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Experimental section

Materials. Free-base meso-triarylcorroles were synthesized according to a literature
procedure.' p-Methylphenylmagnesium bromide (0.5 M in diethyl ether) and anhydrous
benzonitrile were purchased from Sigma-Aldrich and used as received. Platinum(II)
chloride was purchased from Sigma-Aldrich and used to synthesize tetranuclear
platinum(II) acetate, as described in the literature.” Platinum insertion reactions were
carried out in a Biotage Microwave reactor using 10-20 mL microwave vials. Silica gel 60
(0.04-0.063 mm particle size, 230-400 mesh, Merck) and activated, neutral alumina
(Brockmann I, Sigma-Aldrich) were employed for flash chromatography. Silica gel 60
preparative thin-layer chromatographic plates (20 x 20 cm; 0.5 mm thick, Merck) were

used for final purification of all complexes.

Instrumental methods. UV-visible spectra were recorded on an HP 8453
spectrophotometer. 'H NMR spectra were recorded on a 400-MHz Mercury Plus Varian
spectrometer at room temperature in CDCl; and referenced to residual CHCl3 7.26 ppm.
MALDI-TOF (a-cyano-4-hydroxycinnamic acid used as matrix) and LDI mass spectra
were recorded on a Waters Micromass MALDI micro MX Mass Spectrometer. High-
resolution ESI mass spectra were recorded on a Thermo Sceintific LTQ Orbitrap XL™

spectrometer in positive mode using methanol as a carrier solvent.

Cyclic voltammetry was carried out at 298 K with an EG&G Model 263A
potentiostat having a three electrode system: a glassy carbon working electrode, a platinum
wire counterelectrode, and a saturated calomel reference electrode (SCE). Tetra(n-
butyl)ammonium perchlorate, recrystallized twice from absolute ethanol and dried in a
desiccator for at least 2 weeks, was used as the supporting electrolyte. Anhydrous CH,Cl,
(Aldrich) was used as solvent. The reference electrode was separated from the bulk solution
by a fritted-glass bridge filled with the solvent/supporting electrolyte mixture. The
electrolyte solution was purged with argon for at least 2 min and all measurements were

carried out under an argon blanket. All potentials were referenced to the SCE.

' Koszarna, B.; Gryko, D. T. J. Org. Chem. 2006, 71, 3707-3717.
? Basato, M.; Biffis, A.; Martinati, G.; Tubaro, C.; Venzo, A.; Ganis, P.; Benetollo, F.
Inorg. Chim. Acta 2003, 355, 399-403.
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EPR spectra were recorded on a Bruker ELEXSYS E500 spectrometer equipped
with a SuperX CWR bridge, an ER 4116DM dual mode cavity, an ER 4112HV cryostat, an
Oxford Instruments ITC 503 temperature controller, an EIP 538B frequency counter and an
ERO035M NMR Gauss-meter. Spectra were recorded on ground solid samples, in 2:1
dichloromethane/toluene at room temperature, and on frozen glasses obtained from the

same solutions at 73 K. The spectra were simulated using home-written software.’

Preliminary experiments aimed at Pt insertion. Insertion of Pt into corroles
proved to be an extraordinarily unpredictable endeavor. The choice of the platinum
precursor, the solvent, and other details of reaction conditions (temperature and
aerobic/anerobic conditions) each proved to be critically important to Pt insertion and the
isolation of Pt corrole products. Platinum insertion failed to occur in toluene, pyridine,
dichloromethane, chloroform, THF, methanol, ethanol, acetic acid, DMF, and DMSO,
before finally taking place in benzonitrile. In the same vein, all commercially available
platinum precursors, including PtCl,, Pt(acac),, transplatin, PtCls, and K,PtCl failed to
lead to Pt insertion. Use of Pt(OAc),(PPhs),, which we synthesized via a literature
procedure,’ in pyridine led to Pt insertion into a number of different meso-triarylcorroles,
evidenced in each case by a [Pt(corrole)]” molecular ion in a MALDI-TOF mass spectrum,
but the complexity of the product mixtures and difficulties with isolation forced us to
abandon this approach. Encouraged by this preliminary result, we continued our search and
finally found the tetranuclear platinum acetate complex, [Pt(OAc),]4*2HOAc, which is
commercially unavailable and had to be synthesized by a literature method,’ to be a suitable
precursor. No Pt insertion could be detected up to 130 °C, but heating free-base corroles
with platinum acetate in benzonitrile at 140 °C for 16 hours led to very low yields of
diamagnetic Pt(IV) corrole products. Microwave irradiation of the same reaction mixture at
140-150 °C for 2 hours led to the same Pt(IV) corroles in a reproducible manner, albeit still

in rather low (~6%) yields.

