Pentacoordinate Silicon(IV): Cationic, Anionic and Neutral Complexes Derived from the Reaction of NHC→SiCl₄ with Highly Lewis Acidic (C₂F₅)₂SiH₂.

T. Böttcher,* S. Steinhauer, B. Neumann, H.-G. Stammler, G.-V. Röschenthaler,* and B. Hoge*

Supporting Information

Content

1.	Experimental Section	.2
2.	Crystallographic section	.5
3.	References	.8

1. Experimental Section

General remarks

All reactions were carried out under an atmosphere of dry nitrogen using standard Schlenk-line techniques unless mentioned otherwise. Solvents were dried using a Braun MB-SPS 800 system. Acetonitrile and dichloromethane were stored under 3 Å molecular sieves. Deuterated acetonitrile (CD₃CN) was distilled over CaH₂. All other chemicals were purchased from available commercial sources and were used as received. NMR spectra were recorded on a Bruker Model Avance III 300 spectrometer (Operating frequencies: ²⁹Si 59.63 MHz, ¹⁹F 282.40 MHz, ¹³C 75.47 MHz, ¹H 300.13 MHz) with positive shifts being downfield from the external standards (CCl₃F (¹⁹F), Si(CH₃)₄ (²⁹Si, ¹³C, ¹H)). The ¹³C and ²⁹Si NMR shifts were aquired by ¹H,¹³C and ¹H,²⁹Si 2D HMBC NMR correlation experiments. Elemental analyses were performed by the microanalytical laboratory of the department of Inorganic Chemistry II (ACII), University of Bielefeld, Bielefeld, Germany. Compounds NHC-SiCl₄ (1), Cl₂Si(C₂F₅)₂ (2) and H₂Si(C₂F₅)₂ (3) were prepared according to procedures reported elsewhere.^[1,2]

Synthesis of $[(NHC)_2SiCl_2H][(C_2F_5)_2SiCl_3]$ (4)

A solution of **1** (2.34 g, 8.73 mmol) in acetonitrile (60 ml) was placed in a 100 ml Schlenk flask. The solution was cooled to -196 °C and **3** (5.0 mmol, 1.1 eq.) was condensed into the flask. The reaction mixture was allowed to reach room temperature over a period of 12 h under constant stirring. All volatile components were removed under reduced pressure. The residue was washed three times with 20 ml of diethyl ether. Drying in vacuo gave **4** (2.85 g, 4.26 mmol, 98% raw yield, based on **1**). Single crystals of **4** were obtained from a solution of **4** in acetonitrile stored at -28 °C (1.20 g, 1.79 mmol, 41% based on **1**).

Yield: 41% (based on 1). Elemental analysis calcd (%) for $C_{14}H_{21}N_4F_{10}Si_2Cl_5$ (668.76): C 25.14, H 3.17, N 8.38; found: C 24.94, H 3.70, N 8.49.¹H NMR (CD₃CN) δ = 3.30 (s, 12H, -CH₃), 3.85 (s, 8H, -CH₂-), 6.71 (s, 1H, Si-H, ¹*J*_{SiH} = 352 Hz). ¹H,¹³C HMBC NMR (CD₃CN) δ (¹H)/ δ (¹³C): 3.30/36.5 (d, -CH₃/-CH₃, ¹*J*_{CH} = 141 Hz), 3.30/51.7 (s, -CH₃/-CH₂-), 3.85/51.7 (d,m, -CH₂-/-CH₂-, ¹*J*_{CH} = 153 Hz), 3.30/171.2 (s, -CH₃/C_{carbene}), 3.85/171.2 (s, -CH₂-/C_{carbene}). ¹⁹F NMR (CD₃CN): δ = -118.6 (s, 4F, -CF₂-), -75.8 (s, 6F, -CF₃). ¹H,²⁹Si HMBC NMR (CD₃CN) $\delta({}^{1}\text{H})/\delta({}^{29}\text{Si}) = 3.30/-125.4 \text{ (s, -CH}_{3}/\text{Si}), 3.85/-125.4 \text{ (s, -CH}_{2}-/\text{Si}), 6.71/-125.4 \text{ (d, Si-H/Si, }{}^{1}J_{\text{SiH}} = 352 \text{ Hz}).$ ¹⁹F,²⁹Si HMBC NMR (CD₃CN) $\delta({}^{19}\text{F})/\delta({}^{29}\text{Si}) = -118.6/-96.6 \text{ (d, -CF}_{2}-/\text{Si}, \, {}^{2}J_{\text{SiF}} = 44 \text{ Hz}).$

Synthesis of NHC-SiCl₃H (5)

A solution of **1** (2.81 g, 10.48 mmol) in dichloromethane (50 ml) was placed in a 100 ml Schlenk flask. Silicochloroform (1.42 g 10.48 mmol, 1 eq.) was condensed into the solution at -196 °C. The reaction mixture was allowed to reach room temperature and was stirred for another 2.5 h. Removal of all volatile components gave a colorless solid (2.36 g). The raw product was then dissolved in acetonitrile (20 ml) and diethyl ether was slowly condensed into the solution at -30 °C. After 7 days single crystals suitable for XRD of **5** were obtained. In solution, a dismutation process to compounds **1** and **6** takes place. Compound **5** co-crystallizes with compound **1**. Yield: 1.22 g (with 10% of compound **1** according to ¹H NMR and as observed in XRD).

