Activation and Deprotection of F-BODIPYs using Boron Trihalides

Travis Lundrigan, T. Stanley Cameron and Alison Thompson*
Department of Chemistry, Dalhousie University, PO BOX 15000, 6274 Coburg Road, Halifax, Nova Scotia, B3H 4R2, Canada

Supporting Information

1.1 GENERAL EXPERIMENTAL PROCEDURES AND INFORMATION 2
1.2 PROCEDURES AND CHARACTERIZATION DATA 3
(Z)-3-ethyl-5-((4-ethyl-3,5-dimethyl-2 H -pyrrol-2-ylidene)methyl)-2,4-dimethyl-1 H -pyrrole hydrochloride (2a) 3
(Z)-2-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1 H -pyrrole hydrochloride(2b)3
(Z)-2-((3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole hydrochloride (2c) 4
(Z)-1-(2-((4-heptanoyl-3,5-dimethyl-1H-pyrrol-2-yl)methylene)-3,5-dimethyl-2H-pyrrol-4-yl)heptan-1-one hydrochloride (2d)4
(Z)-1-(2-((4-acetyl-3,5-dimethyl-1H-pyrrol-2-yl)(phenyl)methylene)-3,5-dimethyl-2H-pyrrol-4- yl)ethanone hydrochloride (2e) 5
(Z)-3-ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)(phenyl)methyl)-2,4-dimethyl-1H- pyrrole hydrochloride (2f) 5
(Z)-ethyl 2-((3,4-dimethyl-1H-pyrrol-2-yl)methylene)-3-ethyl-5-methyl-2 H -pyrrole-4-carboxylate hydrobromide (2 g) 5
1,3,5,7-Tetramethyl-2,6-diethyl-8- H-4,4'-dibromo-bora-3a,4a-diaza-s-indacene (3a) 6
(Z)-3-ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-2,4-dimethyl-1 H -pyrrole tetrafluoroborate (4a) 6
(Z)-2-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole tetrafluoroborate (4b) 7
(Z)-2-((3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole tetrafluoroborate (4c)7
(Z)-3-ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)(phenyl)methyl)-2,4-dimethyl-1H- pyrrole tetrafluoroborate (4d) 8
(Z)-2-(phenyl(2H-pyrrol-2-ylidene)methyl)-1 H -pyrrole tetrafluoroborate (4e) 8
1,3,5,7-Tetramethyl-2,6-diethyl-8- H-4,4'-diethyl-bora-3a,4a-diaza-s-indacene (5a) 9
1.3 REFERENCES 10
1.4 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA 11
(Z)-2-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1 H -pyrrole hydrochloride
(2b) 11
(Z)-1-(2-((4-heptanoyl-3,5-dimethyl-1H-pyrrol-2-yl)methylene)-3,5-dimethyl-2H-pyrrol-4- yl)heptan-1-one hydrochloride (2d) 12
(Z)-1-(2-((4-acetyl-3,5-dimethyl-1H-pyrrol-2-yl)(phenyl)methylene)-3,5-dimethyl-2H-pyrrol-4- yl)ethanone hydrochloride (2e) 13
(Z)-ethyl 2-((3,4-dimethyl-1H-pyrrol-2-yl)methylene)-3-ethyl-5-methyl-2H-pyrrole-4-carboxylate hydrobromide (2g) 14
1,3,5,7-Tetramethyl-2,6-diethyl-8- H-4,4'-dibromo-bora-3a,4a-diaza-s-indacene (3a) 15
(Z)-3-ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-2,4-dimethyl-1H-pyrrole tetrafluoroborate (4a) 16
(Z)-2-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole tetrafluoroborate (4b)
(Z)-2-((3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole tetrafluoroborate (4c)
(Z)-3-ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)(phenyl)methyl)-2,4-dimethyl-1 H pyrrole tetrafluoroborate (4d)
$(Z)-2-(p h e n y l(2 H$-pyrrol-2-ylidene)methyl)-1H-pyrrole tetrafluoroborate (4e) 20

