Supporting Information

Biomass Derived Furfural-Based Facile Synthesis of Protected (2S)-phenyl-3-piperidone, a Common Intermediate for Many Drugs

P.-F. Koh, ${ }^{b}$ P. Wang, ${ }^{b}$ J.-M. Huang, ${ }^{b, c}$ T.-P. Loh ${ }^{a, b}$

${ }^{\text {a }}$ Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026 (P. R. China).
${ }^{\mathrm{b}}$ Division of Chemistry \& Biological Chemistry, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.
${ }^{\mathrm{c}}$ School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China

Table of Contents

1. General Methods S2
2. Synthesis and characterization of compounds S3
3. Determination of enantiomeric excess by HPLC. S11
4. Determination of overlapping ${ }^{13} \mathrm{C}$-NMR Signals using HMQC S15
5. Determination of relative stereochemistry in $\boldsymbol{r a c} \boldsymbol{- 1 1}$ using NMR analysis S17
6. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectras S23
7. X-Ray Structures and CCDC Numbers for $\boldsymbol{r a c} \mathbf{- 6 , 7 , r a c - 8 , ~ r a c - 1 0}$ and $\boldsymbol{r a c}-\mathbf{3}$ S45
8. List of references found in reference 5 of main text S47
9. Generally accepted mechanism for the aza-Achmatowicz Rearrangement S47

1. General Methods

All reagents were commercially purchased and were used as received for the reactions. All reactions were carried out in oven-dried glassware while THF was freshly distilled from $\mathrm{Na} /$ Benzophenone ketyl and DCM was freshly distilled from Calcium Hydride. Rice straw used was collected from a rice straw farm in Jiangxi Province Fengcheng Area, China after being sun-dried. Upon receiving the rice straw, it was further dried in a vacuum oven at $80^{\circ} \mathrm{C}$ for 6 h and stored in an air-tight container. The rice straw is cut into small pieces of about 2-3 cm in length before being used for reaction. Thin-layer chromatography (TLC) was conducted with Merck 60 F254 precoated silica gel plate (0.2 mm thickness) and visualized under UV, by potassium permanganate or ceric ammonium molybdate stain. Flash chromatography was performed using Merck silica gel 60 with distilled solvents. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were performed on a Bruker Avance 300, Bruker Avance 400 or Bruker Avance 500 NMR spectrometer and are reported in ppm downfield from $\mathrm{SiMe}_{4}(\delta 0.0)$, relative to the signal of chloroform-d ($\delta=7.26$, singlet) or methanol- d_{4} ($\delta=3.31$, quintet). Data reported as: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{b}=$ broad; coupling constant(s) in Hz ; integration. Proton-decoupled ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on Bruker Avance 300 (75 MHz) or $400(100 \mathrm{MHz})$ or $500(125 \mathrm{MHz})$ spectrometer and are reported in ppm using solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right.$ at $77.16 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{OD}$ at 49.15 ppm$)$. IR spectra were recorded using nujol mull technique on NaCl plates on a Shimadzu IRPrestige-21 FT-IR Spectrophotometer or under attenuated total reflection (ATR) conditions on a PerkinElmer Spectrum 100 FT-IR Spectrometer and were reported in frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. High-resolution mass spectral analysis (HRMS) was performed on Q-Tof Premier mass spectrometer (Waters Corporation).

2. Synthesis and characterization of compounds

Furan-2-carbaldehyde (1)

To a 250 mL round-bottom flask equipped with a stir bar was added rice straw ($10.5 \mathrm{~g}, 2-3$ cm length $), \mathrm{NaCl}(14 \mathrm{~g})$ and $10 \mathrm{wt} \%$ aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(70 \mathrm{~mL})$. The round-bottom flask was then fitted with a Dean Stark trap with a stopcock at the bottom of the trap and then fitted with water condenser. DCM (10 mL) was added into the Dean Stark trap initially and the reaction mixture was heated to reflux at $150{ }^{\circ} \mathrm{C}$. After 1 h , the DCM in the Dean Stark trap was collected via the stopcock and fresh DCM (10 mL) was added into the Dean Stark trap through the top of the water condenser. This process was repeated hourly for a total of 8 h and the combined organic layers were washed with saturated aqueous NaHCO_{3} solution (40 mL) and brine (10 mL) before drying over anhydrous magnesium sulphate, filtered and concentrated under reduced pressure to give $\mathbf{1}$ as a pale yellow oil ($851 \mathrm{mg}, 8.86 \mathrm{mmol}, 8.1$ $\mathrm{wt} \%){ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 9.68(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ (dd, J $=3.6 \mathrm{~Hz}, 0.5 \mathrm{~Hz} 1 \mathrm{H}), 6.61(\mathrm{dd}, J=3.6 \mathrm{~Hz}, 1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 177.9, 152.9, 148.1, 121.2, 112.6; Other characterization data are similar to the authentic sample.