’ Scheifele, Q.; Birk, T.; Bendix, J.; Tregenna-Piggott, P. L. W.; Weihe, H. Angew. Chem.
Int. Ed. 2008, 47, 148-150.
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General procedure for the synthesis of Pt{T(p-X-Ph)C}(o/m/p-
CsH4CN)(PhCN), where X = CF3, H, CH3, OCHj3. To a 10-20 mL microwave vial
charged with PhCN (10 mL) and a magnetic stirring bar were added the free-base corrole
Hi[T(p-X-P)C] (0.054 mmol) and Pt4(OAc)se2HOACc (1 equiv). The vial was sealed and
heated for 2 h at 150 °C. After cooling, the contents of the vial were transferred to a round-
bottom flask (100 mL) and evaporated to dryness. The crude product was dissolved in
dichloromethane (5 mL) and loaded onto a silica gel column and eluted with a mixture of
dichloromethane and n-hexane (the exact ratio being stated below for each case). All
fractions containing Pt{T(p-X-Ph)C}(o/m/p-C¢H4CN)(PhCN), with a Apax between 426 and
430 nm, were collected and evaporated to dryness. A second column chromatography was
carried out on a neutral alumina column, initially with pure dichloromethane to remove
fast-eluting impurities, followed by a mixture of chloroform/dichloromethane. The Pt{T(p-
X-Ph)C}(o/m/p-C¢H4CN)(PhCN) product mixture thus obtained obtained was separated
into the o, m, and p products via preparative thin-layer chromatography (PLC) with a
dichloromethane/n-hexane mixture as eluent. In general, the quantities of the ortho isomers
obtained were too meagre to permit full spectroscopic characterization. Additional details

are provided below for individual compounds.

Synthesis and separation of Pt{T(p-CF3-Ph)C}(o/m/p-C¢H4sCN)(PhCN). The
crude reaction product was initially chromatographed on a silica gel column with 3:2
dichloromethane/n-hexane as eluent. Fractions containing different Pt{T(p-CF3-
Ph)C} (o/m/p-CsH4CN)(PhCN) regioisomers, all with a Ayax of 430 nm, were collected and
evaporated to dryness. A second column chromatography was then performed on a neutral
alumina column, first with pure dichloromethane to remove the fast-eluting impurities, and
then with 3:1 chloroform/dichloromethane, giving a combined yield of 3.69 mg (6.6 %) for
the three isomers. PLC with 1:1 dichloromethane/n-hexane as eluent was then used to
separate the isomers; the top band was identified as Pt{T(p-CF;-Ph)C} (m-
CsH4CN)(PhCN), the middle one as the para isomer, and the lower one as the ortho
isomer. Dark purple X-ray quality crystals of the meta isomer were grown by slow
evaporation of a dichloromethane/n-hexane solution of the complex over a period of 15

days. Unfortunately, as discussed above, the structure was too strongly disordered to be
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significantly useful. Detailed characterization of the meta and para isomers are as follows;

the NMR assignments follow the abbreviations shown in Figure 2.

Pt{T(p-CF3-Ph)C}(m-CsH,CN)(PhCN). Yield 2.15 mg (3.52 %). UV-vis
(CH2CLy): Amax [nm, & x 107 (M'em™)]: 430 (8.66), 502 (0.05), 532 (0.21), 571 (0.98), 595
(2.14). '"HNMR: 6 9.16 (d, 2H, *Jui = 4 Hz, -H); 8.92 (d, 2H, *Juy = 4 Hz, f-H ); 8.73 (d,
2H, *Jy = 4 Hz, p-H); 8.67 (d, 2H, *Jy = 4 Hz, f-H ); 8.43 (d, 2H, *Jyn = 8 Hz, 5,15-01);
8.37 (d, 2H, *Jyuy = 8 Hz, 5,15-02); 8.25 (overlapping doublets, 2H, *Jy;; = 8 Hz, 10-01 and
10-02); 8.07 (d, 2H, *Jyuy = 8 Hz, 5,15-m1); 8.04 (d, 2H, *Jyn = 8 Hz, 5,15-m2); 8.00
(overlapping doublets, 2H, *Jy; = 8 Hz, 10-m1 and 10-m2); 6.33 [t, 1H, p (PhCN)]; 5.72 [d,
1H, *Jun = 4 Hz, p (CH4CN)]; 5.48 [dd, 2H, m (PhCN)]; 5.00 [dd, 1H, m (CeH,CN)]; 1.75
[broad doublet, 2H, o (PhCN)], 0.57 [d, 1H, 02 (C¢H4CN) overlapping with s, 1H, ol
(CeH4CN)]. MS (MALDI-TOF, major isotopomer): M™ = 1126.85 (expt), 1126.19 (caled for
Cs4Ha9NgFoPt).

Pt{T(p-CF3-Ph)C}(p-CsHsCN)(PhCN). Yield 1.12 mg (1.83 %). UV-vis (CH,Cl,):
Amax (nm), [e x 107 (M'em™)]: 430 (6.72), 502 (0.06), 533 (0.44), 574 (0.78). '"H NMR: ¢
9.16 (d, 2H, *Jyy = 4 Hz, f-H); 8.92 (d, 2H, *Jyy = 4 Hz, f-H ); 8.73 (d, 2H, *Jyy = 4 Hz, -
H); 8.67 (d, 2H, *Jyuy = 4 Hz, f-H ); 8.42 (d, 2H, *Jun = 8 Hz, 5,15-01-Ph); 8.35 (d, 2H,
3 Jur = 8 Hz, 5,15-02-Ph); 8.24 (overlapping doublets, 2H, *J;;; = 8 Hz, 10-01-Ph & 10-02-
Ph); 8.06 (d, 2H, *Juy = 8 Hz, 5,15-m1-Ph); 8.04 (d, 2H, *Juy = 8 Hz, 5,15-m2-Ph); 8.00
(overlapping doublet, 2H, *Jy;; = 8 Hz, 10-m1-Ph & 10-m2-Ph); 6.33 [t, 1H, p (PhCN)];
5.46 [dd, 2H, m (PhCN)]; 5.19 [d, 2H, *Jup = 8 Hz, m (C6H4CN)]; 1.70 [broad doublet, 2H, o
(PhCN)], 0.46 [d, 2H, *Jyi = 8 Hz, 0 (CsHLCN)] . MS (MALDI-TOF, major isotopomer): M"
=1126.82 (expt), 1126.19 (caled for CssHpoNgFoPt).