1.1 General Experimental Procedures and Information

All ${ }^{1} \mathrm{H}$ NMR (500 MHz), ${ }^{13} \mathrm{C}$ NMR (125 MHz) and ${ }^{11} \mathrm{~B}$ NMR (160 MHz) spectra were recorded using a 500 MHz spectrometer. Chemical shifts are expressed in parts per million (ppm) using the solvent signal $\left[\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H} 7.26 \mathrm{ppm} ;{ }^{13} \mathrm{C} 71.16 \mathrm{ppm}\right)\right]$ as an internal reference for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ as an external reference for ${ }^{11} \mathrm{~B}$. Splitting patterns are indicated as follows: br, broad; s , singlet; d, doublet; t, triplet; q, quartet; m, multiplet. All coupling constants (J) are reported in Hertz (Hz). Mass spectra were obtained using ion trap (ESI) instruments operating in positive mode.

General Procedure for the Synthesis of HX Salts, $\mathrm{X}=\mathbf{C l}, \mathrm{Br}(\mathbf{G P 1})$

The F-BODIPY (50 mg) was dissolved in anhydrous dichloromethane $(10 \mathrm{~mL})$ and 1 eq of BCl_{3} (or BBr_{3}) was added drop-wise from a 1.0 M solution in anhydrous hexanes. The reaction mixture was stirred for an hour to allow in situ formation of the Cl -BODIPY. The reaction mixture was then concentrated in vacuo. The residue was dissolved in a mixture of acetone:water (10:1) and the solution was stirred for 10 min . The reaction mixture was extracted into dichloromethane and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was then concentrated in vacuo to obtain the HX salt of the dipyrrin.

General Procedure for the Synthesis of HBF_{4} Salts (GP2)

The F-BODIPY (50 mg) was dissolved in anhydrous dichloromethane $(10 \mathrm{~mL})$ and 1 eq of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was added drop-wise. The reaction mixture was stirred for 10 minutes and then 3 eq of water was added and the mixture was further stirred for 3 hours. The reaction
mixture was washed with water and the organic layer dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was concentrated in vacuo. The resulting solid was washed with diethyl ether to remove any unreacted F-BODIPY, leaving an orange powder corresponding to the HBF_{4} salt of the dipyrrin.

1.2 Procedures and characterization Data

(Z)-3-Ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-2,4-dimethyl-1Hpyrrole hydrochloride (2a)

Using GP1, compound 2a was synthesized from the corresponding F-BODIPY. ${ }^{1}$ Bright orange solid ($48 \mathrm{mg}, 99 \%$). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.36(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.00(1 \mathrm{H}, \mathrm{s}), 2.59$ $(6 \mathrm{H}, \mathrm{s}), 2.40(4 \mathrm{H}, \mathrm{q}, J=7.5), 2.24(6 \mathrm{H}, \mathrm{s}), 1.05(6 \mathrm{H}, \mathrm{t}, J=7.5)$. Data matches that previously reported for this compound. ${ }^{4}$
(Z)-2-((4-Ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole hydrochloride (2b)

Using GP1, compound 2b was synthesized from the corresponding F-BODIPY. ${ }^{1}$ Bright orange solid ($48 \mathrm{mg}, 99 \%$). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.71(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.02(1 \mathrm{H}, \mathrm{s}), 6.11$ $(1 \mathrm{H}, \mathrm{s}), 2.63(3 \mathrm{H}, \mathrm{s}), 2.62(3 \mathrm{H}, \mathrm{s}), 2.42(2 \mathrm{H}, \mathrm{q}, J=7.5), 2.33(3 \mathrm{H}, \mathrm{s}), 2.26(3 \mathrm{H}, \mathrm{s}), 1.07$ $(3 \mathrm{H}, \mathrm{t}, J=7.5) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 155.4,148.8,141.9,139.1,131.0,126.84,126.82$, $119.4,116.8,17.4,14.53,14.51,13.0,12.2,10.1$. LRMS-ESI (m/z): $229.2[\mathrm{M}+\mathrm{H}]^{+}$

HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2}$ 229.1699; found, 229.1691.
(Z)-2-((3,5-Dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole hydrochloride (2c)