N-(furan-2-ylmethylene)-4-methylbenzenesulfonamide (4)

$1(14.0 \mathrm{~g}, 146 \mathrm{mmol}, 1.0 \mathrm{eq})$, 4-methylbenzenesulfonamide ($18.8 \mathrm{~g}, 110 \mathrm{mmol}, 0.75 \mathrm{eq}$), boron trifluoride etherate ($1.0 \mathrm{~mL}, 1.15 \mathrm{~g}, 8.1 \mathrm{mmol}, 5.5 \mathrm{~mol} \%$) and toluene (150 mL) were added into a round-bottom flask fitted with a Dean Stark trap. The mixture was heated at reflux for 2 days and activated charcoal was added and stirred for 1 h . The mixture was filtered and the filtrate concentrated under reduced pressure to give a brown solid. Recrystallization from benzene gave N-(furan-2-ylmethylene)-4-methylbenzenesulfonamide 4 as brown crystals ($20.5 \mathrm{~g}, 82.5 \mathrm{mmol}, 75 \%$). $\mathrm{mp}=100-101{ }^{\circ} \mathrm{C}$ ($\mathrm{lit}^{1} 100-101{ }^{\circ} \mathrm{C}$); TLC (Hexane/Ethyl Acetate $=2: 1): \mathrm{R}_{\mathrm{f}}=0.32 ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.81(\mathrm{~s}, 1 \mathrm{H})$, $7.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 3 \mathrm{H}), 6.65(\mathrm{dd}, J=3.6 \mathrm{~Hz}$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 155.7,149.8,149.1,144.6$, 135.2, 129.8, 128.1, 124.7, 113.7, 21.7; FTIR (Nujol, $\mathrm{NaCl}, \mathrm{cm}^{-1}$): 1607, 1315, 1155, 932; HRMS (ESI) m / z Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 250.0538$; found: 250.0541 .

(S)-N-(furan-2-yl(phenyl)methyl)-4-methylbenzenesulfonamide (5)

To the solution of $\left.\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right)\right]_{2}(5.8 \mathrm{mg}, 0.015 \mathrm{mmol}, 3 \mathrm{~mol} \% \mathrm{Rh})$ and (R, R)-Ph-bod* $(8.5$ $\mathrm{mg}, 0.033 \mathrm{mmol}, 1.1 \mathrm{eq}$ to Rh) in anhydrous 1,4 -dioxane (2.5 mL) was added aqueous KOH $\left(65.0 \mu \mathrm{~L}, 3.1 \mathrm{M}, 20 \mathrm{~mol} \% \mathrm{KOH}, \mathrm{H}_{2} \mathrm{O}: 1 \mathrm{eq}\right.$ to boron) at room temperature and stirred for 15 min . This solution containing the catalyst was added to the solution of imine $\mathbf{4}(249 \mathrm{mg}, 1.0$ $\mathrm{mmol}, 1.0 \mathrm{eq}$) and $2,4,6$-triphenylboroxine ($374 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2 \mathrm{eq}$) in anhydrous $1,4-$ dioxane (4.0 mL) at the same temperature. After 6 h stirring at $60^{\circ} \mathrm{C}$, the mixture was passed through a short silica gel column (pre-treated with methanol, eluent: ethyl acetate) to give $\mathbf{5}$ as the crude product and was immediately subjected to the next step without any further purification.

Data for $\mathbf{5}$ after purification using silica gel chromatography (Eluent: Hexane/Ethyl Acetate = 5:1) to give (S)-N-(furan-2-yl(phenyl)methyl)-4-methylbenzenesulfonamide 5 as a pale yellow solid in 97% yield, $e e=99 \%$. The $e e$ was determined on Chiralcel OD-H column with hexane $/ 2$-propanol $=90: 10$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$, wavelength $=220 \mathrm{~nm}$. Retention times: 20.5 $\min \left[(S)\right.$-enantiomer], $22.0 \mathrm{~min}\left[(R)\right.$-enantiomer]. $\mathrm{mp}=129-130{ }^{\circ} \mathrm{C}$; TLC (Hexane/Ethyl Acetate $=2: 1): \mathrm{R}_{\mathrm{f}}=0.53 ;[\alpha]^{22}{ }_{\mathrm{D}}=-18.1\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right)$ for $99 \% e e\left(\mathrm{Lit}^{2}:[\alpha]^{20}{ }_{\mathrm{D}}=-21.6(\mathrm{c}\right.$ $=1.03, \mathrm{CHCl}_{3}$) for 99% ee.); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.26-7.22 (m, 4H), 7.19-7.14 (m, 4H), 6.19 (dd, $J=3.2 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.99$ (d, $J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 152.3,143.3,142.7,138.4,137.5,129.5,128.7,128.1,127.3,127.2,110.3$, 108.5, 55.6, 21.6; FTIR (Nujol, NaCl, cm ${ }^{-1}$): 3265, 1597, 1319, 1159, 928; HRMS (ESI) m / z Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 328.1007$; found: 328.0992.