Synthesis and separation of Pt(TPC)(o/m/p-CcH4CN)(PhCN). The crude reaction
product was initially chromatographed on a silica gel column with 2:1 dichloromethane/n-
hexane as eluent. Fractions containing different Pt(TPC)(o/m/p-CsH4CN)(PhCN)
regioisomers, all with a Ay, of 427 nm, were collected and evaporated to dryness. A
second column chromatography was then performed on a neutral alumina column, first
with pure dichloromethane to remove the fast-eluting impurities, and then with 4:1

chloroform/dichloromethane, giving a combined yield of 3.59 mg (7.2 %) for the three

S5



isomers. PLC with 3:2 dichloromethane/n-hexane as eluent was then used to separate the
isomers; the top band was identified as Pt(TPC)(m-CcH4CN)(PhCN), the middle one as the

para isomer, and the lower one as the ortho isomer.

Pt(TPC)(m-CsHsCN)(PhCN). Yield 2.1 mg (4.21 %). UV-vis (CH2Cly): Amax [nm,
ex 107 (M 'em™)]: 426 (8.18), 436 (6.70), 501 (0.42), 533 (0.59), 567 (1.15), 595 (2.07).
'H NMR: 6 9.08 (d, 2H, *Jyi = 4 Hz, f-H); 8.92 (d, 2H, *Jyuy = 4 Hz, f-H ); 8.72 (broad
doublet, 2H, A-H); 8.66 (d, 2H, *Juy = 4 Hz, f-H ); 8.32 (d, 2H, *Jyn = 8 Hz, 5,15-01); 8.24
(d, 2H, *Jyn = 8 Hz, 5,15-02); 8.10 (overlapping doublets, 2H, *J; = 8 Hz, 10-01 and 10-
02); 7.58-7.82 (m, 8H, overlapping 5,10,15-m and 5,15-p); 7.48 (dd, 1H, =8 Hz, 10-
p); 6.30 [t, IH, p (PhCN)]; 5.70 [d, 1H, *Jyn =4 Hz, p (CeH,CN)]; 5.44 [dd, 2H, m (PhCN)];
5.00 [dd, 1H, m (C¢H4CN)]; 1.78 [broad doublet, 2H, o (PhCN)], 0.68 [d, 1H, 02 (C¢H,CN)
and s, 1H, o1 (C¢H4CN), overlapping] . MS (MALDI-TOF, major isotopomer): M™ = 923.12
(expt), 923.23 (calcd for Cs;H3,NgPt).

Pt(TPC)(p-CsH,CN)(PhCN). Yield 1.08 mg (2.16 %). UV-vis (CH2Cly): Amax [nm,
ex 107 (M 'em™)]: 426 (3.59), 436 (2.94), 498 (0.27), 528 (0.31), 568 (0.56), 597 (1.11).
'H NMR: 6 9.08 (d, 2H, *Jyui = 4 Hz, f-H); 8.92 (d, 2H, *Jyuy = 4 Hz, f-H ); 8.73 (broad
doublet, 2H, p-H); 8.66 (d, 2H, *Juy =4 Hz, f-H ); 8.31 (d, 2H, *Jyn = 8 Hz, 5,15-01); 8.24
(d, 2H, *Jyn = 8 Hz, 5,15-02); 8.10 (overlapping doublets, 2H, *J; = 8 Hz, 10-01 and 10-
02); 7.83-7.68 (m, 8H, overlapping 5,10,15-m and 5,15-p); 7.51 (d, 1H, =8 Hz, 10-p);
6.31 [t, IH, p (PhCN)]; 5.45 [dd, 2H, m (PhCN)]; 5.19 [d, 2H, m (CsH4CN)]; 1.79 [broad
doublet, 2H, o (PhCN)]; 0.57[d, 2H, o (CsH4CN)]. MS (MALDI-TOF, major isotopomer):
M"=923.13 (expt), 923.23 (calcd for Cs;H3,NgPt).

Synthesis and separation of Pt{T(p-CH;3-Ph)C}(o/m/p-CcH4CN)(PhCN). The
crude reaction product was initially chromatographed on a silica gel column with 3:1
dichloromethane/n-hexane as eluent. Fractions containing different Pt{T(p-CH:-
Ph)C} (o/m/p-CsH4CN)(PhCN) regioisomers, all with a Ayax 0f 427 nm, were collected and
evaporated to dryness. A second column chromatography was then performed on a neutral
alumina column, first with pure dichloromethane to remove the fast-eluting impurities, and
then with pure chloroform, giving a combined yield of 4.17 mg (8.0 %) for the three

isomers. PLC with 3:1 dichloromethane/n-hexane as eluent was then used to separate the
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isomers; the top band was identified as Pt{T(p-CH3-Ph)C}(m-CcsH4CN)(PhCN), the middle

one as the para isomer, and the lower one as the ortho isomer.