Using GP1, compound 2c was synthesized from the corresponding F-BODIPY. ${ }^{2}$ Bright orange solid ($48 \mathrm{mg}, 99 \%$). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.72(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.03(1 \mathrm{H}, \mathrm{s}), 6.13$ $(2 \mathrm{H}, \mathrm{s}), 2.62(6 \mathrm{H}, \mathrm{s}), 2.32(6 \mathrm{H}, \mathrm{s})$. Data matches that previously reported for this compound. ${ }^{5}$
(Z)-1-(2-((4-Heptanoyl-3,5-dimethyl-1H-pyrrol-2-yl)methylene)-3,5-dimethyl-2H-pyrrol-4-yl)heptan-1-one hydrochloride (2d)

Using GP1, compound 2d was synthesized from the corresponding F-BODIPY. ${ }^{3}$ Bright orange solid (49 mg, 99\%). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.44(1 \mathrm{H}, \mathrm{s}), 3.00(6 \mathrm{H}, \mathrm{s}), 2.76(4 \mathrm{H}, \mathrm{t}$, $J=7.2), 2.51(6 \mathrm{H}, \mathrm{s}), 1.74-1.66(4 \mathrm{H}, \mathrm{m}), 1.39-1.28(12 \mathrm{H}, \mathrm{m}), 0.90(6 \mathrm{H}, \mathrm{t}, J=6.6) ; \delta_{\mathrm{C}}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 198.4,165.7,142.1,136.8,132.0,123.1,43.8,31.9,29.9,24.2,22.7$, 17.5, 14.2, 12.4. LRMS-ESI $(\mathrm{m} / \mathrm{z}): 425.3[\mathrm{M}+\mathrm{H}]^{+}$; $\operatorname{HRMS}-E S I(\mathrm{~m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{2} 425.3163$; found, 425.3147 .
(Z)-1-(2-((4-Acetyl-3,5-dimethyl-1H-pyrrol-2-yl)(phenyl)methylene)-3,5-dimethyl-2H-pyrrol-4-yl)ethanone hydrochloride (2e)

Using GP1, compound $\mathbf{2 e}$ was synthesized from the corresponding F-BODIPY. ${ }^{3}$ Bright orange solid ($49 \mathrm{mg}, 99 \%$). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.93(2 \mathrm{H}, \mathrm{brs}), 7.50-7.46(3 \mathrm{H}, \mathrm{m})$, 7.30-7.28(2H, m), $2.58(6 \mathrm{H}, \mathrm{s}), 2.39(6 \mathrm{H}, \mathrm{s}), 1.53(6 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 196.7, $154.5,143.7,143.6,137.2,137.1,131.0,129.4,129.3,129.2,31.8,18.1,14.5$. LRMSESI (m/z): $361.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}$ 361.1916; found, 361.1913.
(Z)-3-Ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)(phenyl)methyl)-2,4-dimethyl-1H-pyrrole hydrochloride (2f)

Using GP1, compound $2 \mathbf{f}$ was synthesized from the corresponding F-BODIPY. ${ }^{1}$ Bright orange solid ($48 \mathrm{mg}, 99 \%$). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.46(2 \mathrm{H}, \mathrm{brs}), 7.55-7.41(3 \mathrm{H}, \mathrm{m})$, $7.26-7.25(2 \mathrm{H}, \mathrm{m}), 2.58(6 \mathrm{H}, \mathrm{s}), 2.33(4 \mathrm{H}, \mathrm{q}, J=7.5), 1.31(6 \mathrm{H}, \mathrm{s}), 0.99(6 \mathrm{H}, \mathrm{t}, J=7.5)$.

Data matches that previously reported for this compound. ${ }^{2}$
(Z)-Ethyl 2-((3,4-dimethyl-1H-pyrrol-2-yl)methylene)-3-ethyl-5-methyl-2H-pyrrole-4-carboxylate hydrobromide (2g)

Using GP1, compound $\mathbf{2 g}$ was synthesized from the corresponding F-BODIPY. Bright orange solid ($55 \mathrm{mg}, 99 \%$). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.73(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 13.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.76$ $(1 \mathrm{H}, \mathrm{d}, J=3.5), 7.34(1 \mathrm{H}, \mathrm{s}), 4.36(2 \mathrm{H}, \mathrm{q}, J=7.0), 3.07(2 \mathrm{H}, \mathrm{q}, J=7.5), 2.96(3 \mathrm{H}, \mathrm{s})$, $2.33(3 \mathrm{H}, \mathrm{s}), 2.10(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{t}, J=7.0), 1.27(3 \mathrm{H}, \mathrm{t}, J=7.5) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 163.2,158.6,155.6,144.7,144.5,128.9,126.6,125.3,122.9,118.2,60.7,19.6$, 16.9, 15.6, 14.4, 10.5, 10.2. LRMS-ESI (m/z): $287.2[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS-ESI (m/z): $[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}$ 287.1754; found, 287.1752.

