# **Supporting Information**

# Chiral BINOL-Bridged Imidazole Dimer Possessing Sub-Millisecond Fast Photochromism

## Takahiro Iwasaki<sup>a</sup>, Tetsuya Kato<sup>a</sup>, Yoichi Kobayashi<sup>a</sup> and Jiro Abe<sup>\*ab</sup>

<sup>a</sup>Department of Chemistry, School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan

<sup>b</sup>CREST, Japan Science and Technology Agency (JST), K's Gobancho, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan.

E-mail: jiro\_abe@chem.aoyama.ac.jp

## **Table of contents**

| 1  | Synthesis                                                               | S2    |
|----|-------------------------------------------------------------------------|-------|
|    | 1.1 Synthesis of 1                                                      |       |
|    | 1.2 Synthesis of <b>2</b> (racemate)                                    |       |
|    | 1.3 Synthesis of ( <i>S</i> )-2                                         |       |
| 2. | HR-ESI-TOF-MS                                                           | . S25 |
| 3  | HPLC analyses for determination of purity                               | S26   |
| 4  | Chiral HPLC analyses for determination of enantiomeric excesses (ee)    | S27   |
| 5  | X-ray crystallographic analysis                                         | S28   |
| 6  | Laser flash photolysis                                                  | S30   |
| 7  | Eyring plot                                                             | S30   |
| 8  | CD spectroscopy                                                         | S32   |
| 9  | UV-vis absorption spectroscopy and investigation for fatigue resistance | S32   |
| 10 | DFT calculations                                                        | S34   |
| 11 | References                                                              | S72   |

## 1. Synthesis

All reactions were monitored by thin-layer chromatography carried out on 0.2 mm E. Merck silica gel plates (60F-254). Column chromatography was performed on the silica gel (Silica Gel 60N (spherical, neutral), 40-50  $\mu$ m, Kanto Chemical Co., Inc.). <sup>1</sup>H-NMR spectra and <sup>13</sup>C-NMR spectra were recorded on a Bruker AVANCE III 400 NanoBay. DMSO-*d*<sub>6</sub>, CDCl<sub>3</sub> and CD<sub>2</sub>Cl<sub>2</sub> were used as deuterated solvent. MASS spectra (ESI-TOF-MS) were measured by using a Bruker micrOTOF II-AGA1. All reagents were purchased from Tokyo Chemical Industry Co., Ltd., Wako Pure Chemical Industries, Ltd., and Aldrich Chemical Company, Inc. and were used without further purification. All reaction solvents were distilled on the appropriate drying reagents prior to use.

## 1.1 Synthesis of 1



Scheme S1. Synthetic procedure of 1.

1,1'-Bi-2-naphthol (2.00 g, 6.99 mmol), 4-fluorobenzaldehyde (1.80 mL, 17.1 mmol) and potassium carbonate (2.42 g, 17.5 mmol) were stirred at 100 °C in DMF (50 mL). After 42 h, the reaction mixture was cooled to room temperature and the target compound was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic phase was washed with water, dried, and evaporated. The residue was purified by column chromatography over silica gel with CHCl<sub>3</sub> as eluent to give a light yellow solid (1.28 g, 2.58 mmol, yield; 37 %). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) :  $\delta$  9.79 (s, 2H), 8.13 (d, *J* = 9.0 Hz, 2H), 8.04 (d, *J* = 8.2 Hz, 2H), 7.69 (d, *J* = 8.6 Hz, 4H), 7.50 (t, *J* = 7.6, 9.0 Hz, 2H), 7.43-7.32 (m, 4H), 7.17 (d, *J* = 8.2 Hz, 2H), 6.92 (d, *J* = 8.6 Hz, 4H). HR-MS (ESI+) calculated for C<sub>34</sub>H<sub>23</sub>O<sub>4</sub> [M+H]<sup>+</sup> 495.1596, found 495.1614.



Figure S1. <sup>1</sup>H NMR spectrum of 3 in DMSO- $d_6$ .

