Electronic Supplementary Information

A photochromic supramolecular polymer based on *bis-p*-

sulfonatocalix[4]arene recognition in aqueous solution

Xuyang Yao,^a Teng Li,^a Sheng Wang,^b Xiang Ma^{*a} and He Tian^a

^aKey Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China. Fax & Tel: +86-21-64252758, Email: <u>maxiang@ecust.edu.cn</u>. ^bSchool of Chemistry Science & Technology Thanijang Normal University

^bSchool of Chemistry Science & Technology, Zhanjiang Normal University, Zhanjiang 524048, P. R. China.

1. Materials, general procedures and syntheses

1.1 Materials. Unless stated otherwise, all reagents were purchased from Sigma-Aldrich or TCI Chemicals and used without further purification. Solvents were purified according to standard laboratory methods. The molecular structures were confirmed using ¹H NMR and high-resolution ESI mass spectroscopy.

1.2. General. ¹H NMR spectra were measured on a Brüker AV-400 spectrometer. ROESY and DOESY were measured on a Brüker AV-500 spectrometer. The electronic spray ionization (ESI) high resolution mass spectra were tested on a HP 5958 mass spectrometer. DLS were measured on MALV RN, ZETA SIZER, Model ZEN3600, 25°C. AFM images were recorded on a MicroNano D5-A machine. The samples $(1.5 \times 10^{-5} \text{ M})$ were dropped on a mica plate on a spin coating machine at a rotating speed of 50 r/min and further dried in vacuum. TEM images were record on a JEOL JEM-1400 apparatus. The samples $(1.5 \times 10^{-5} \text{ M})$ were dropped on a perforated copper grid (400 mesh) covered with a carbon film and then negative-stained by phosphotungstic acid. The samples in aqueous solution were irradiated under UV/Vis light on a SPOT LIGHT SOURCE machine (model: L9588-01A, HAMAMATSU PHOTONICS K.K.) with different filters. The samples in solid state were irradiated under a portable UV lamp (6W).

1.3. Synthesis.

1.3.1 Synthesis of *bis-p*-sulfonatocalix[4]arene (BSC4)

BSC4 was synthesized according to previous research.¹

1.3.2 Synthesis of 1, 2-bis [2-methyl-5-(4-methylpyridyl)-3-thienyl] cyclopentene (1)²

1, 2-bis (2-methyl-5-chloro-3-thienyl) cyclopentene (**3**) was synthesized by the classical method according to the previous reference.³ 1, 2-bis(2-methyl-5-chloro-3-thienyl) cyclopentene (0.66 g, 2 mmol) was dissolved in redistilled THF (10 mL) in Schlenk flask under anhydrous and Ar conditions at -78 °C, and n-BuLi (2.4M in hexane, 1.92 mL, 4.6 mmol) was added dropwise. The solution gradually turned deep red, with vigorous stirring continued at -78 °C for 30min. $B(OC_3H_7)_3$ (1.20 mL, 5.06 mmol) was injected rapidly, then the reaction mixture was gradually restored to room temperature and stirring for at least 3 h.

Bromopyridine hydrochloride (1 g, 5.06 mmol) and Pd(PPh₃)₄ (230 mg, 0.2 mmol) were added to THF (20 mL), then mixed with aqueous solution of Na₂CO₃ (6 g) 10mL under Ar condition and the reaction mixture was heated to 55 °C with vigorous stirring for 1 h. Then the reaction solution obtained in the processing was injected using a syringe and the reaction mixture was refluxed for 6 h. After cooling down to room temperature, the mixture was poured into water (50 mL). The organic phase was extracted using EtOAc and washed with brine, dried over Na₂SO₄. The crude residue was chromatographed over silica gel using a mixture of EtOAc/petroleum ether (1:2) to give **2** (0.40 g, 0.97 mmol, 48% yield).

1, 2-bis [2-methyl-5-(4-pyridyl)-3-thienyl] cyclopentene (**2**) (0.27 g, 0.65 mmol) was dissolved in DCM (8 mL) and CH₃I (1 mL) was injected. The mixture was stirred at room temperature for 3 h. Then acquired yellow solid and the reaction mixture was filtered, washed with DCM and dried in vacuum to give yellow solid **1** (0.35 g, 77% yield).

2. Rotating Frame Overhauser Effect Spectroscopy (ROESY) and Diffusion Ordered Spectroscopy (DOSY)

2.1 Rotating Frame Overhauser Effect Spectroscopy (ROESY)

The correlations between methyl groups of **1** and protons on phenols of BSC4 (red square A) and the correlations between pyridine groups of **1** and protons on phenols of BSC4 (red square B) were found on ROESY spectra. However, there was no signal between protons of **1** and protons on methylenes of BSC4 (blue squares). The results demonstrated that the 2-bis[2-methyl-5-(4-methylpyridyl)-3-thienyl] cyclopentene molecules were selectively bound with the calixrene cavities, which have sulfo groups as anchor points.