Crude 5 from the previous step was dissolved in a mixture of THF (10.0 mL) and $\mathrm{H}_{2} \mathrm{O}(3.3$ mL) at $0{ }^{\circ} \mathrm{C}$. Sodium acetate ($90 \mathrm{mg}, 1.1 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added before N bromosuccinimide ($196 \mathrm{mg}, 1.1 \mathrm{mmol}, 1.1 \mathrm{eq}$) was slowly added in portions at $0^{\circ} \mathrm{C}$ over 15 min . The mixture was stirred for 3 h at room temperature after the addition of N bromosuccinimide before solid $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine (7 mL) was added. The mixture was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$) and the combined organic layers were washed with
brine (25 mL), dried over anhydrous magnesium sulphate, filtered and concentrated under reduced pressure to give $\mathbf{6}$ as the crude product and $\mathbf{6}$ was immediately subjected to the next step without any further purification.

Data for rac-6 (recrystallized in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from crude product as pale yellow crystals): $\mathrm{mp}=$ $122-123{ }^{\circ} \mathrm{C}$ (Decomposed); TLC (Hexane/Ethyl Acetate $=2: 1$): $\mathrm{R}_{\mathrm{f}}=0.26 ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.86$ (dd, $J=10.4 \mathrm{~Hz}, 4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.11$ (dd, $J=10.4 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-5.96(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{~s}$, 1H), 3.48-3.46 (m, 1H), $2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 191.2,144.6$, 143.7, 136.8, 136.3, 130.3, 128.8, 128.4, 127.8, 127.6, 127.0, 73.6, 64.2, 21.7; FTIR (Nujol, $\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3480, 1682, 1649, 1597, 1321, 1155; HRMS (ESI) m / z Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 344.0957; found: 344.0970.

(S)-2-phenyl-1-tosyl-1,6-dihydropyridin-3(2H)-one (7)

The crude rearrangement product $\mathbf{6}$ was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.0 \mathrm{~mL})$ and cooled down to $0{ }^{\circ} \mathrm{C}$ under N_{2} protection. Triethylsilane ($\left.159 \mu \mathrm{~L}, 116 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq}\right)$ was added followed by boron trifluoride etherate ($123 \mu \mathrm{~L}, 142 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$) and the mixture was allowed to stirred at $0{ }^{\circ} \mathrm{C}$ for 45 min before $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added to quench the reaction. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (25 mL), dried over anhydrous magnesium sulphate and filtered. Concentration under reduced pressure and purification using silica gel chromatography (Eluent: Hexane/Ethyl acetate $=4: 1$) gave (S)-2-phenyl-1-tosyl-1,6-dihydropyridin-3(2 H)-one 7 as a brown solid ($234 \mathrm{mg}, 0.72 \mathrm{mmol}, 72 \%$ over 3 steps), $e e=$ 97%. The $e e$ was determined on Chiralcel OD-H column with hexane/2-propanol $=90: 10$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$, wavelength $=220 \mathrm{~nm}$. Retention times: $29.7 \mathrm{~min}[(R)$-enantiomer], 34.0 $\min \left[(S)\right.$-enantiomer]. $\mathrm{mp}=131-132{ }^{\circ} \mathrm{C}\left(\mathrm{lit}^{3}=\right.$ yellow oil); TLC (Hexane/Ethyl Acetate $=$ 2:1): $\mathrm{R}_{\mathrm{f}}=0.42 ;[\alpha]^{21}{ }_{\mathrm{D}}=+123\left(\mathrm{c}=1.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for $97 \% e e .\left(\mathrm{Lit}^{3}:[\alpha]^{20}{ }_{\mathrm{D}}=-145(\mathrm{c}=0.3\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 5 \mathrm{H})$, $7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.69$ (ddd, $J=10.4 \mathrm{~Hz}, 4.9 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.94$ (ddd, $J=10.4 \mathrm{~Hz}$, $2.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{ddd}, J=20.9 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (dt, $J=$ $20.9 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 192.3$, 144.6, 144.2, 136.5, 133.2, 130.1, 129.1, 128.7, 127.8, 127.2, 127.0, 64.1, 41.8, 21.7; FTIR (Nujol, $\mathrm{NaCl}, \mathrm{cm}^{-1}$): 1688, 1628, 1597, 1341, 1159; HRMS (ESI) m / z Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}$