Compound **3** (150 mg, 0.303 mmol), benzil (220 mg, 1.05 mmol), and ammonium acetate (350mg, 4.54 mmol) were stirred at 110 °C in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) in a sealed tube. After 14 h, the reaction mixture was cooled to room temperature and washed with water, followed by ethanol. The precipitate was filtered and washed with hexane to give a white powder (194 mg, 0.222 mmol, yield; 73 %). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$ : 12.50 (s, 2H), 8.11 (d, *J* = 8.7 Hz, 2H), 8.04 (d, *J* = 7.8, 2H), 7.94 (d, *J* = 7.8 Hz, 4H), 7.53 – 7.17 (m, 28H), 6.93 (d, *J* = 7.8 Hz, 4H); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$ : 156.91, 151.59, 145.01, 136.88, 135.15, 133.48, 131.04, 130.21, 128.47, 128.25, 128.02, 127.86, 127.54, 126.97, 126.66, 126.34, 125.35, 125.06, 124.98, 121.65, 119.35, 118.15; HR-MS (ESI+) calculated for C<sub>62</sub>H<sub>43</sub>N<sub>4</sub>O<sub>2</sub> [M+H]<sup>+</sup> 875.3381, found 875.3297.



Figure S3. <sup>13</sup>C NMR spectrum of 4 in DMSO-*d*<sub>6</sub>.

All manipulations were carried out with the exclusion of light. Under nitrogen, a solution of potassium ferricyanide (11.8 g, 35.8 mmol) and potassium hydroxide (4.05 g, 72.2 mmol) in water (200 mL) was added to a solution of compound **4** (629 mg, 0.718 mmol) in benzene (200 mL). The reaction mixture was vigorously stirred at room temperature for 2 h. The organic layer was washed with water, dried, and evaporated. The residue was purified by column chromatography over silica gel with AcOEt/hexane = 1/3 as eluent and followed by recrystallization from CHCl<sub>3</sub>/hexane to give a slightly green crystal of **3** (129 mg, 0.148 mmol, yield; 21 %). <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$ : 8.13 (d, *J* = 8.9 Hz, 1H), 8.06-7.95 (m, 3H), 7.66-7.02 (m, 32H), 6.93 (d, *J* = 8.8 Hz, 1H), 6.75 (d, *J* = 8.2 Hz, 1H), 6.61 (d, *J* = 8.7 Hz, 1H), 6.41 (d, *J* = 8.4 Hz, 1H), 6.06 (d, *J* = 8.5 Hz, 1H), 5.94 (d, *J* = 8.8 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$ : 166.82, 166.34, 160.09, 158.96, 150.23, 149.92, 148.39, 138.14, 135.26, 135.23, 135.07, 134.75, 133.50, 133.39, 132.37, 132.34, 132.12, 131.89, 131.85, 131.36, 131.32, 131.27, 131.16, 130.77, 130.38, 130.24, 129.90, 129.83, 129.74, 128.92, 128.82, 128.70, 128.61, 128.46, 128.42, 128.27, 128.19, 128.04, 127.45, 127.33, 127.27, 126.53, 126.20, 126.13, 124.93, 124.34, 123.51, 122.47, 116.59, 115.81, 113.98, 113.17; HR-MS (ESI+) calculated for C<sub>62</sub>H<sub>41</sub>N<sub>4</sub>O<sub>2</sub> [M+H]<sup>+</sup> 873.3224, found 873.3113.



Figure S4. <sup>1</sup>H NMR spectrum of 1 in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S5. <sup>13</sup>C NMR spectrum of 1 in CD<sub>2</sub>Cl<sub>2</sub> (\*Solvent Peaks).

# 1.2 Synthesis of 2 (racemate)

Scheme S2. Synthetic procedure of 2.