Pt{T(p-CH;3-Ph)C}(m-CsH4sCN)(PhCN). Yield 2.3 mg (4.41 %). UV-vis (CH,Cl):
Amax [nm, & x 107 (M 'em™)]: 427 (5.32), 438 (4.09), 499 (0.27), 529 (0.37), 567 (0.76), 599
(1.60). "H NMR: 6 9.06 (d, 2H, *Jui = 4 Hz, -H); 8.91 (d, 2H, *Juy =4 Hz, f-H ); 8.71 (d,
2H, *Jyy = 4 Hz, f-H); 8.65 (d, 2H, *Jy = 4 Hz, f-H ); 8.19 (d, 2H, *Jyn = 8 Hz, 5,15-01);
8.12 (d, 2H, *Jyi = 8 Hz, 5,15-02); 7.98 (overlapping doublets, 2H, *J;;;; = 8 Hz, 10-01 and
10-02); 7.59 (d, 2H, *Jyuy = 8 Hz, 5,15-m1); 7.57 (d, 2H, *Jyu = 8 Hz, 5,15-m2); 7.51
(overlapping doublets, 2H, *Jy;y = 8 Hz, 10-m1 and 10-m2); 6.28 [t, 1H, p (PhCN)]; 5.70 [d,
1H, *Jun = 4 Hz, p (CH4CN)]; 5.42 [dd, 2H, m (PhCN)]; 4.99 [dd, 1H, m (CeH,CN)]; 2.68 (s,
6H, 5,15-p-CH3); 2.65 (s, 3H, 10-p-CH3); 1.80 [broad doublet, 2H, o (PhCN)], 0.70 [d, 1H,
02 (CeH4CN) and s, 1H, o1 (CeH4CN)]. MS (MALDI-TOF, major isotopomer): M = 965.17
(expt), 965.28 (calcd for Cs4H3sNgPt).

Pt{T(p-CH;3-Ph)C}(p-CsH,CN)(PhCN). Yield 1.17 mg (2.22 %). UV-vis
(CH2CLy): Amax [nm, & x 107 (M'em™)]: 426 (6.27), 439 (4.97), 498 (0.32), 530 (0.49), 567
(1.00), 599 (2.04). "H NMR: 6 9.06 (d, 2H, *J;n = 4 Hz, f-H); 8.92 (d, 2H, *Jyn = 4 Hz, f5-
H); 8.72 (d, 2H, *Jyy = 4 Hz, f-H); 8.66 (d, 2H, *Jyi = 4 Hz, f-H ); 8.19 (d, 2H, *Jp; = 8
Hz, 5,15-01-Ph); 8.12 (d, 2H, =8 Hz, 5,15-02-Ph); 7.98 (overlapping doublets, 2H,

3 Jur =8 Hz, 10-01-Ph & 10-02-Ph); 7.60 (d, 2H, *Jyuy = 8 Hz, 5,15-m1-Ph); 7.58 (d, 2H,

3 Jui = 8 Hz, 5,15-m2-Ph); 7.51| (overlapping doublets, 2H, *J; = 8 Hz, 10-m1-Ph & 10-
m2-Ph); 6.28 [t, 1H, p (PhCN)]; 5.41 [dd, 2H, m (PhCN)]; 5.19 [dd, 1H, m (CsH4CN)]; 2.68
(s, 6H, 5,15-p-CHs); 2.65 (s, 3H, 10-p-CH3); 1.78 [brood doublet, 2H, o (PhCN)], 0.62 [d,
2H, o (C¢H4CN)] . MS (MALDI-TOF, major isotopomer): M" = 965.19 (expt), 965.28 (calcd
for Cs4H3gNePt).

Pt{T(p-OCH;3-Ph)C}(o/m/p-CcH4CN)(PhCN). The crude reaction product was
initially chromatographed on a silica gel column with pure dichloromethane as eluent.
Fractions containing different Pt{T(p-OCH3-Ph)C}(o/m/p-CsH4CN)(PhCN) regioisomers,
all with a A, of 427 nm, were collected and evaporated to dryness. A second column
chromatography was then performed on a neutral alumina column, first with pure

dichloromethane to remove the fast-eluting impurities, and then with pure chloroform,
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giving a combined yield of 3.2 mg (6.0 %) for the three isomers. PLC with 3:1
dichloromethane/n-hexane as eluent was then used to separate the isomers; the top band
was identified as Pt{T(p-CH3-Ph)C}(m-CsH4CN)(PhCN), the middle one as a mixture of
the para and meta isomers, and the lower one as the ortho isomer. Because of the very
similar Ry values of the meta and para isomers, characterization data are only presented for

the former.