(S)-2-phenyl-1-tosylpiperidin-3-one (2)

(S)-2-phenyl-1-tosyl-1,6-dihydropyridin-3(2H)-one $7(151 \mathrm{mg}, 0.462 \mathrm{mmol}, 1.0 \mathrm{eq})$ was dissolved in ethyl acetate (10 mL) and palladium on activated charcoal ($10 \mathrm{wt} \%, 49 \mathrm{mg}$, $0.046 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was added. The round bottom flask was evacuated and refilled with H_{2} thrice using a H_{2} balloon. The reaction was stirred for 3 h at room temperature before being filtered through a pad of celite. Concentration under reduced pressure gave (S)-2-phenyl-1-tosylpiperidin-3-one 2 as a pale yellow solid ($152 \mathrm{mg}, 0.462 \mathrm{mmol}, 100 \%$), ee $=$ 97%. The $e e$ was determined on Chiralcel OD-H column with hexane/2-propanol $=90: 10$, flow $=0.5 \mathrm{~mL} / \mathrm{min}$, wavelength $=220 \mathrm{~nm}$. Retention times: $19.7 \mathrm{~min}[(R)$-enantiomer], 23.0 $\min \left[(S)\right.$-enantiomer]. $\mathrm{mp}=152-153{ }^{\circ} \mathrm{C}\left(\right.$ lit $^{3}=$ deliquescent solid, lit $\left.{ }^{4}=152-154{ }^{\circ} \mathrm{C}\right)$; TLC (Hexane/Ethyl Acetate $=2: 1): \mathrm{R}_{\mathrm{f}}=0.50 ;[\alpha]^{23}{ }_{\mathrm{D}}=-10.0\left(\mathrm{c}=1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 97% ee $\left(\mathrm{Lit}^{4}\right.$: $\left.[\alpha]^{20}{ }_{\mathrm{D}}=+5\left(\mathrm{c}=0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 2 H), $7.36-7.26(\mathrm{~m}, 7 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{dt}, J=14.0 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44$ (ddd, $J=14.0$ $\mathrm{Hz}, 9.6 \mathrm{~Hz}, 4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dt}, J=16.0 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1 \mathrm{H})$, 1.79-1.61 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 204.6,144.0,137.3,134.0,130.1$, $129.3,128.3,127.2,125.9,66.9,41.3,36.9,23.6,21.7$; FTIR (Nujol, $\mathrm{NaCl}, \mathrm{cm}^{-1}$): 1721, 1595, 1342, 1157; HRMS (ESI) m / z Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 330.1164$; found: 330.1166.

rac-3-ethynyl-2-phenyl-1-tosylpiperidin-3-ol (rac-8)

An oven-dried 50 mL two-neck round bottom flask equipped with a stir bar and a reflux condenser was cooled under vacuum and back-filled with Ar thrice before being charged with methylmagnesium bromide (2.0 mL of a 3.0 M solution in ether, $6.0 \mathrm{mmol}, 3.0 \mathrm{eq}$), anhydrous THF (2.7 mL) and trimethylsilylacetylene ($1.3 \mathrm{~mL}, 882 \mathrm{mg}, 9.0 \mathrm{mmol}, 4.5 \mathrm{eq})$. The mixture was heated at reflux for 1.5 h before $\mathbf{r a c - 2}$ ($658 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0 \mathrm{eq}$) in anhydrous THF (16.0 mL) was added and the mixture was allowed to stir at reflux for 1.5 h before saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) was added to quench the reaction. The layers were separated and the aqueous phase extracted with ethyl acetate (3 x 15 mL). The combined organic extracts were washed with saturated aqueous NaHCO_{3} solution (30 mL),
brine (30 mL), dried over anhydrous magnesium sulphate and filtered. Concentration under reduced pressure gave the crude product which was used immediately in the next step without further purification.

The crude product from the Grignard reaction was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$ and solid $\mathrm{K}_{2} \mathrm{CO}_{3}(414 \mathrm{mg}, 3.0 \mathrm{mmol}, 1.5 \mathrm{eq})$ was added and the mixture was allowed to stir at room temperature for 1.5 h . The solvent was removed under reduced pressure and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ and $\mathrm{EA}(20 \mathrm{~mL})$ were added and the layers were separated. The aqueous phase was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with saturated aqueous NaHCO_{3} solution (20 mL), brine (20 mL), dried over anhydrous magnesium sulphate and filtered. Concentration under reduced pressure gave rac-8 as the crude product which was used immediately in the next step without further purification.