(*R*)-1,1'-Bi-2-naphthol (2.00 g, 6.99 mmol), 2-chloro-4-fluorobenzaldehyde (2.66 g, 2.85 mmol) and potassium carbonate (2.51 g, 5.85 mmol) were stirred at 100 °C in DMF (50 mL). After 15 h, the reaction mixture was cooled to room temperature and the target compound was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic phase was washed with water. The organic phase was dried over anhydrous sodium sulfate, filtered, and evaporated to give a yellow solid. The yellow solid was purified by column chromatography over silica gel with CH<sub>2</sub>Cl<sub>2</sub> as eluent to give a white amorphous solid (2.86 g, yield; 72 %). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.19 (d, *J* = 9.2 Hz, 2H), 8.09 (d, *J* = 8.6 Hz, 2H), 7.61 (d, *J* = 8.6 Hz, 2H), 7.54 (dd, *J* = 7.3, 7.9 Hz, 2H), 7.48 (d, *J* = 9.2 Hz, 2H), 7.41 (dd, *J* = 8.6, 9.2 Hz, 2H), 7.12 (d, *J* = 8.6 Hz, 2H), 6.83 (dd, *J* = 9.2, 2.4 Hz, 2H), 6.77 (d, *J* = 2.4 Hz, 2H); HR-MS (ESI+) calculated for C<sub>34</sub>H<sub>21</sub>Cl<sub>2</sub>O4 [M+H]<sup>+</sup> 563.0811, found 563.0819.



**Figure S6.** <sup>1</sup>H NMR spectrum of **5** in DMSO-*d*<sub>6</sub> (\*Solvent Peaks).

Compound **5** (287 mg, 0.510 mmol), benzil (324 mg, 1.54 mmol) and ammonium acetate (599 mg, 7.77 mmol) were stirred at 110 °C in CH<sub>2</sub>Cl<sub>2</sub> (1.7 mL) in a sealed tube. After 2 days, the reaction mixture was cooled to room temperature and washed with water, followed by ethanol. The precipitate was filtered and washed with hexane to give a white powder (374 mg, 0.267 mmol, yield; 77.8 %).<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  12.5 (s, 2H), 8.18 (d, *J* = 9.2 Hz, 2H), 8.08 (d, *J* = 7.9 Hz, 2H), 7.69 (d, *J* = 8.6 Hz, 2H), 7.54–7.19 (m, 28H), 7.05 (d, *J* = 2.4 Hz, 2H), 6.98 (dd, *J* = 9.2, 2.4 Hz, 2H); HR-MS (ESI+) calculated for C<sub>62</sub>H<sub>41</sub>Cl<sub>2</sub>N<sub>4</sub>O<sub>2</sub> [M+H]<sup>+</sup> 943.2601, found 943.2634.



Figure S7. <sup>1</sup>H NMR spectrum of 6 in DMSO-*d*<sub>6</sub> (\*Solvent Peaks).

All manipulations were carried out with the exclusion of light. Under nitrogen, a solution of potassium ferricyanide (5.91 g, 18.0 mmol) and potassium hydroxide (2.05 g, 36.6 mmol) in water (125 mL) was added to a solution of compound **6** (344 mg, 0.363 mmol) in benzene (125 mL). The reaction mixture was vigorously stirred at room temperature for 3 h. The organic layer was washed with water, dried, and evaporated. The residue was purified by column chromatography over silica gel with AcOEt/hexane = 1/3 as eluent to give a yellow solid (209 mg, yield; 61 %). The obtained compound was the racemate as was shown in Figure S27 because the refluxes at >100 °C racemize the (*R*)-1,1'-bi-2-naphthol moiety. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.30 (d, *J* = 9.2 Hz, 1H), 8.18 (m, 3H), 7.63–6.85 (m, 32H), 6.09 (dd, *J* = 9.2, 2.4 Hz, 2H), 5.97 (dd, *J* = 9.2, 2.4 Hz, 2H); HR-MS (ESI+) calculated for C<sub>62</sub>H<sub>39</sub>Cl<sub>2</sub>N4O<sub>2</sub> [M+H]<sup>+</sup> 941.2445, found 941.2478.



Figure S8. <sup>1</sup>H NMR spectrum of 2 in DMSO-*d*<sub>6</sub> (\*Solvent Peaks).