1,3,5,7-Tetramethyl-2,6-diethyl-8- $\mathrm{H}-4,4$ '-dibromo-bora-3a,4a-diaza-s-indacene (3a)

The analogous F-BODIPY (50 mg) was dissolved in anhydrous $\mathrm{CCl}_{4}(10 \mathrm{~mL})$ and treated with 1 eq of BBr_{3}. The bright orange solution became dark red/purple in colour. The solution was concentrated in vacuo and compound 3a was isolated as a dark red solid (70 $\mathrm{mg}, 99 \%) . \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.02(1 \mathrm{H}, \mathrm{s}), 2.80(6 \mathrm{H}, \mathrm{s}), 2.40(4 \mathrm{H}, \mathrm{q}, J=7.5), 2.21$ $(6 \mathrm{H}, \mathrm{s}), 1.08(6 \mathrm{H}, \mathrm{t}, J=7.5) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 154.2,139.6,134.1,131.6,119.4$, $17.4,14.7,14.4,10.2 ; \delta_{\mathrm{B}}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-5.89(\mathrm{~s})$.
(Z)-3-Ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-2,4-dimethyl-1 H pyrrole tetrafluoroborate (4a)

Using GP2, compound 4a was synthesized from the corresponding F-BODIPY. ${ }^{1}$ Bright orange solid ($56 \mathrm{mg}, 99 \%$). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.78(2 \mathrm{H}, \mathrm{brs}), 7.06(1 \mathrm{H}, \mathrm{s}), 2.55(6 \mathrm{H}$, s), $2.44(4 \mathrm{H}, \mathrm{q}, J=7.5), 2.28(6 \mathrm{H}, \mathrm{s}), 1.09(6 \mathrm{H}, \mathrm{t}, J=7.5) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 154.3, $142.6,131.1,126.9,118.9,17.4,14.5,12.8,10.2 ; \delta_{\mathrm{B}}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.65(\mathrm{~s}) ; \delta_{\mathrm{F}}(282$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) -155.1 (s). LRMS-ESI (m/z): $87.0[\mathrm{M}]^{-}$.

(Z)-2-((4-Ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole tetrafluoroborate (4b)

Using GP2, compound 4b was synthesized from the corresponding F-BODIPY. ${ }^{1}$ Bright orange solid ($52 \mathrm{mg}, 91 \%$). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.83(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 10.73(1 \mathrm{H}, \mathrm{brs}), 7.09$ $(1 \mathrm{H}, \mathrm{s}), 6.19(1 \mathrm{H}, \mathrm{s}), 2.57\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.45(2 \mathrm{H}, \mathrm{q}, J=7.5), 2.35(3 \mathrm{H}, \mathrm{s}), 2.29(3 \mathrm{H}$, s). $1.09(3 \mathrm{H}, \mathrm{t}, J=7.5) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.1,154.8,146.2,143.5,131.7,127.30$, $127.28,119.5,117.4,17.5,14.4,12.9,12.3,10.2$ (1C signal missing); $\delta_{B}(160 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)-0.65(\mathrm{~s}) ; \delta_{\mathrm{F}}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-155.0(\mathrm{~s})$. LRMS-ESI (m/z): $87.0[\mathrm{M}]^{-}$.

(Z)-2-((3,5-Dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole

 tetrafluoroborate (4c)

Using GP2, compound $\mathbf{4 c}$ was synthesized from the corresponding F-BODIPY. ${ }^{2}$ Bright orange solid ($46 \mathrm{mg}, 80 \%$). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.84(2 \mathrm{H}, \mathrm{brs}), 7.09(1 \mathrm{H}, \mathrm{s}), 6.21(2 \mathrm{H}$, s), $2.58(6 \mathrm{H}, \mathrm{s}), 2.34(6 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.2,147.4,133.5,127.6,120.3$,
$14.5,12.2 ; \delta_{\mathrm{B}}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.65(\mathrm{~s}) ; \delta_{\mathrm{F}}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$-154.9 (s). LRMS-ESI $(\mathrm{m} / \mathrm{z}): 87.0[\mathrm{M}]^{-}$.
(Z)-3-Ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)(phenyl)methyl)-2,4-dimethyl-1H-pyrrole tetrafluoroborate (4e)