Data for rac-8 after purification using silica gel chromatography (Eluent: Hexane/Ethyl Acetate $=2: 1$) to give rac-3-ethynyl-2-phenyl-1-tosylpiperidin-3-ol rac-8 as a white solid. $\mathrm{mp}=169-170{ }^{\circ} \mathrm{C}$; TLC (Hexane/Ethyl Acetate $=2: 1$): $\mathrm{R}_{\mathrm{f}}=0.34 ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=13.8 \mathrm{~Hz}, 4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.29(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 1 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 1 \mathrm{H}), 1.87-1.83(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 143.0,136.9,136.2,129.7,129.2,128.4,128.3,127.4,86.1,73.6,69.0,65.6,41.2$, 32.5, 22.0, 21.6; FTIR (ATR, cm^{-1}): 3469, 3297, 3067, 3032, 1597, 1324, 1161; HRMS (ESI) m / z Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 356.1320$; found: 356.1311.

rac-2-phenyl-3-(propa-1,2-dien-1-yl)-1-tosylpiperidin-3-ol (rac-9)

Isopropylamine ($560 \mu \mathrm{~L}, 404 \mathrm{mg}, 4.0 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added to a suspension of crude $\boldsymbol{r a c}$ 8, paraformaldehyde ($120 \mathrm{mg}, 4.0 \mathrm{mmol}, 2.0 \mathrm{eq}$) and $\mathrm{CuBr}(95 \mathrm{mg}, 0.67 \mathrm{mg}, 33 \mathrm{~mol} \%)$ in anhydrous 1,4 -dioxane (16.0 mL). The reaction was refluxed overnight and then cooled to room temperature before being filtered through a pad of celite. Concentration under reduced pressure and purification using silica gel chromatography (Eluent: Hexane/Ethyl Acetate $=$ 5:1) gave rac-2-phenyl-3-(propa-1,2-dien-1-yl)-1-tosylpiperidin-3-ol rac-9 as a yellow solid ($510 \mathrm{mg}, 1.38 \mathrm{mmol}, 69 \%$) over 3 steps.

Melting point $=96-97{ }^{\circ} \mathrm{C}$; TLC (Hexane/Ethyl Acetate $\left.=2: 1\right)$: $\mathrm{R}_{\mathrm{f}}=0.38 ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.52$ (t, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.99-4.92(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{dd}, J=13.1 \mathrm{~Hz}, 4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38$ $(\mathrm{td}, J=12.1 \mathrm{~Hz}, 4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.67$ $(\mathrm{m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 206.7,142.8,136.8,129.7$, $129.2,128.2 \times 2,128.0,127.2,98.1,80.1,71.3,65.6,41.2,32.1,21.5 \times 2$; FTIR (Nujol, $\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3532, 1960, 1597, 1329, 1153; HRMS (ESI) m / z Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$ ${ }^{+}$: 370.1477 ; found: 370.1461.

rac-6-phenyl-7-tosyl-1-oxa-7-azaspiro[4.5]dec-3-ene (rac-10)

α-allenic alcohol rac-9 (200 mg, $0.54 \mathrm{mmol}, 1.0 \mathrm{eq}$), chloro(triphenylphosphine)gold (I) (13 $\mathrm{mg}, 0.027 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and silver tetrafluoroborate ($5 \mathrm{mg}, 0.027 \mathrm{mmol}, 5 \mathrm{~mol} \%$) were dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ under N_{2} and in the dark. The mixture was allowed to stir at room temperature in the dark overnight. The mixture was then filtered through a pad of celite and concentrated under reduced pressure. Purification using silica gel chromatography (Eluent: Hexane/Ethyl Acetate $=7: 1$) gave rac-6-phenyl-7-tosyl-1-oxa-7-azaspiro[4.5]dec-3-ene $\boldsymbol{r a c}$ - $\mathbf{1 0}$ as a pale yellow solid ($170 \mathrm{mg}, 0.46 \mathrm{mmol}, 85 \%$) $\mathrm{mp}=105$ $106{ }^{\circ} \mathrm{C}$; TLC (Hexane/Ethyl Acetate $=2: 1$): $\mathrm{R}_{\mathrm{f}}=0.60 ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: 7.39 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.26-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.07$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.07$ (dt, $J=6.7 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{dt}, J=13.2 \mathrm{~Hz}, 2.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.29 (dd, $J=13.1 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.35$ (ddd, $J=13.2 \mathrm{~Hz}, 11.1$ $\mathrm{Hz}, 5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 142.8,137.8,137.5,132.1,129.3,129.3,127.7,127.6,127.2 \times 2,90.4,75.4$, 64.7, 41.3, 30.9, 22.5, 21.6; FTIR (Nujol, NaCl, cm^{-1}): 1651, 1599, 1331, 1171; HRMS (ESI) m / z Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 370.1477$; found: 370.1480.

rac-3-(2-(benzyloxy)-5-(trifluoromethoxy)phenyl)-6-phenyl-7-tosyl-1-oxa-7azaspiro[4.5]decane (rac-11)