# 1.3 Synthesis of (S)-2

Scheme S3. Synthetic procedure of (*S*)-2 (the synthesis of (*R*)-2 was the identical to that of (*S*)-2 except that (*R*)-1,1'-bi-2-naphthol was used as the starting material).



(S)-**2** 

Trityl chloride (3.89 g 13.9 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (45 mL) were added to (*S*)-1,1-bi-2-naphthol (4.00 g, 13.9 mmol), triethylamine (2.32 mL, 16.7 mmol) and CH<sub>2</sub>Cl<sub>2</sub> (45 mL) at 0 °C. The mixture was allowed to warm to room temperature and was stirred for 2 h. The reaction mixture was washed with water. The organic phase was dried over anhydrous sodium sulfate, and the solution was filtered. The evaporation of the solvent afforded a yellow solid and the recrystallization from CH<sub>2</sub>Cl<sub>2</sub>/hexane gives a white crystal of compound (*S*)-7 (5.08 g, yield; 68.7 %). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.56 (s, 1H), 7.94 (d, *J* = 8.9 Hz, 1H), 7.89 (dd, *J* = 6.3, 2.4 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.49 (d, *J* = 9.2 Hz, 1H), 7.43 (d, *J* = 8.9 Hz, 1H), 7.29–7.13 (m, 19H), 7.06 (d, *J* = 8.3 Hz, 1H), 6.86 (dd, *J* = 6.3, 2.4 Hz, 1H), 6.73 (d, *J* = 8.9 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  152.99, 151.16, 146.90, 143.99, 134.07, 133.82, 131.49, 129.64, 129.30, 129.23, 128.77, 128.39, 128.07, 127.99, 127.98, 127.73, 127.54, 127.31, 127.12, 126.97, 126.34, 125.32, 125.08, 124.40, 124.26, 124.09, 118.64, 117.82, 117.51, 115.89, 90.11; HR-MS (ESI–) calculated for C<sub>39</sub>H<sub>27</sub>O<sub>2</sub> [M–H]<sup>-</sup> 527.2011, found 527.2013.



**Figure S9.** <sup>1</sup>H NMR spectrum of (*S*)-7 in DMSO-*d*<sub>6</sub> (\*Solvent Peak).



Compound (*S*)-7 (2.00 g, 3.78 mmol), 2-chloro-4-fluorobenzaldehyde (780 mg, 4.92 mmol) and potassium carbonate (1.36 g, 9.84 mmol) were stirred at 100 °C in DMF (50 mL). After 23 h, the reaction mixture was cooled to room temperature and the target compound was extracted with AcOEt. The organic phase was washed with water. The organic phase was dried over anhydrous sodium sulfate, filtered, and evaporated to give a yellow oil solid. The yellow oil solid was purified by column chromatography over silica gel with CH<sub>2</sub>Cl<sub>2</sub>/hexane as eluent to give a white amorphous solid (1.54 g, yield; 61.1 %). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.08 (s, 1H), 8.28 (d, *J* = 9.0 Hz, 1H), 8.15 (d, *J* = 8.1 Hz, 1H), 7.70 (dd, *J* = 7.0, 1.4 Hz, 1H), 7.65–7.42 (m, 5H), 7.34–7.08 (m, 23H), 6.94 (d, *J* = 2.3 Hz, 1H), 6.89 (dd, *J* = 8.6, 2.2 Hz, 1H), 6.71 (d, *J* = 9.2 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  188.47, 163.06, 151.93, 150.12, 144.07, 139.28, 134.29, 133.56, 131.58, 130.74, 129.79, 128.42, 128.10, 127.96, 127.88, 127.81, 126.80, 126.77, 126.51, 126.16, 126.05, 125.68, 124.93, 123.61, 120.29, 119.70, 119.32, 118.65, 116.11, 89.64, 53.46; HR-MS (ESI+) calculated for C<sub>46</sub>H<sub>31</sub>ClNaO<sub>3</sub> [M+Na]<sup>+</sup> 689.1859, found 689.1841.