Using GP2, compound $\mathbf{4 d}$ was synthesized from the corresponding F-BODIPY. ${ }^{1}$ Bright orange solid ($25 \mathrm{mg}, 45 \%$). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.89(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.53-7.45(3 \mathrm{H}, \mathrm{m})$, 7.35-7.31 $(2 \mathrm{H}, \mathrm{m}), 2.52(6 \mathrm{H}, \mathrm{s}), 2.41(4 \mathrm{H}, \mathrm{q}, J=7.5), 1.45(6 \mathrm{H}, \mathrm{s}), 1.06(6 \mathrm{H}, \mathrm{t}, J=7.5) ; \delta_{\mathrm{C}}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 153.7, 138.5, 136.6, 135.9, 133.8, 132.2, 129.3, 129.1, 128.3, 17.5, 14.3, 12.7, 12.1; $\delta_{\mathrm{B}}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-1.01(\mathrm{~s}) ; \delta_{\mathrm{F}}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-157.4(\mathrm{~s})$.

LRMS-ESI (m/z): $87.0[\mathrm{M}]^{\top}$.

(Z)-2-(Phenyl(2H-pyrrol-2-ylidene)methyl)-1H-pyrrole tetrafluoroborate (4h)

HBF_{4}
Using GP2, compound $\mathbf{4 e}$ was synthesized from the corresponding F-BODIPY. ${ }^{1}$ Bright orange solid ($3 \mathrm{mg}, 5 \%$). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.46(2 \mathrm{H}, \mathrm{brs}), 7.68(2 \mathrm{H}, \mathrm{t}, J=1.2)$, $7.52-$ $7.42(5 \mathrm{H}, \mathrm{m}), 6.62(2 \mathrm{H}, \mathrm{dd}, J=4.2,1.2), 6.41(2 \mathrm{H}, \mathrm{dd}, J=4.2,1.5) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 143.8,142.7,140.3,137.4,131.0,129.5,129.2,127.7,117.7 ; \delta_{\mathrm{B}}(160 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)-1.00(\mathrm{~s}) ; \delta_{\mathrm{F}}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-157.0(\mathrm{~s})$. LRMS-ESI (m/z): $87.0[\mathrm{M}]^{-}$.
(Z)-3-Ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-2,4-dimethyl-1Hpyrrole hydrobromide (4a-HBr)

Compound 4a-HBF4 (50 mg) was dissolved in anhydrous dichloromethane $(10 \mathrm{~mL})$ and treated with excess $(0.1 \mathrm{~mL})$ aqueous $\mathrm{HBr}(48 \%)$. The resulting solution was stirred for 15 min and then washed with water. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give $\mathbf{4 a - H B r}$ as a bright orange solid ($49 \mathrm{mg}, 99 \%$). δ_{H} (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 12.87(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.02(1 \mathrm{H}, \mathrm{s}), 2.66(6 \mathrm{H}, \mathrm{s}), 2.41(4 \mathrm{H}, \mathrm{q}, J=7.5), 2.26(6 \mathrm{H}$, s), $1.06(6 \mathrm{H}, \mathrm{t}, J=7.5)$. Data matches that previously reported for this compound. ${ }^{7}$

1,3,5,7-Tetramethyl-2,6-diethyl-8-H-4,4'-diethyl-bora-3a,4a-diaza-s-indacene (5a)

F-BODIPY 1a $(50 \mathrm{mg})$ was dissolved in anhydrous dichloromethane $(10 \mathrm{~mL})$ and treated with 1 eq of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, followed by the addition of 2 eq of $\mathrm{EtMgBr}(3.0 \mathrm{M}$ in THF) added drop-wise. The solution was then washed with water and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give $\mathbf{5 a}$ as a bright orange solid ($53 \mathrm{mg}, 99 \%$). δ_{H} ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.99(1 \mathrm{H}, \mathrm{s}), 2.44-2.39\left(10 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}\left(\mathrm{CH}_{3}+\mathrm{CH}_{2}\right)\right), 2.18(6 \mathrm{H}, \mathrm{s}), 1.06$ $(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6), 0.82(4 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.6), 0.31(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6)$. Compound has been previously characterized. ${ }^{6}$