Pt{T(p-OCH;-Ph)C}(m-C¢H4,CN)(PhCN). Yield 2.8 mg (5.1 %), UV-vis
(CH2CLy): Amax [nm, & x 107 (M'em™)]: 427 (8.17), 440 (6.03), 498 (0.55), 529 (0.68), 567
(1.25), 602 (2.53). '"H NMR: 6 9.06 (d, 2H, *Jyn = 4 Hz, f-H); 8.92 (d, 2H, *Jyn = 4 Hz, f5-
H); 8.71 (d, 2H, *Jyi = 4 Hz, f-H); 8.66 (d, 2H, *Jyi = 4 Hz, f-H ); 8.23 (d, 2H, *Jpi; = 8
Hz, 5,15-01-Ph); 8.15 (d, 2H, =8 Hz, 5,15-02-Ph); 8.00 (overlapping doublets, 2H,

7 Jur = 8 Hz, 10-01-Ph & 10-02-Ph); 7.35 (d, 2H, *Juy = 8 Hz, 5,15-m1-Ph); 7.32 (d, 2H,

3 Jur = 8 Hz, 5,15-m2-Ph); 7.24 (overlapping doublets, 2H, *Ji;;y = 8 Hz, 10-m1-Ph & 10-
m2-Ph); 6.29 [t, 1H, p (PhCN)]; 5.69 [d, 1H, *Jun = 4 Hz, p (C{HLCN)]; 5.44 [dd, 2H, m
(PhCN)]; 5.19 [d, 2H, *Jun = 4 Hz, p (CeHLCN)]; 4.99 [dd, 1H, m (CeH,CN)]; 4.09 (s, 6H,
5,15-p-OCHj3); 4.06 (s, 3H, 10-p-OCH3); 1.80 [brood doublet, 2H, o (PhCN)], 0.70 [d, 1H,
02 (C¢H4CN) and s, 1H, ol (CsH,CN)]; 0.64 [d, 2H, o (CsH4CN)]. MS (MALDI-TOF, major
isotopomer): M" = 1013.20 (expt), 1013.27 (calcd for Cs4H3303N6Pt).

General procedure for the synthesis of oxidized Pt{T(p-X-Ph)C}(o/m/p-
CcH4CN)(p-CcH4CH3) complexes, where X = CF3;, H, CH3, OCHj3, To a 50-mL round-
bottom flask was added 5 mL of dry dichloromethane, a magnetic stirring bar and the
Pt{T(p-X-Ph)C}(o/m/p-C¢H4CN)(PhCN) complex (0.0108 mmol) of interest. p-
Methylphenylmagnesium bromide solution in diethyl ether (0.108 mL, 0.5M solution in
diethyl ether) was added via syringe and the resulting mixture was stirred at room
temperature for 2 h. The reaction was judged complete when the original Soret band
disappeared and was replaced by a strongly red-shifted one and a weak and broad Q band
appeared. The reaction mixture was evaporated to dryness and the resulting solid (with no
additional workup) was subjected to column chromatography on a silica gel column with
mixed dichloromethane/n-hexane as eluent. The first orange fraction was collected and

evaporated to dryness. The product was further purified by PLC with n-
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hexane/dichloromethane as eluent. Overall, a total of five oxidized Pt corroles were

synthesized and purified in this manner, with additional details given below.

Pt{T(p-CF3-Ph)C}(m-CsH4CN)(p-C¢H4CH3). The first column chromatography
was carried out with 2:3 dichloromethane/n-hexane as an eluent. The eluent for the PLC
step was 1:1 dichloromethane/n-hexane. Yield: 3.65 mg (30%). UV-vis (CH2Cly): Amax [nm,
ex 107 M 'em™)]: 383 (2.76), 443 (3.91), 723 (0.34). % Elemental analysis: Found: C
58.44, H 2.38, N 6.15; calcd: C 58.12, H 2.80, N 5.92. MS (MALDI-TOF, major
isotopomer): (M+H)" = 1116.101 (expt), 1116.22 (caled for Cs4Hz FoNsPt + H).

Pt(TPC)(m-CsH4CN)(p-CsH4CH3). Both the column chromatography and PLC
were carried out with 1:1 dichloromethane/n-hexane as eluent. Yield: 7.0 mg (70%). Dark
X-ray quality crystals were obtained by slow evaporation of a 1:1 hexane/dichloromethane
solution over a period of 15 days, which were successfully analyzed as described below.
UV-vis (CH,Cl): Amax [nm, & x 107 (M'em™)]: 378 (5.27), 453 (8.29), 722 (0.53). %
Elemental analysis: Found: C 67.04; H 3.49; N 7.99; calcd: C 67.17, H 3.76, N 7.68. MS
(MALDI-TOF, major isotopomer): (M+H)" =911.99 (expt), 912.25 (calcd for Cs;H3,NsPt
+ H).

Pt{T(p-CH;3-Ph)C}(m-CcH4CN)(p-CsH4sCH3). The first column chromatography
was carried out with 2:1 dichloromethane/n-hexane as an eluent. The eluent for the PLC
step was 1:1 dichloromethane/n-hexane. Yield: 7.21 mg (70%). UV-vis (CH2Cly): Amax [nm,
ex 107 (M 'em™)]: 380 (4.34), 460 (5.82), 725 (0.49). % Elemental analysis: Found: C
67.44, H 3.88; N 7.11; caled: C 67.98, H 4.23; N 7.34. MS (MALDI-TOF, major
isotopomer): (M+H)" = 953.99 (expt), 954.30 (calcd for Cs4sH4oNsPt + H).

Pt{T(p-CH;3-Ph)C}(p-CcH4CN)(p-CcH4CH3) The first column chromatography
was carried out with 2:1 dichloromethane/n-hexane as an eluent. The eluent for the PLC
step was 1:1 dichloromethane/n-hexane. Yield: (4.3 mg, 72%). Reddish-brown X-ray
quality crystals were grown by slow evaporation of a 1:1 dichloromethane/n-hexane
solution over a period of 15 days, which were successfully analyzed as described below.
UV-vis (CH,Cl): Amax (nm), [€ x 10 (M'em™)]: 380 (2.80), 460 (3.54), 724 (0.32). %
Elemental Analysis: Found: C 67.66, H 4.51; N 7.80; calcd: C 67.98, H 4.23, N 7.34. MS

S9



(MALDI-TOF, major isotopomer): (M+H)" = 953.99 (expt), 954.30 (calcd for Cs4H4oNsPt
+ H).