**Figure S11.** <sup>1</sup>H NMR spectrum of (S)-8 in DMSO- $d_6$  (\*Solvent Peak).



TFA (9.70 mL) was added to compound (*S*)-**8** (1.08 g, 1.62 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (200 mL) at 0 °C. The mixture was allowed to warm to room temperature and was stirred for 2 h, quenched with NaHCO<sub>3</sub> aqueous. The organic phase was washed with water, dried over anhydrous sodium sulfate, filtered, and evaporated to give a brown oil solid. The brown oil solid was purified by column chromatography over silica gel with CH<sub>2</sub>Cl<sub>2</sub>/hexane as eluent to give a white amorphous solid (544 mg, yield; 79.2 %). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.13 (s, 1H), 9.61 (s, 1H), 8.17 (d, *J* = 8.9 Hz, 1H), 8.09 (d, *J* = 8.2 Hz, 1H), 7.84–7.82 (m, 2H), 7.69 (d, *J* = 8.7 Hz, 1H), 7.55–7.52 (m, 1H), 7.47 (d, *J* = 8.9 Hz, 1H), 7.41–7.37 (m, 1H), 7.32–7.19 (m, 3H), 7.15 (d, *J* = 8.4 Hz, 1H), 6.97–6.91 (m, 3H); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  188.24, 162.70, 153.04, 150.01, 137.58, 133.60, 133.54, 131.24, 131.18, 130.21, 129.60, 128.27, 127.98, 127.73, 127.49, 126.88, 126.60, 125.55, 125.04, 123.87, 122.53, 120.67, 118.29, 118.11, 116.54, 112.98; HR-MS (ESI–) calculated for C<sub>27</sub>H<sub>16</sub>ClO<sub>3</sub> [M–H]<sup>-</sup> 423.0788, found 423.0790.



**Figure S13.** <sup>1</sup>H NMR spectrum of (*S*)-9 in DMSO-*d*<sub>6</sub> (\*Solvent Peaks).



Figure S14. <sup>13</sup>C NMR spectrum of (S)-9 in DMSO-d<sub>6</sub>.

Compound (*S*)-**9** (807 mg, 1.90 mmol), 2-chloro-4-fluorobenzaldehyde (456 mg, 2.85 mmol) and potassium carbonate (808 mg, 5.85 mmol) were stirred at 100 °C in DMF (50 mL). After 18 h, the reaction mixture was cooled to room temperature and the target compound was extracted with AcOEt. The organic phase was washed with water. The organic phase was dried over anhydrous sodium sulfate, filtered, and evaporated to give a yellow solid. The yellow solid was purified by column chromatography over silica gel with CH<sub>2</sub>Cl<sub>2</sub>/hexane as eluent to give a white amorphous solid (855 mg, yield; 79.9 %). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.19 (d, *J* = 9.2 Hz, 2H), 8.09 (d, *J* = 8.6 Hz, 2H), 7.61 (d, *J* = 8.6 Hz, 2H), 7.54 (dd, *J* = 7.3, 7.9 Hz, 2H), 7.48 (d, *J* = 9.2 Hz, 2H), 7.41 (dd, *J* = 8.6, 9.2 Hz, 2H), 7.12 (d, *J* = 8.6 Hz, 2H), 6.83 (dd, *J* = 9.2, 2.4 Hz, 2H), 6.77 (d, *J* = 2.4 Hz, 2H); <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  188.23, 162.70, 153.03, 150.01, 147.73, 137.58, 133.60, 133.54, 131.24, 131.18, 130.21, 129.59, 128.27, 127.97, 127.71, 127.48, 126.88, 126.60, 126.47, 126.32, 125.59, 125.55, 125.04, 123.87, 122.53, 120.67, 118.29, 118.10, 116.54, 112.98; HR-MS (ESI+) calculated for C<sub>34</sub>H<sub>21</sub>Cl<sub>2</sub>O4 [M+H]<sup>+</sup> 563.0811, found 563.0796.



