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I) Experimental Section 
Materials and Methods. Chemicals were purchased from commercial sources and were used 

without further purification. Thermogravimetric analysis was performed on a NETZSCH TG 

209 thermobalance in nitrogen atmosphere, sample was placed in alumina container and data 

were recorded at 10 °C/min between 20 and 1000 °C. IR spectra (KBr pellet) were obtained 

from a Nicolet 5DX spectrometer in the region of 400–4000 cm−1. Powder X-ray diffraction 

data (PXRD) was collected on a Bruker D8 ADVANCE diffractometer at room temperature 

using Cu Kα (λ = 1.5418 Å) radiation. Elemental analysis of carbon, hydrogen and nitrogen 

was carried out on a Vario EL III analyzer. The single-crystal X-ray diffraction data of 1·S 

were collected on an Agilent Technologies SuperNova X-ray diffractometer with Mo Kα 

radiation (λ = 0.71073 Å) at 100 K. The data were processed using CrysAlisPro.1 The 

structure was solved and refined using Full-matrix least-squares based on F2 with program 

SHELXS-97 and SHELXL-972 within Olex2.3 Gas sorption isotherms were performed on 

Micromeritics ASAP 2020 and Trist 3020 apparatuses. Magnetic susceptibility measurements 

were carried out on a Quantum Design MPMS XL7 SQUID magnetometer. Magnetic data 

were calibrated with the sample holder, and diamagnetic corrections were estimated from 

Pascal’s constants.

1. CrysAlisPro Version 1.171.35.19, (2011). Agilent Technologies Inc. Santa Clara, CA, USA.

2. G. M. Sheldrick, A short history of SHELX, Acta Cryst., 2008, A64, 112-122.

3. Dolomanov et al. OLEX2: a complete structure solution, refinement and analysis program, J. Appl. 

Cryst., 2009, 42, 339-341.

Synthesis of [Ni4(OH)2(ina)2(dpda)2(H2O)3]∙(H2O)9(C2H6O)3 (1·S): Solid Ni(NO3)2·6H2O 

(0.147 g, 0.5 mmol) was added without stirring to an EtOH/H2O (10 mL, v/v = 5:5) solution 

containing isonicotinic acid (0.025 g, 0.2 mmol), 2,6-dimethyl-pyridine-3,5-dicarboxylic acid 

(dpdaH2, 0.0976 g, 0.5 mmol) and NaOH (0.045 g, 1.1 mmol). The mixture was sealed in a 23 

mL Teflon-lined stainless steel vessel and heated to 170 C within 500 min, maintained at this 

temperature for 3600 min and then cooled to 30 C within 2880 min. Green block crystals of 

1·S were obtained by filtration. Yield: ~62% based on Ni(NO3)2·6H2O. Elemental analysis 
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calcd (%) for C36H66N4Ni4O29: C 34.49, H 5.31, N 4.47. Found: C 34.35, H 5.35, N 4.43. IR 

(KBr, cm−1): 3408, 1611, 1429, 1382, 1160, 1058, 1027, 792, 777, 691. 

II) Tables

Table 1. Crystal data and structure refinements for compound 1·S.

1·S

formula Ni4C30H30O17N4

Mr / g mol−1 953.35

cryst syst monoclinic
space group P21/c

a / Å 12.8539(5)

b / Å 14.4578(8)

c / Å 30.4530(17)

 / deg 90

 / deg 96.497(5)

 / deg 90

V / Å3 5623.05

Z 4

Dc / g cm−3 1.124

 / mm−1 1.371

reflns collected 28515

GOF 0.966

Rint 0.0464

R1 (I > 2(I)) a 0.0664

wR2 (all data) 0.1204

aR1 = ||Fo| – |Fc||/|Fo|; wR2 = {[w(Fo
2 – Fc

2)2]/[w(Fo
2)2]}1/2; w = 1/[2(Fo

2) + (ap)2 + bp], where p 

= [max(Fo
2, 0) + 2Fc

2]/3; and Rw = [w(|Fo| – |Fc|)2/w|Fo|2]1/2, where w = 1/2(|Fo|).
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Table S2. Selected bond lengths (Å) and angles (deg) in 1·S.