Yield: 50% (based on 1). ¹H NMR (CD₃CN) δ = 3.30 (s, 6H, -CH₃), 3.77 (s, 4H, -CH₂-), 6.80 (s, 1H, Si-H, ¹*J*_{SiH} = 393 Hz). ¹³C, ¹H HMBC (CD₃CN) δ (¹³C)/ δ (¹H) = 3.30/34.5 (d, -CH₃/-CH₃, ¹*J*_{CH} = 140 Hz), 3.30/51.1 (, -CH₃/-CH₂-), 3.77/51.1 (d,m, -CH₂-/-CH₂-, ¹*J*_{CH} = 152 Hz), 3.30/173.1 (s, -CH₃/-CH₂-), 6.80/173.1 (d, Si-H/C_{carbene}, ²*J*_{CH} = 8 Hz). ²⁹Si, ¹H HMBC NMR (CD₃CN) δ (²⁹Si)/ δ (¹H) = 3.30/-104.5 (s, -CH₃/Si), 6.80/-104.5 (d, -Si-H/Si, ¹*J*_{SiH} = 393 Hz). ²⁹Si, ¹H DEPT NMR (CD₃CN) δ = -104.5 (d, ¹*J*_{SiH} = 393 Hz).

Synthesis of NHC-SiCl₂H₂ (6)

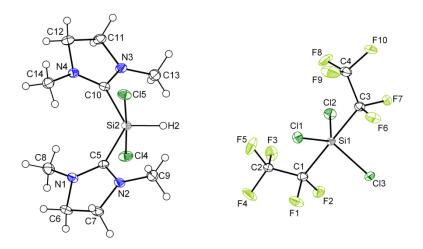
A solution of 1 (1.50 g, 5.60 mmol) in tetrahydrofuran (30 ml) was placed in a 100 ml Schlenk flask. Silicochloroform (23 mmol, 4 eq.) was condensed into the solution at -196 °C. The reaction mixture was allowed to reach room temperateure and was stirred for additional 12 h. After removal of all volatile components, the crude product was dissolved in a minimum amount of acetonitrile and diethyl ether was slowly condensed into the solution. Removal of all volatile components gave compound **6** (1.09 g, 5.47 mmol). Single crystals were obtained by slow diffusion of diethyl ether into a saturated solution of **6** in acetonitrile.

Yield: 98% (based on 1). ¹H NMR (CD₃CN) $\delta = 3.25$ (s, 6H, -CH₃), 3.77 (s, 4H, -CH₂-), 6.11 (s, 2H, Si-H, ¹*J*_{SiH} = 333 Hz). ¹H, ¹³C HMBC (CD₃CN) δ (¹H)/ δ (¹³C) = 3.25/34.5 (d, -CH₃/-CH₃, ¹*J*_{CH} = 140 Hz), 3.25/51.1 (s, -CH₃/-CH₂-), 3.77/51.1 (d,m, -CH₂-/-CH₂-, ¹*J*_{CH} = 153 Hz), 3.25/175.4 (s, -CH₃/C_{carbene}), 3.77/175.4 (s, -CH₂-/C_{carbene}), 6.11/175.4 (s, Si-H/C_{carbene}). ²⁹Si NMR (CD₃CN) δ = -125.2 (t, ¹*J*_{SiH} = 333 Hz). ¹H, ²⁹Si HMBC NMR (CD₃CN) δ (¹H)/ δ (²⁹Si) = 3.25/-125.2 (s, -CH₃/Si), 3.77/-125.2 (s, -CH₂-/Si), 6.11/-125.2 (d, Si-H/Si, ¹*J*_{SiH} = 333 Hz). ²⁹Si, ¹H DEPT NMR (CD₃CN) δ = -125.2 (t, ¹*J*_{SiH} = 333 Hz).