1.3 References

[1] Lundrigan, T.L.; Baker, A.E.G.; Longobardi, L.E.; Wood, T.E.; Smithen, D.A.; Crawford, S.M.; Cameron, T.S.; Thompson, A. Org. Lett. 2012, 14, 2158-2161.
[2] Crawford, S.M.; Thompson, A. Org. Lett, 2010, 12, 1424-1427.
[3] Smithen, D.A.; Baker, A.E.G.; Offman, M.; Crawford, S.M.; Cameron, T.S.; Thompson, A. J. Org. Chem. 2012, 77, 3439-3453
[4] Tu, B.; Wang, C.; Ma, J. Org. Prep. Proced. Int., 1999, 31, 349-352.
[5] Sessler, J.L.; Eller, L.R.; Cho, W.-S.; Nicolaou, S.; Aguilar, A.; Lee, J.T.; Lynch, V.M.; Magda, D.J. Angew. Chem. 2005, 117, 6143-6146.
[6] Lundrigan, T.L.; Crawford, S.M.; Cameron, T.S.; Thompson, A. Chem. Commun. 2012, 48, 1003-1005.
[7] Semeikin, A.S.; Berezin, M.B.; Chernova, O.M.; Antina, E.V.; Syrbu, S.A.; Lyubimova, T.V.; Kutepov, A.M. Russ.Chem.Bull., Int.Ed., 2003, 52, 1807-1813.

$1.4{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

(Z)-2-((4-Ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole hydrochloride (2b)
${ }^{1} \mathrm{H}$ NMR Spectrum in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum in CDCl_{3}

(Z)-1-(2-((4-Heptanoyl-3,5-dimethyl-1 H-pyrrol-2-yl)methylene)-3,5-dimethyl-2H-pyrrol-4-yl)heptan-1-one hydrochloride (2d)
${ }^{1} \mathrm{H}$ NMR Spectrum in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum in CDCl_{3}

(Z)-1-(2-((4-Acetyl-3,5-dimethyl-1H-pyrrol-2-yl)(phenyl)methylene)-3,5-dimethyl-2H-pyrrol-4-yl)ethanone hydrochloride (2e)
${ }^{1} \mathrm{H}$ NMR Spectrum in CDCl_{3}

${ }^{13}$ CNMR Spectrum in CDCl_{3}

(Z)-Ethyl 2-((3,4-dimethyl-1H-pyrrol-2-yl)methylene)-3-ethyl-5-methyl-2H-pyrrole-4-carboxylate hydrobromide (2g)
${ }^{1} \mathrm{H}$ NMR Spectrum in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum in CDCl_{3}

1,3,5,7-Tetramethyl-2,6-diethyl-8- \boldsymbol{H}-4,4'-dibromo-bora-3a,4a-diaza-s-indacene (3a)

${ }^{13} \mathrm{C}$ NMR Spectrum in CDCl_{3}

(Z)-3-Ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-2,4-dimethyl-1Hpyrrole tetrafluoroborate (4a)
${ }^{1} \mathrm{H}$ NMR Spectrum in CDCl_{3}

0	∞
0	0
	0

${ }^{13} \mathrm{C}$ NMR Spectrum in C

(Z)-2-((4-Ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole tetrafluoroborate (4b)
${ }^{1} \mathrm{H}$ NMR Spectrum in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum in CDCl_{3}

(Z)-2-((3,5-Dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole tetrafluoroborate (4c)
${ }^{1} \mathrm{H}$ NMR Spectrum in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum in CDCl_{3}

(Z)-3-Ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)(phenyl)methyl)-2,4-dimethyl-1H-pyrrole tetrafluoroborate (4e)
${ }^{1} \mathrm{H}$ NMR Spectrum in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum in CDCl_{3}

(Z)-2-(Phenyl(2H-pyrrol-2-ylidene)methyl)-1H-pyrrole tetrafluoroborate (4h)
${ }^{1} \mathrm{H}$ NMR Spectrum in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR Spectrum in CDCl_{3}