**Figure S15.** <sup>1</sup>H NMR spectrum of (*S*)-**5** in DMSO-*d*<sub>6</sub> (\*Solvent Peaks).



Figure S16. <sup>13</sup>C NMR spectrum of (S)-5 in DMSO- $d_6$ .

Compound (*S*)-5 (287 mg, 0.510 mmol), benzil (324 mg, 1.54 mmol) and ammonium acetate (599 mg, 7.77 mmol) were stirred at 110 °C in CH<sub>2</sub>Cl<sub>2</sub> (1.7 mL) in a sealed tube. After 2 days, the reaction mixture was cooled to room temperature and washed with water, followed by ethanol. The precipitate was filtered and washed with hexane to give a white powder (374 mg, 0.267 mmol, yield; 77.8 %).<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  12.5 (s, 2H), 8.18 (d, *J* = 9.2 Hz, 2H), 8.08 (d, *J* = 7.9 Hz, 2H), 7.69 (d, *J* = 8.6 Hz, 2H), 7.54–7.19 (m, 28H), 7.05 (d, *J* = 2.4 Hz, 2H), 6.98 (dd, *J* = 9.2, 2.4 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  158.03, 150.80, 142.92, 137.56, 134.56, 134.12, 131.62, 130.96, 130.76, 130.37, 129.97, 128.90, 128.28, 128.24, 127.81, 127.72, 127.55, 127.21, 127.05, 126.95, 125.79, 125.42, 122.73, 122.28, 119.69, 118.83, 117.41; HR-MS (ESI+) calculated for C<sub>62</sub>H<sub>41</sub>Cl<sub>2</sub>N<sub>4</sub>O<sub>2</sub> [M+H]<sup>+</sup> 943.2601, found 943.2604.



**Figure S17.** <sup>1</sup>H NMR spectrum of (*S*)-6 in DMSO-*d*<sub>6</sub> (\*Solvent Peaks).



Figure S18. <sup>13</sup>C NMR spectrum of (S)-6 in CDCl<sub>3</sub>.

All manipulations were carried out with the exclusion of light. Under nitrogen, a solution of potassium ferricyanide (3.78 g, 11.5 mmol) and potassium hydroxide (1.36 g, 24.2 mmol) in water (60 mL) was added to a solution of compound (*S*)-6 (202 mg, 0.214 mmol) in benzene (60 mL). The reaction mixture was vigorously stirred at room temperature for 3 h. The organic layer was washed with water, dried, and evaporated. The residue was purified by column chromatography over silica gel with AcOEt/hexane = 1/3 as eluent to give a yellow solid (61.0 mg, yield; 30 %). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.30 (d, *J* = 9.2 Hz, 1H), 8.18 (m, 3H), 7.63–6.85 (m, 32H), 6.09 (dd, *J* = 9.2, 2.4 Hz, 2H), 5.97 (dd, *J* = 9.2, 2.4 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.35, 165.01, 160.36, 160.15, 149.42, 149.42, 149.05, 144.95, 137.44, 136.34, 135.61, 134.87, 134.80, 134.28, 133.20, 133.05, 132.96, 131.78, 131.62, 131.51, 131.38, 131.03, 130.84, 130.64, 130.51, 130.27, 130.06, 129.94, 129.35, 128.97, 128.48, 128.31, 128.20, 128.16, 128.07, 127.71, 127.31, 127.20, 127.10, 126.88, 126.28, 126.03, 125.99, 125.85, 125.81, 123.82, 122.48, 121.84, 120.21, 116.90, 112.52, 112.19, 111.08; HR-MS (ESI+) calculated for C<sub>62H39</sub>Cl<sub>2</sub>N<sub>4</sub>O<sub>2</sub> [M+H]<sup>+</sup> 941.2450, found 941.2445.