Pt{T(p-OCH;3-Ph)C}(m-CsH4sCN)(p-CsH4CH3). Both the column chromatography
and PLC were carried out with pure dichloromethane as eluent. Yield: 6.4 mg (60%). UV-
vis (CH2CLa): Amax [nm, & x 107 (M'em™)]: 385 (7.31), 475 (6.42), 555 (2.06). % Elemental
analysis: Found: C 65.25, H4.36, N 7.11; O, 4.79, Pt, 19.4; calcd: C, 64.73; H, 4.02, N,
6.99. MS (MALDI-TOF, major isotopomer): (M+H)" = 1002.16 (expt), 1002.29 (calcd for
Cs4H40O3NsPt + H).
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Discussion of the '"H NMR spectrum of a representative Pt(IV) complex

The 400 MHz "H NMR spectra of the Pt(IV) complexes dissolved in CDCls are consistent
with time-averaged C; symmetry, as illustrated in Figure 2 for Pt{T(p-CF;-Ph)C}(m-
CsH4CN)(PhCN). Thus, the 5- and 15- aryl groups are symmetry-related on the NMR time-
scale and the B-protons appear as four distinct doublets, each corresponding to 2 H’s. The
aryl and S-proton signals occur in distinct regions, 7.4—8.3 ppm 8.6-9.1 pmm, respectively,
and are thus readily distinguishable. For a given meso-aryl group, the two ortho (or meta)
protons give rise to separate signals, because of the asymmetry introduced by the
coordinated aryl group (m- or p- C¢H4CN). Such nonequivalence of ortho (or meta) protons
of meso aryl groups have also been observed for five-coordinate iron corroles.” The ortho
protons of the Pt-bound m- or p- C¢H4CN group are strongly shielded by the aromatic ring
current of the corrole and occur at about 0.5-1.0 ppm, facilitating assignments for the rest of
the aryl protons. The NMR spectra clearly show the presence of a coordinated, neutral
benzonitrile (PhCN) with time-averaged twofold symmetry, whose ortho protons are also
strongly shielded, occurring at approximately 1.7—1.8 ppm. Thus, for the Pt(IV) corroles,
the "H NMR spectra are consistent with the general molecular formula Pt{T(p-X-

Ph)C} (o/m/p-CsH4sCN)(PhCN). As an example, Figure 2 depicts the "H NMR spectrum of
Pt{T(p-CF3-Ph)C}(m-CsH4CN)(PhCN). For each Pt(IV) corrole, the MALDI-TOF mass
spectrum also indicates the same formula for the molecular ion. By contrast, ESI mass
spectra of the compounds, dissolved in methanol, are consistent with the molecular formula
Pt{T(p-X-Ph)C}(o/m/p-C¢H4CN) or occasionally Pt{T(p-X-Ph)C}(o/m/p-
CsH4CN)(CH30H), indicating loss of the PhCN ligand or its replacement by methanol.
DFT calculations (described below) also indicate that the neutral PhCN ligand is labile,
consistent with the difficulties (described above) we have experienced with obtaining a

relatively disorder-free crystal structure of a Pt(IV) corrole.

*(a) Steene, E.; Wondimagegn, T.; Ghosh, A. J. Phys. Chem. B, 2001, 105, 11406-11413.
Addition/correction: J. Phys. Chem. B, 2002, 106, 5312-5312. (b) Zakharieva, O.;
Schiinemann, V.; Gerdan, M.; Licoccia, S.; Cai, S.; Walker, F. A.; Trautwein, A. X. J. Am.
Chem. Soc. 2002, 124, 6636-6648.
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MALDI-TOF mass spectra
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Figure S9. MALDI-TOF spectrum of Pt{T(p-CFs-Ph)C}(m-CsHsCN)(PhCN), M =
1126.82, M- (PhCN) = 1024.82, M"- {(m-NC-Ph)(PhCN)} = 921.81.
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Figure S10. MALDI-TOF spectrum of Pt(TPC)(m-C¢H,CN)(PhCN), M* = 923.12, M-
(PhCN) = 821.08, M*- {(m-NC-Ph)(PhCN)} = 719.05
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Figure S11. MALDI-TOF spectrum of Pt{T(p-CHs-Ph)C}(m-CeHsCN)(PhCN) M' =
965.17, M'- (PhCN) = 862.14, M- {(m-NC-Ph)(PhCN)} = 761.14.
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Figure S12. MALDI-TOF spectrum of Pt{T(p-OCH;3-Ph)C}(m-CsH4sCN)(PhCN), M* =
1013.20, M" - (PhCN) = 910.14, M- (m-CH,CN h)(PhCN)} = 808.10.
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Figure S13. MALDI-TOF spectrum of Pt{T(p-CF3-Ph)C}(m-CsH4sCN)(p-C¢H4CH3), M" =
1115.04 for CssH;3FoN;Pt.
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Figure S14. MALDI-TOF spectrum of Pt(TPC)(m-CsH4CN)(p-CsH4CH3), M™ = 910.99 for
Cs1H34N;5Pt.
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Figure S15. MALDI-TOF spectrum of Pt{T(p-CH3-Ph)C}(m-CsH4CN)(p-CsH4sCH3), M" =
953 for Cs4H4oNsPt.
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Figure S19. ESI-Mass spectrum of Pt{T(p-CH;3-Ph)C} (m-CsH4CN)(PhCN), M- (PhCN) =