2. Crystallographic section

X-ray crystallography

Single crystals were coated with a layer of hydrocarbon oil and attached to a MicroMountTM. Crystallographic data were collected with a SuperNova, Dual, Cu at zero, Atlas diffractometer with Mo-K α or Cu-K α radiation (multilayer mirror monochromator, $\lambda = 0.71073$ Å resp. 1.5418 Å) at 100 K. Crystallographic programs used for structure solution and refinement were from SHELX -97.^[3] The structures were solved by direct methods and were refined by using full-matrix least squares on F² of all unique reflections with anisotropic thermal parameters for all non-hydrogen atoms, except disordered atoms of the lower occupancy in compound **4**. All hydrogen atoms bonded to silicon were refined isotropically. All hydrogen atoms bonded to carbons were refined isotropically using a riding model with U(H) = 1.5 U_{eq} for CH₃ groups and U(H) = 1.2 U_{eq} for all others, excluding the hydrogen atoms of compound **4** which were all refined isotropically.


CCDC contains supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

The crystal data, refinement parameters and CCDC depositons numbers for all complexes are given in Table S1.

Parameter	4	5	6
Empirical formula	$C_{14}H_{21}Cl_5F_{10}N_4Si_2\\$	0.9 x C ₅ H ₁₁ Cl ₃ N ₂ Si	C ₅ H ₁₂ N ₂ SiCl
Empirical formula		$0.1 \ge C_5 H_{10} C l_4 N_2 S i$	2
Formula weight	668.78	236.88	199.16
Temperature [K]	100.0(1)	100.0(1)	100.0(1)
Radiation used	Cu-Ka	Μο-Κα	Μο-Κα
Crystal system	triclinic	orthorhombic	monoclinic
Space group	P-1	Pbca	$P2_{I}/c$
a [Å]	8.1924(2)	13.05642(14)	9.9722(3)
b [Å]	12.5273(3)	10.62115(11)	12.2770(3)
c[Å]	13.0812(3)	14.80917(14)	7.76332(14)
α [°]	89.833(2)	90	90
β[°]	81.713(2)	90	90.020(2)
γ [°]	79.902(2)	90	90
Volume [Å ³]	1307.57(6)	2053.65(4)	950.45(4)
Z	2	8	4
$\rho_{calc} [mg/mm^3]$	1.699	1.532	1.392
μ [mm ⁻¹]	6.743	0.979	0.745
F(000)	672.0	972.0	416.0
	0.28 × 0.10 × 0.00	0.26 × 0.24 × 0.18	0.16×0.14
Crystal size [mm ³]	$0.38 \times 0.10 \times 0.09$ $0.26 \times 0.24 \times 0.000$	$0.26 \times 0.24 \times 0.18$	× 0.11
2Θ range for data collection	6 to 144°	6 to 60°	6 to 60°
Reflections collected	22010	136389	56379
Independent reflections	5116	3005	2767
R(int)	0.0246	0.0375	0.0732
Data/restraints/parameters	5116/0/430	3005/0/125	2767/1/100
Goodness-of-fit on F ²	1.101	1.184	1.057
$R_1[I > 2 \sigma(I)]^a$	0.0240	0.0289	0.0507
R_w (all data) ^b	0.0625	0.0766	0.1323
Largest diff. peak/hole / eÅ ⁻³	0.54/-0.34	0.44/-0.48	1.16/-0.78
CCDC deposition no.	965803	965804	965805

 Table S1. Crystallographic parameters for compounds 4, 5, and 6.

 ${}^{\mathrm{a}}R_{I} = \Sigma ||F_{\mathrm{o}}| - |F_{\mathrm{c}}|| / \Sigma |F_{\mathrm{o}}|. {}^{\mathrm{b}}R_{w} = \{\Sigma [w(F_{\mathrm{o}}^{2} - F_{\mathrm{c}}^{2})^{2}] / \Sigma [w(F_{\mathrm{o}}^{2})^{2}] \}^{1/2}$

Figure S1. Atom labeling for the crystal structure of **4** (cation and anion are depicted indepentently).

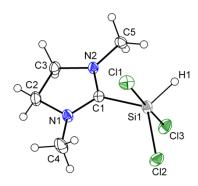


Figure S2. Atom labeling for the crystal structure of 5.

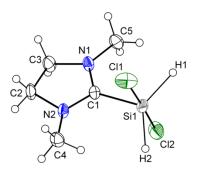


Figure S3. Atom labeling for the crystal structure of 6.

3. References

- a) B. Hoge, S. Steinhauer, J. Bader, N. Ignati'ev, 20th Symposium on Fluorine Chemistry, Kyoto, Japan 2012; b) B. Hoge, S. Steinhauer, N. Ignati'ev, 6th European Silicon Days, Lyon, France 2012; c) B. Hoge, S. Steinhauer, Manuscript in preparation.
- T. Böttcher, B. S. Bassil, L. Zhechkov, T. Heine, G.-V. Röschenthaler, *Chem. Sci.* 2013, 4, 77.
- [3] Sheldrick, G. M., Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.