMR (acetone- $\mathrm{d}_{6}, 300 \mathrm{MHz}$)

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

(E)-Methyl 2-(6-benzyl-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)acetate (2)

${ }^{13} \mathrm{C}$ NMR (acetone- $\mathrm{d}_{6}, 126 \mathrm{MHz}$)

(E)-n-Butyl 2-(6-benzyl-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)acetate (4) ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

（E）－tert－Butyl 2－（6－benzyl－7－oxo－6，7－dihydro－5H－pyrrolo［3，4－b］pyridin－5－ylidene）acetate（5） ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

$\stackrel{\circ}{\stackrel{\circ}{1}}$
 ，

	$\stackrel{\text { ¢ }}{+}$	$\begin{aligned} & \text { 㝕 } \\ & \text { 。 } \end{aligned}$						告		$\stackrel{\stackrel{T}{T}}{\underset{\sim}{2}}$							嵒		
$11.5 \quad 11.0 \quad 10.5$	9.5	9.0	8.5	8.0	7.5	7.0	6.5	$\begin{aligned} & \text { f1 } 1.0 \\ & \text { (ppm) } \end{aligned}$	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$
－

(E)-2-(6-Benzyl-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)acetonitrile (6)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

(E)-Dimethyl ((6-benzyl-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)methyl)phosphonate (7)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR (CDCl $3,75 \mathrm{MHz}$)

(E)-2-(6-benzyl-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)-N,Ndimethylacetamide (8)
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13}$ C NMR (acetone- $\mathrm{d}_{6}, 126 \mathrm{MHz}$)

(E)-6-Benzyl-5-(2-oxopropylidene)-5H-pyrrolo[3,4-b]pyridin-7(6H)-one (9)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR (CDCl $3,126 \mathrm{MHz}$)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right)$

(E)-Methyl 2-(6-(4-methoxybenzyl)-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5ylidene)acetate (11)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

(E)-6-(4-methoxybenzy)-5-(2-oxopropylidene)-5H-pyrrolo[3,4-b]pyridin-7(6H)-one (12)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(E)-Methyl 2-(6-benzyl-2-methyl-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)acetate (20)
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

$$
\begin{array}{ll}
0 & \circ \\
i 0 \\
i & i \\
i
\end{array}
$$

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

(E)-Methyl 2-(6-benzyl-2-chloro-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)acetate (21)
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

(E)-Methyl 2-(6-benzyl-7-oxo-3-(trifluoromethyl)-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5ylidene)acetate (22)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR (acetone- $\mathrm{d}_{6}, 75 \mathrm{MHz}$)

(E)-Methyl 2-(2-benzyl-3-oxo-2,3-dihydro-1H-pyrrolo[3,4-b]quinolin-1-ylidene)acetate (24) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

00
100
$\mathrm{f} 1(\mathrm{ppm})$

Methyl 2-(2-benzyl-3-oxo-2,3-dihydro-1H-pyrrolo[3,4-b]quinolin-1-yl)acetate (27)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

(Z)-Methyl 3-(2-(benzyIcarbamoyl)benzo[b]thiophen-3-yl)acrylate (25)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

(Z)-Methyl 3-(2-(benzylcarbamoyl)-5-methylthiophen-3-yl)acrylate (26)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

\checkmark	1	1			1					1	1								
00	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

(E)-Methyl 2-(6-ethyl-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)acetate (31) ${ }^{1} \mathrm{H}$ NMR (acetone $-\mathrm{d}_{6}, 300 \mathrm{MHz}$)

${ }^{13} \mathrm{C}$ NMR (acetone- $\mathrm{d}_{6}, 75 \mathrm{MHz}$)

(E)-Methyl 2-(7-oxo-6-phenethyl-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)acetate (33) ${ }^{1} \mathrm{H}$ NMR (acetone- $\mathrm{d}_{6}, 300 \mathrm{MHz}$)

${ }^{13} \mathrm{C}$ NMR (acetone- $\mathrm{d}_{6}, 75 \mathrm{MHz}$)

$\begin{aligned} & \text { ö } \\ & \text { öd } \\ & 11 \end{aligned}$				$\stackrel{\text { \% }}{\text { \% }}$	救	$\stackrel{\text { P }}{\text { + }}$	$\stackrel{8}{\stackrel{8}{8}}$

(E)-Methyl 2-(7-oxo-6-(4-(trifluoromethyl)benzyl)-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5ylidene)acetate (34)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR (acetone- $\mathrm{d}_{6}, 75 \mathrm{MHz}$)

Methyl-2-(6-benzyl-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-yl)acetate (3)
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

(E)-Methyl 2-(7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyridin-5-ylidene)acetate (35)
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

Rh(III)-complex, intermediate A

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$

						꿏 흥 응		
-8\%	¢	-	守灾	 	Fiom	$\stackrel{\square}{\circ}$	¢	$\overline{\mathrm{m}}$
Y	\|	\|	\| 1	\cdots	Y	\|	\|	\|

[^0]: ${ }^{1}$ (a) A. Jóźwiak, J. Z. Brzeziński, M. W. Płotka, A. K. Szcześniak, Z. Malinowski and J. Epsztajn, Eur. J. Org. Chem. 2004, 3254; (b) H. Brunner, B. Nuber and M. Prommesberger, J. Organomet. Chem. 1996, 523, 179.

[^1]: ${ }^{2}$ F. Rombouts, D. Franken, C. Martínez-Lamenca, M. Braeken, C. Zavattaro, J. Chen and A. A. Trabanco, Tetrahedron Lett. 2010, 51, 4815.