2.2 Diffusion Ordered Spectroscopy (DOSY)

Diffusion Ordered Spectroscopy (DOSY) was carried out to determine the diffusion coefficient of **1** (3.6×10^{-3} mol/L) as 1.725×10^{-10} m²/s and that in **PSP** (9×10^{-4} mol/L) as 7.212×10^{-11} m²/s in DMSO-d₆. Due to the limited concentration of **PSP**, the corresponding diffusion coefficient of **BSC4** at certain concentration (9×10^{-4} mol/L) could not be obtained. However, the slower diffusion rate of **1** in **PSP** demonstrated the formation of supramolecular polymers.

Fig. S2 Diffusion Ordered Spectroscopy (DOSY) of monomer 1. Diffusion coefficient =1.725×10⁻¹⁰ m^2/s .

Fig. S3 Diffusion Ordered Spectroscopy (DOSY) of supramolecular polymer **PSP**. Diffusion coefficient = 7.212×10^{-11} m²/s.

3. Job's plots, reversibility test and photos of solid state

3.1 Job's plots

The job's plot experiments were carried out as follows. The host/guest ratio was varied from 0:1 to 1:0 with ([host] + [guest]) at a fixed concentration of 1.5×10^{-5} M. The intensity of UV absorbance at major absorption peak was recorded each time the molar ratio was changed. The change of the absorption reached at a maximum at a ratio of 0.8 for [1]/[1] + [BSC4], confirming the 4:1 stoichiometry between 1 and BSC4. The process is same for 1c and BSC4 to give a stoichiometry of 4:1. (Fig. S1)

Fig. S4 Job's plots of (a) 1 with BSC4 and (b) 1c with BSC4.

3.2 Evaluation of photochromic yield of free 1 and 1 in PSP

The ring-closing yield of dithienylethene derivative was evaluated by NMR. Both ¹H NMR of free **1** and **1** in **PSP** were carried out before and after UV irradiation to steady state in DMSO-d₆ (concentration of 3.6×10^{-3} mol/L for free **1** and 9×10^{-4} mol/L for **PSP**). From the result, it was clear that the free **1** performed a mainly complete close-ring process while it was about 48.4% for **1** in **PSP**.

Fig. S5 Partial ¹H NMR of free **1** before (top) and after (bottom) UV irradiation

Fig. S6 Partial ¹H NMR of **1** in **PSP** before (top) and after (bottom) UV irradiation

3.3 Reversibility test of photochromic property of 1 and PSP

The sample in a quartz cell (1×1 cm) were irradiated under a handhold UV lamp (power: 6W) at a

wavelength of 254nm for 13 min (from **1** to **1c**) and 30 min (form **PSP** with **1c**). After recording corresponding absorbance, the sample was irradiated under visible light on a SPOT LIGHT SOURCE machine (model: L9588-01A, HAMAMATSU PHOTONICS K.K.; intensity set as 40%) with an optical filter of >510nm to recover. The reversibility test was repeated for 3 cycles and corresponding absorption changes were recorded (Fig. S7).

Fig. S7 The representation of the reversibility and repeatability of a) **1** and b) photochromic supramolecular polymer (**PSP**).

Fig. S8 More AFM images of the linear polymers PSP.

4. References.

S1. D.-S. Guo, S. Chen, H. Qian, H.-Q. Zhang and Y. Liu, *Chem. Commun.*, 2010, **46**, 2620.
S2. B. Qin, R. Yao, X. Zhao and H. Tian, *Org. Biomol. Chem.*, 2003, **1**, 2187.
S3. L. N. Lucas, J. van Esch, R. M. Kellogg and B. L. Feringa, *Chem. Commun.*, 1998, 2313.

5. Additional spectra.

Fig. S9 ¹H NMR spectrum of compound **1**.

¹H NMR (400 MHz, D₂O) δ 8.40 (d, *J* = 7.0 Hz, 4H), 7.85 (d, *J* = 7.1 Hz, 4H), 7.72 (s, 2H), 4.12 (s, 6H), 2.77 (t, *J* = 7.5 Hz, 4H), 2.02 (dt, *J* = 14.1, 7.1 Hz, 2H), 1.94 (s, 6H).

Fig. S10 ¹H NMR spectroscopy of compound **BSC4**.

¹H NMR (400 MHz, D₂O) δ 7.71 (s, 4H), 7.54 (d, J = 1.9 Hz, 4H), 7.37 (s, 4H), 7.24 (s, 4H), 4.96 – 4.83 (m, 4H), 4.41 (s, 4H), 3.92 (d, J = 13.4 Hz, 4H), 3.59 (d, J = 12.8 Hz, 4H), 3.38 (d, J = 13.4 Hz, 4H), 3.59 (d, J = 12.8 Hz, 4H), 3.38 (d, J = 13.4 Hz, 4H), 3.59 (d, J = 12.8 Hz, 4H), 3.38 (d, J = 13.4 Hz)

Fig. S11 TOF-MS of compound 1. $([M-2I^-]^{2+})/2=222.0842$, found 222.0846.