862.23, upper experimental result and lower theoretical simulation.
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Figure S22. ESI-Mass spectrum of Pt(TPC)(m-CsH4CN)(p-CsH4sCH3), M™ = 911.24, upper
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Figure S23. ESI-Mass spectrum of Pt{T(p-CH;z-Ph)C}(m-CsH4sCN)(p-C¢H4CH3), M" =
953.29, upper experimental result and lower theoretical simulation.
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Cyclic voltammograms
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Figure S25. Cyclic voltammograms of Cu[T(p-OCH3-Ph)C, Au[T(p-OCHs3-Ph)C], and

Pt{T(p-OCH3-Ph)C}(m-CsH4CN)(PhCN) in CH,Cl; recorded at a scan rate of 100 mV per
second.
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Figure S26. Cyclic voltammograms of Cu[T(p-CFs-Ph)C, Au[T(p-CFs-Ph)C], and Pt{T(p-
CF;-Ph)C} (m-CsH4CN)(PhCN) in CH,Cl; recorded at a scan rate of 100 mV per second.
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Figure S27. Cyclic voltammograms of Pt{T(p-X-Ph)C}(m-CsH4CN)(p-CsH4CHj3) in

CH,Cl; recorded at a scan rate of 100 mV per second.
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X-ray structure determinations

Three oxidized Pt corrole derivatives, Pt{T(p-CH3-Ph)C}(p-CsH4CN)(p-CsH4CH3),
Pt(TPC)(m-C¢H4CN)(p-CsH4CH3), and Pt{T(p-CH3-Ph)C}(m-CsH4CN)(p-CsH4CH3),
proved amenable to single-crystal X-ray structure analysis, affording definitive proof of
platinum insertion into the corrole macrocycle. Diffraction data were collected on beamline
11.3.1 at the Advanced Light Source, Lawrence Berkeley National Lab. Samples were
mounted on MiTeGen" kapton loops and placed in a 100(2) K nitrogen cold stream
provided by an Oxford Cryostream 700 Plus low temperature apparatus on the goniometer
head of a Bruker D8 diffractometer equipped with an APEXII CCD detector. For the three
compounds, diffraction data were collected with synchrotron radiation monochromated
using silicon(111) to wavelengths of 0.7749(1) 0.6048(1), and 0.6199(1) A, respectively. In
all cases an approximate full-sphere of data was collected using 0.3° w scans. The
structures were solved by direct methods (SHELXT) and refined by full-matrix least
squares on F* (SHELXL-2013). All non-hydrogen atoms were refined anisotropically.
Hydrogen atoms were geometrically calculated and refined as riding atoms. Additional
crystallographic information has been summarized in Table S1 below and full details can
be found in the crystallographic information files provided as the Supporting Information.
All structures refined well, giving R; [/ > 2s(/)] values around 3%. For Pt{T(p-CHs-

Ph)C} (p-CsH4CN)(p-CsH4CH3), the two aryl ligands were disordered. According to the
structural model, one side is approximately 66/34 p-C¢H4CN/p-CsH4CHj3 and the other side
1s 31/69, suggesting a very slight excess of p-CsH4CHj3 over p-CsH4CN in this model. No
evidence was found for counterions, either positive or negative, consistent with the Pt' -

corrole” formulation of the compounds. Thermal ellipsoid plots for the three compounds

are given in Figures S4-S6.
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Table S1. Crystallographic data for oxidized Pt corroles.

Pt{T(p-CH;-Ph)C} (p-

CH,CN)(p-CsH,CH3)-

Pt(TPC)(m-CsHsCN)(p-

Pt{T(p-CH3-Ph)C} (m-

Sample '0.35C6H14'0. 15CH2C12 C6H4CH3) C6H4CN)(p—C6H4CH3)
Chemical formula C56‘23H45‘24N4'96C10'31Pt C51H34N5Pt C54H40N5Pt
Formula mass 996.50 911.92 954.00
Crystal system triclinic triclinic triclinic

Space group PT PT PT
2 (A) 0.7749 0.6048 0.6199
a(A) 10.4746(6) 9.5314(3) 9.5493(9)
b(A) 11.6239(6) 12.4762(5) 12.9707(13)
c(A) 18.2464(11) 16.9813(6) 17.3628(17)
o (deg.) 87.752(3) 111.157(2) 106.1050(11)
p(deg.) 83.482(3) 97.191(2) 96.8590(12)
y (deg.) 77.657(3) 90.470(2) 93.6790(12)
Z 2 2 2
V(A3) 2156.0(2) 1865.30(12) 2040.7(3)
Temperature (K) 100(2) 100(2) 100(2)
Density (g/cm®) 1.535 1.624 1.553
Measured reflections 77953 61462 142008
Unique reflections 16418 7892 10110
Parameters 592 515 545
Restraints 3 0 0
Rine 0.033 0.048 0.0169
0 range (deg.) 2.292 —36.704 2.672 —22.500 3.049 - 24.409
Ry, wR, all data 0.031, 0.073 0.026, 0.064 0.023, 0.053
S (GooF) all data 1.08 1.12 1.17
Max/min res. Dens. 2.09/-1.89 4.12/-1.09 3.87/-1.23

(e/A%)

Figure S28. Thermal ellipsoid plot for Pt{T(p-CH3-Ph)C} (p-CcH4CN)(p-CcH4CH3)
showing the average structure with ellipsoid probabilities at 40%. Both axial ligands are
disordered between p-CcH4CHj3 over p-CcH4CN. H-atoms and solvent molecules have been

omitted for clarity.