An oven-dried 10 mL Schlenk tube equipped with a stir bar was charged with spirocycle rac10 ($243 \mathrm{mg}, 0.66 \mathrm{mmol}, 1.0 \mathrm{eq}$), 1-(benzyloxy)-2-iodo-4-(trifluoromethoxy)benzene (779 $\mathrm{mg}, 1.98 \mathrm{mmol}, 1.98 \mathrm{mmol}, 3.0 \mathrm{eq}$), tetrabutylammonium chloride ($220 \mathrm{mg}, 0.79 \mathrm{mmol}, 1.2$ eq), lithium chloride ($279 \mathrm{mg}, 6.6 \mathrm{mmol}, 10.0 \mathrm{eq}$), sodium formate ($134 \mathrm{mg}, 1.98 \mathrm{mmol}, 3.0$ eq), triethylamine ($275 \mu \mathrm{~L}, 200 \mathrm{mg}, 1.98 \mathrm{mmol}, 3.0 \mathrm{eq}$) and a solution of $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}=19: 1$ $(2.5 \mathrm{~mL})$ under Ar. The mixture was degassed in liquid N_{2}, allowed to warm to room temperature and backfilled with Ar. The degassing procedure was repeated thrice before palladium (II) acetate ($66 \mathrm{mg}, 0.30 \mathrm{mmol}, 0.45 \mathrm{eq}$) was added and the mixture was degassed
again before being heated to $40^{\circ} \mathrm{C}$ and stirred for 5 days under Ar. The mixture was filtered through a pad of celite, concentrated under reduced pressure and purified using silica gel chromatography (Eluent: Hexane/Ethyl Acetate $=10: 1$ to 6:1) to give rac-3-(2-(benzyloxy)-5-(trifluoromethoxy)phenyl)-6-phenyl-7-tosyl-1-oxa-7-azaspiro[4.5]decane rac-11 as a pale brown oil ($235 \mathrm{mg}, 0.37 \mathrm{mmol}, 56 \%$). TLC (Hexane/Ethyl Acetate $=2: 1$): $\mathrm{R}_{\mathrm{f}}=0.68 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.45-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 4 \mathrm{H})$, $7.05(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=11.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.87(\mathrm{~m}, 1 \mathrm{H})$, $3.81-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{dt}, J=12.2 \mathrm{~Hz}, 4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=12.6 \mathrm{~Hz}, 7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.29(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.55(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 155.2,142.9,142.7,137.7,136.7,136.6,131.9,129.5,129.1,128.9,128.3$, $128.0,127.5,127.4,127.1,121.0,120.7(\mathrm{q}, ~ J=254.6 \mathrm{~Hz}), 120.2,112.6,83.6,72.4,70.8$, 64.2, 43.0, 41.5, 39.1, 31.6, 23.4, 21.5; FTIR (ATR, cm^{-1}): 3064, 3033, 1599, 1334, 1152; HRMS (ESI) m / z Calcd for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 638.2188$; found: 638.2167.

rac-2-(6-phenyl-1-oxa-7-azaspiro[4.5]decan-3-yl)-4-(trifluoromethoxy)phenol (rac-3)

The reductive Heck reaction product $\mathbf{r a c} \mathbf{- 1 1}(126 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq})$ was dissolved in ethyl acetate $(2.0 \mathrm{~mL})$ before palladium on activated charcoal ($10 \mathrm{wt} \%, 21 \mathrm{mg}, 0.02 \mathrm{mmol}$, $10 \mathrm{~mol} \%$) was added. The round bottom flask was evacuated and refilled with H_{2} thrice using a H_{2} balloon. The reaction was stirred overnight at room temperature before being filtered through a pad of celite. Concentration under reduced pressure gave the crude product which was used in the next step without further purification.