1·S

Ni(1)-O(13) 2.008(2) Ni(3)-O(13) 2.038(2)

Ni(1)-O(2) 2.030(2) Ni(3)-O(6) 2.044(2)

Ni(1)-O(7a) 2.042(2) Ni(3)-O(10) 2.056(2)

Ni(1)-O(11b) 2.075(2) Ni(3)-O(14) 2.060(2)

Ni(1)-O(3W) 2.094(3) Ni(3)-N(4) 2.071(3)

Ni(1)-O(4c) 2.149(2) Ni(3)-O(1) 2.096(2)

Ni(2)-O(14) 2.003(2) Ni(4)-O(14) 2.032(2)

Ni(2)-O(3c) 2.045(2) Ni(4)-O(8a) 2.047(2)

Ni(2)-O(5) 2.049(2) Ni(4)-O(13) 2.049(2)

Ni(2)-O(2W) 2.066(3) Ni(4)-O(9) 2.051(2)

Ni(2)-O(1W) 2.065(3) Ni(4)-N(3d) 2.062(3)

Ni(2)-O(1) 2.162(2) Ni(4)-O(4c) 2.100(2)

Ni(3)-Ni(4) 2.9127(6)

Ni(3)-O(1)-Ni(2) 91.30(9) Ni(3)-O(13)-Ni(4) 90.89(9)

Ni(4c)-O(4)-Ni(1c) 91.78(9) Ni(2)-O(14)-Ni(4) 130.64(12)

Ni(1)-O(13)-Ni(3) 130.11(12) Ni(2)-O(14)-Ni(3) 97.07(10)

Ni(1)-O(13)-Ni(4) 97.52(10) Ni(4)-O(14)-Ni(3) 90.75(9)

Symmetry codes: (a) x – 1, y, z; (b) – x + 2, – y + 1, – z; (c) – x + 2, – y + 2, – z; (d) – x + 

2, y + 1/2, – z + 1/2; (e) x + 1, y, z; (f) – x + 2, y – 1/2, – z + 1/2. 
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Table S3. Virial graph analysis data for the activated 1, and the separation selectivity of C2 
hydrocarbons over methane.

T

(K)

KH

(mol g–1 Pa–1)

A0

ln(mol g–1 Pa–1)

A1

(g mol–1)

R2 Si/j
[a] Qst

(kJ mol–1)

273 1.351 × 10–8 –18.120±0.002 –315.971±9.778 0.99428
CH4

297 8.8 × 10–9 –18.549±0.002 –301.214±6.867 0.99534
12.1

273 8.299 × 10–7 –14.002±0.006 –663.390±20.783 0.99609 61.5
C2H2

297 2.540 × 10–7 –15.186±0.003 –411.872±13.049 0.99401 28.9
31.8

273 3.651 × 10–7 –14.823±0.002 –338.414±6.860 0.99713 27.0
C2H4

297 1.419 × 10–7 –15.768±0.002 –238.645±0.002 0.99301 16.1
26.7

273 6.032× 10–7 –14.321±0.002 -338.686±5.653 0.99861 44.7
C2H6

297 2.515× 10–7 -15.196±0.002 -201.931±9.035 0.99204 28.6
23.5

  [a] The Henry’s Law selectivity for gas component i over j is calculated based on: Si/j = KH(i) / KH(CH4).

Table S4. 3D MOFs with CoII or NiII clusters showing the coexistence of spin canting and 
spin-glass behaviors.

Compounds Clusters Nets

[Co8(OH)4(SO4)2(L1)4(H2O)4]·solvents12b Co8 (3,12)-connected

[Co7(OH)4(H2O)2(L2)4(L3)3]·solvents12a Co7 8-connected

[Ni7(OH)4(H2O)2(L2)4(L3)3]·solvents12a Ni7 8-connected

[Co4(L2)5(OH)2(H2O)(EtOH)]·NO3·solvents12c Co4 7-connected

[Ni4(L2)5(OH)2(EtCOO)]·solvents12c Ni4 9-connected

1this work Ni4 6-connected

L1 = 2,6-dicarboxyphenyl-4,4′-bipyridine; L2 = isonicotinate; L3 = isophthalate.
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III) Additional Figures

Fig. S1 The three-dimensional structure of 1 viewed along the b axis.

Fig. S2 The uninodal 6-connected topological structure of 1.
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Fig. S3 Accessible surfaces of 1.
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Fig. S4 TGA of 1·S.
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Fig. S5 Powder X-ray diffraction pattern of the desolvated framework 1 obtained under 

various temperature and high vacuum.
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Fig. S10 IAST calculations of the C2H6/CH4、C2H4/CH4 and C2H2/CH4 adsorption selectivity 

of 1 for adsorption from an equimolar mixture at total bulk gas phase at 273K (a) and 297 K 

(b).
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Fig. S11 Field-dependent magnetization of 1·S at 2 K.
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Fig. S13 ac magnetic susceptibility of 1·S.
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Fig. S14 Infrared spectra of 1·S.

13