**Figure S19.** <sup>1</sup>H NMR spectrum of (*S*)-**2** in DMSO-*d*<sub>6</sub> (\*Solvent Peaks).



Figure S20. <sup>13</sup>C NMR spectrum of (S)-2 in CDCl<sub>3</sub>. S24

# 2. HR-ESI-TOF-MS-spectra











**Figure S23.** HR-ESI-TOF-MS of (*S*)-2.

#### **3.** HPLC analyses for determination of purity

HPLC analyses using THF/CH<sub>3</sub>CN = 1/15 as an eluent was performed with system composed of a Mightysil RP18 (4.6 mm × 25 cm) column and JASCO PU-2080 Plus pump equipped with a UV-2075 Plus UV/VIS detector. The mobile phase was THF/CH<sub>3</sub>CN = 1/15 with a flow rate of 1.0 mL/min, inject volume; 2.0 µL.



**Figure S24.** HPLC chromatogram of the racemate of **1** (left) and **2** (right), detection wavelength; 254 nm, purity 99%, respectively.



**Figure S25.** HPLC chromatograms of (*R*)-**2**, detection wavelength; 254 (left) and 340 nm (right), purity 99%.



**Figure S26.** HPLC chromatograms of (*S*)-**2**, detection wavelength; 254 (left) and 340 nm (right), purity 99%.

#### 4. Chiral HPLC analyses for determination of enantiomeric excesses (ee)

HPLC analyses using CH<sub>2</sub>Cl<sub>2</sub>/hexane = 1/1 as an eluent was performed with a system composed of a DAICEL CHIRALPAK IC column (4.6 mm × 25 cm) and JASCO PU-2080 Plus pump equipped with a UV-2075 Plus UV/VIS detector.



**Figure S27.** HPLC charts of **2**, (*R*)-**2** and (*S*)-**2**.

#### 5. X-ray crystallographic analysis

The diffraction data of the single crystal of **1** are collected on the Bruker APEX II CCD area detector (Mo $K_{\alpha}$ ,  $\lambda = 0.71073$  nm). During the data collection, the lead glass doors of the diffractometer were covered to exclude the room light. The data refinement was carried out by the Bruker APEX II software package with SHELXT program.<sup>S1)</sup> All non-hydrogen atoms were anisotropically refined.



**Figure S28.** ORTEP representation of the molecular structure of **1** with thermal ellipsoid at 50% probability. The hydrogen atoms and solvent molecules are omitted. Oxygen and nitrogen atoms are highlighted in red and blue, respectively.

| Identification code                     | 1                                                              |  |  |  |
|-----------------------------------------|----------------------------------------------------------------|--|--|--|
| Empirical formula                       | C62 H40 N4 O2                                                  |  |  |  |
| Formula weight                          | 872.98                                                         |  |  |  |
| Temperature                             | 90 K                                                           |  |  |  |
| Wavelength                              | 0.71073 Å                                                      |  |  |  |
| Crystal system                          | Triclinic                                                      |  |  |  |
| Space group                             | P-1                                                            |  |  |  |
| Unit cell dimensions                    | $a = 10.8574(15) \text{ Å} \qquad \alpha = 90.116(2)^{\circ}.$ |  |  |  |
|                                         | $b = 14.598(2) \text{ Å} \qquad \beta = 105.115(2)^{\circ}.$   |  |  |  |
|                                         | $c = 15.654(2) \text{ Å} \qquad \gamma = 110.614(2)^{\circ}.$  |  |  |  |
| Volume                                  | 2229.8(5) Å3                                                   |  |  |  |
| Z                                       | 2                                                              |  |  |  |
| Density (calculated)                    | 1.300 Mg/m3                                                    |  |  |  |
| Absorption coefficient                  | 0.079 mm-1                                                     |  |  |  |
| F(000)                                  | 912                                                            |  |  |  |
| Crystal size                            | 0.40 x 0.35 x 0.01 mm3                                         |  |  |  |
| Theta range for data collection         | 1.50 to 26.40°.                                                |  |  |  |
| Index ranges                            | -13<=h<=11, -18<=k<=12, -16<=l<=19                             |  |  |  |
| Reflections collected                   | 23502                                                          |  |  |  |
| Independent reflections                 | 8830 [R(int) = 0.0137]                                         |  |  |  |
| Completeness to theta = $26.40^{\circ}$ | 96.4 %                                                         |  |  |  |
| Absorption correction                   | Empirical                                                      |  |  |  |
| Refinement method                       | Full-matrix least-squares on F2                                |  |  |  |
| Data / restraints / parameters          | 8830 / 0 / 613                                                 |  |  |  |
| Goodness-of-fit on F2                   | Goodness-of-fit on F21.023                                     |  |  |  |
| Final R indices [I>2sigma(I)]           | R1 = 0.0565, wR2 = 0.1105                                      |  |  |  |
| R indices (all data)                    | R indices (all data) $R1 = 0.0791$ , $wR2 = 0.1263$            |  |  |  |
| Largest diff. peak and hole             | 0.519 and -0.267 e.Å-3                                         |  |  |  |
|                                         |                                                                |  |  |  |