The crude hydrogenation product was dissolved in anhydrous $\mathrm{MeOH}(3 \mathrm{~mL})$ and magnesium powder ($48 \mathrm{mg}, 2.0 \mathrm{mmol}, 10.0 \mathrm{eq}$) was added. The suspension was sonicated overnight and 15% aqueous HCl solution (1 mL) was added and the mixture allowed to stir for an additional 15 min before saturated aqueous NaHCO_{3} solution was added to neutralise the mixture. Ethyl acetate (30 mL) was added and the layers separated. The aqueous phase was extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$) and the combined organic extracts were washed with brine (50 mL), dried over anhydrous magnesium sulphate and filtered. Concentration under reduced pressure and purification using silica gel chromatography (Eluent: Hexane/Ethyl Acetate = 2:1 to Ethyl Acetate/Methanol = 2:1) to give rac-2-(6-phenyl-1-oxa-7-azaspiro[4.5]decan-3-yl)-4-(trifluoromethoxy)phenol $\mathbf{r a c} \mathbf{- 3}(40 \mathrm{mg}, 0.102 \mathrm{mmol}, 51 \%)$ as a pale yellow solid. $\mathrm{mp}=$ 203-204 ${ }^{\circ} \mathrm{C}$ (decomposed) ($\mathrm{lit}^{5}=$ yellow oil); TLC (Ethyl Acetate/ Methanol $=2: 1$): $\mathrm{R}_{\mathrm{f}}=$ $0.32 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}): 7.48$ (dd, $J=7.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38-7.31 (m,
$3 \mathrm{H}), 6.84(\mathrm{dd}, J=8.7 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=9.9 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 1 \mathrm{H}), 3.14-3.09(\mathrm{~m}, 1 \mathrm{H})$, 2.73 (dd, $J=12.7 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 2 \mathrm{H})$, $1.60(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}): 156.0,142.9,141.8,130.4$, $129.8,129.2,128.8,122.2(\mathrm{q}, J=252.7 \mathrm{~Hz}), 121.7,121.1,116.6,83.6,72.9,70.1,47.7,42.8$, 40.4, 38.7, 24.6; FTIR (ATR, cm^{-1}): 3290, 3062, 3032, 1607, 1510, 1494; HRMS (ESI) m / z Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 394.1630; found: 394.1611.

References:

1. J. M. Harris and A. Padwa, Org. Lett., 2002, 4, 2029-2031.
2. N. Tokunaga, Y. Otomaru, K. Okamoto, K. Ueyama, R. Shintani and T. Hayashi, J. Am. Chem. Soc., 2004, 126, 13584-13585.
3. X. Gaucher, M. Jida and J. Ollivier, Synlett, 2009, 3320-3322.
4. C. G. Kokotos and V. K. Aggarwal, Chem. Commun., 2006, 2156-2158.
5. D. J. Wallace, J. M. Goodman, D. J. Kennedy, A. J. Davies, C. J. Cowden, M. S. Ashwood, I. F. Cottrell, U.-H. Dolling and P. J. Reider, Org. Lett., 2001, 3, 671-674.

3.1 Determination of enantiomeric excess by HPLC for 5:

PDA Ch1 220nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	20.576	47118803	1351718	49.814	52.162
2	21.936	47470292	1239669	50.186	47.838
Total		94589095	2591387	100.000	100.000

HPLC trace of 5 (Chiralpak OD-H, Hexanes:i- $\mathrm{PrOH}=90: 10,0.5 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$)

3.2 Determination of enantiomeric excess by HPLC for 7:

PDA Ch1 220 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	29.815	29804785	351211	49.930	56.633
2	34.663	29888398	268941	50.070	43.367
Total		59693183	620152	100.000	100.000

PDA Chl 220nm 4nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	29.746	1324658	15138	1.665	2.442
2	34.024	78252880	604692	98.335	97.558
Total		79577538	619830	100.000	100.000

HPLC trace of 7 (Chiralpak OD-H, Hexanes:i-PrOH $=90: 10,0.5 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$)

3.2.1 Determination of enantiomeric excess by HPLC for 7 after single-crystal X-ray crystallography:

PDA Ch1 220 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	27.173	72385288	974821	49.624	57.266
2	31.237	73481504	727457	50.376	42.734
Total		145866793	1702278	100.000	100.000

Peakt	Ret. Time		iopht	Area \%	igh
	31.331	46998573	466616	100.000	.000
Toma		46998573	466616	100.000	100.000

PDA Ch1 220 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	31.276	42637428	433836	100.000	100.000
Total		42637428	433836	100.000	100.000

Same batch of crystal submitted for single-
crystal X-ray crystallography

HPLC trace of 7 after X-ray (Chiralpak OD-H, Hexanes:i-PrOH $=90: 10,0.5 \mathrm{~mL} / \mathrm{min}, 220$ nm)

3.3 Determination of enantiomeric excess by HPLC for 2:

PDA Ch1 220nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	19.535	25536746	478258	49.108	53.620
2	22.932	26464316	413679	50.892	46.380
Total		52001062	891937	100.000	100.000

PDA Ch1 220nm 4nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	19.707	854017	15977	1.697	2.121
2	22.970	49485143	737184	98.303	97.879
Total		50339160	753161	100.000	100.000

HPLC trace of 2 (Chiralpak OD-H, Hexanes:i-PrOH $=90: 10,0.5 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$)

4.1 Determination of overlapping ${ }^{13}$ C NMR Signals in rac-9 using HMQC

4.2 Determination of overlapping ${ }^{13} \mathrm{C}$ NMR Signals in rac-10 using HMQC

5. Determination of relative stereochemistry in rac-11 using NMR analysis ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY

DEPT135

${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HMOC

${ }^{1} \mathrm{H}$ NMR assignment of rac-11 based on ${ }^{13} \mathrm{C}$ NMR, DEPT135, HMQC and COSY analysis

${ }^{1}{ }^{H}-{ }^{1} \mathrm{H}$ NOESY

rac-11

rac-11

6. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra

500 MHz

100 MHz

300 MHz

4

100 MHz

300 MHz

5

125 MHz

5

1	1	1	1	1	1	1	1	1	1	1	
220	200	180	160	140	120	100	80	60	40	20	ppm

125 MHz

500 MHz

125 MHz

7

 $\begin{array}{llllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & p p m\end{array}$

300 MHz

Noin Nin
 ririritirity
 ○ூ

2

125 MHz

300 MHz

100 MHz

400 MHz
 óm íN N

300 MHz

100 MHz

300 MHz

隹
 |1||

300 MHz, MeOD

へ

100 MHz , MeOD

7.1 X-Ray Structure for Rac-6

Cambridge Crystallographic Data Centre Deposition Number: 917487

rac-6

7.2 X-Ray Structure for 7

Cambridge Crystallographic Data Centre Deposition Number: 917485

7

7.3 X-Ray Structure for Rac-8

Cambridge Crystallographic Data Centre Deposition Number: 917488

7.4 X-Ray Structure for Rac-10

Cambridge Crystallographic Data Centre Deposition Number: 917489

7.5 X-Ray Structure for Rac-3

Cambridge Crystallographic Data Centre Deposition Number: 917486

8. List of references found in reference 5 of main text

5 a) M. S. Kramer, N. Cutler, J. Feighner, R. Shrivastava, J. Carman, J. J. Sramek, S. A. Reines, G. Liu, D. Snavely, E. Wyatt-Knowles, J. J. Hale, S. G. Mills, M. MacCoss, C. J. Swain, T. Harrison, R. G. Hill, F. Hefti, E. M. Scolnick, M. A. Cascieri, G. G. Chicchi, S. Sadowski, A. R. Williams, L. Hewson, D. Smith, E. J. Carlson, R. J. Hargreaves and N. M. J. Rupniak, Science, 1998, 281, 1640-1645.
b) For GR203040, see: P. Ward, D. R. Armour, D. E. Bays, B. Evans, G. M. P. Giblin, N. Heron, T. Hubbard, K. Liang and D. Middlemiss, J. Med. Chem., 1995, 38, 4985-4992.
c) For GR205171, see: C. J. Gardner, D. R. Armour, D. T. Beattie, J. D. Gale, A. B. Hawcock, G. J. Kilpatrick, D. J. Twissell and P. Ward, Regul. Pept., 1996, 65, 45-53.
d) For T-2328, see: Y. Watanabe, H. Asai, T. Ishii, S. Kiuchi, M. Okamoto, H. Taniguchi, M. Nagasaki and A. Saito, J. Pharm. Sci., 2008, 106, 121-127.
e) For CJ-17,493, see: Y. Shishido, H. Wakabayashi, H. Koike, N. Ueno, S. Nukui, T. Yamagishi, Y. Murata, F. Naganeo, M. Mizutani, K. Shimada, Y. Fujiwara, A. Sakakibara, O. Suga, R. Kusano, S. Ueda, Y. Kanai, M. Tsuchiya and K. Satake, Bioorg. Med. Chem., 2008, 16, 7193-7205.
f) For L-741,671, see: T. Ladduwahetty, R. Baker, M. A. Cascieri, M. S. Chambers, K. Haworth, L. E. Keown, D. E. MacIntyre, J. M. Metzger, S. Owen, W. Rycroft, S. Sadowski, E. M. Seward, S. L. Shepheard, C. J. Swain, F. D. Tattersall, A. P. Watt, D. W. Williamson and R. J. Hargreaves, J. Med. Chem., 1996, 39, 2907-2914.
g) For L-733,060, see: T. Harrison, B. J. Williams, C. J. Swain and R. G. Ball, Bioorg. Med. Chem. Lett., 1994, 4, 2545-2550.
h) For CP-99,994, see: M. C. Desai, S. L. Lefkowitz, P. F. Thadeio, K. P. Longo and R. M. Snider, J. Med. Chem., 1992, 35, 4911-4913.
i) For CP-122,721, see: T. J. Rosen, K. J. Coffman, S. McLean, R. T. Crawford, D. K. Bryce, Y. Gohda, M. Tsuchiya, A. Nagahisa, M. Nakane and J. A. Lowe III, Bioorg. Med. Chem. Lett., 1998, 8, 281-284.

9. Generally accepted mechanism for the aza-Achmatowicz Rearrangement