Figure S29. Thermal ellipsoid plot for Pt(TPC)(m-CsH4CN)(p-CsH4CH3) with ellipsoid

probabilities at 40%. H-atoms and solvent molecules have been omitted for clarity.

Figure S30. Thermal ellipsoid plot for Pt{T(p-CHj3-Ph)C}(m-CsH4CN)(p-CsH4CH3) with

ellipsoid probabilities at 40%. H-atoms have been omitted for clarity.
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BP86-D3/STO-TZ2P optimized Cartesian coordinates

Pt (corrole) (Ph) (PhCN) (Cs)

Pt -0.522450 0.129548 0.000000
N 0.627956 -0.846229 1.254046
N 0.627956 -0.846229 -1.254046
N 1.254389 1.795270 0.000000
N -1.438855 1.116900 1.449119
N -1.438855 1.116900 -1.449119
C 0.707453 -0.745571 2.611988
C 0.707453 -0.745571 -2.611988
C 1.616544 -1.634217 0.718158
C 1.616544 -1.634217 -0.718158
C 1.824285 -1.571797 2.988418
C 1.824285 -1.571797 -2.988418
C 2.378142 -2.109856 1.828536
C 2.378142 -2.109856 -1.828536
C 2.381990 1.502455 0.000000
C 3.729576 1.056525 0.000000
C 4.380413 0.809327 1.222163
C 4.380413 0.809327 -1.222163
C 5.683286 0.323346 1.212659
C 5.683286 0.323346 -1.212659
C 6.335574 0.082604 0.000000
C -0.173817 0.094000 3.329504
C -0.173817 0.094000 -3.329504
C -1.161358 0.945783 2.791926
C -1.161358 0.945783 -2.791926
C -1.906891 -1.362526 0.000000
C -2.058377 1.828058 3.498027
C -2.058377 1.828058 -3.498027
C -2.369881 -1.869845 1.212510
C -2.369881 -1.869845 -1.212510
C -2.432226 2.043434 1.261429
C -2.432226 2.043434 -1.261429
C -2.829047 2.491718 2.573629
C -2.829047 2.491718 -2.573629
C -2.895372 2.459046 0.000000
C -3.324913 -2.890702 1.204388
C -3.324913 -2.890702 -1.204388
C -3.806766 -3.402790 0.000000
H 2.166720 -1.738176 4.004547
H 2.166720 -1.738176 -4.004547
H 3.242161 -2.762573 1.770016
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Pt (corrole) Ph,

+

QOO0 czzz 2"

ISV eolNoNoNoNoNoNoloNoNoNoNoloNoloNolNoNoNolNolNolNolNoNo]

242161
.846375
.846375
.191031
.191031
.356480
.070984
.070984
.003758
.003758
.088898
.088898
.594926
.594926
.687055
.687055
.687572
.551151

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.168210
.868155

(CZV)

|
WWwWwWwRHRPRRPRPEPRPOOOOOOONDN

|
IS O]

WhMNMDNMDNNNRPRPRPRPOORREPE RO

. 762573
.974876
.974876
.124117
.124117
.298860
.110043
.110043
.488988
.488988
.937744
.937744
.235192
.235192
.283092
.283092
.205938
.199177

.000000
.246464
.452382
.246464
.452382
.000000
.721425
.266693
.842284
.578184
.612948
.789051
.998387
.324419
.502627
.721425
.266693
.842284
.578184
.612948
.789051
.998387
.324419
.502627
.000000
.205300
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.770016
.155594
.155594
.155401
.155401
.000000
.413469
.413469
.163118
.163118
.577402
.577402
. 768267
.768267
.154904
.154904
.000000
.000000

.020701
.486107
.365160
.486107
.365160
.338735
.741943
.722672
.638074
.320553
.481118
.049111
.870830
.268160
.302622
.741943
.722672
.638074
.320553
.481118
.049111
.870830
.268160
.302622
.010281
.007309
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.868155
.267210
.267210
.971039
.168210
.868155
.868155
.267210
.267210
.971039
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.346711
.346711
.802259
.802259
.061191
.346711
.346711
.802259
.802259
.061191

.205300
.204149
.204149
.000000
.000000
.205300
.205300
.204149
.204149
.000000
.000000
.7873677
. 774609
.01849¢6
.411585
.583475
.7873677
. 774609
.01849¢6
.411585
.583475
.161058
.161058
.154730
.154730
.000000
.161058
.161058
.154730
.154730
.000000
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.007309
.038378
.038378
.053957
.010281
.007309
.007309
.038378
.038378
.053957
.427885
.720961
.387249
.239152
.333264
.397418
.720961
.387249
.239152
.333264
.397418
.000805
.000805
.052497
.052497
.080101
.000805
.000805
.052497
.052497
.080101