 Table S1. X-ray crystallographic data of 1.

#### 6. Laser flash photolysis

The laser flash photolysis experiments were performed with a Unisoku TSP-1000 time-resolved spectrophotometer. A 10 Hz Q-switch Nd:YAG laser (Continuum Minilite II) with the third harmonic at 355 nm (ca. 4 mJ per 5 ns pulse) was employed for the excitation light. A halogen lamp (OSRAM HLX64623) was used for a probe light and the transmitted light through the sample was guided into the monochrometer and a detector (Unisoku MD200 and Hamamatsu R2949 photomultiplier tube, respectively) with an optical fiber scope.

#### 7. Eyring plots

To obtain the activation parameters of the thermal back reactions of 1R and 2R, we conducted the temperature dependence of the decay profiles of the thermal back reactions of 1R and 2R. The rate constants for the thermal back reaction for 1R and 2R are tabulated in Table S2 and S3, respectively. These temperature dependences were analyzed by Eyring plots and these plots are shown in Figure S28 for 1R and Figure S29 for 2R, respectively.

| <i>T</i> / °C | $k  /  \mathrm{s}^{-1}$ |
|---------------|-------------------------|
| 5             | 4.8                     |
| 10            | 6.8                     |
| 15            | 9.5                     |
| 20            | 13.2                    |
| 25            | 18.2                    |
| 30            | 24.7                    |
| 35            | 33.2                    |
| 40            | 44.3                    |

Table S2. First-order rate constants for the thermal back-reaction of 1 in degassed benzene

 $(2.1 \times 10^{-5} \text{ M})$  at different temperature.



Figure S29. The Eyring plot for the thermal back-reaction of colored species of 1 in degassed benzene  $(2.1 \times 10^{-5} \text{ M})$ .

| T/°C | $k / s^{-1}$ |
|------|--------------|
| 5    | 3.49         |
| 10   | 4.19         |
| 15   | 4.98         |
| 20   | 5.86         |
| 25   | 6.68         |
| 30   | 7.84         |
| 35   | 9.11         |
| 40   | 10.2         |
|      |              |

Table S3. First-order rate constants for the thermal back-reaction of 2 in degassed benzene

 $(2.3 \times 10^{-5} \text{ M})$  at different temperature.



Figure S30. The Eyring plot for the thermal back-reaction of colored species of 2 in degassed benzene  $(2.3 \times 10^{-5} \text{ M})$ .

## 8. CD spectroscopy

Circular dichroism (CD) spectra were recorded on a JASCO J-820 spectropolarimeter. The CD spectra of (*R*)-2 and (*S*)-2 in acetonitrile  $(3.3 \times 10^{-5} \text{ M})$  were measured with a 10-mm quartz cell at room temperature. Photoracemization processes of (*R*)-2 and (*S*)-2 were analyzed using a Q-switch Nd:YAG laser (Continuum Minilite II) with the third harmonic at 355 nm (ca. 4 mJ per 5 ns pulse) as the excitation beam.

#### 9. UV-vis absorption spectroscopy and investigation for fatigue resistance

UV-vis absorption spectra were recorded on a Shimadzu UV-3150 spectrometer. The UV-vis absorption spectra of  $1 (2.1 \times 10^{-5} \text{ M})$  and  $2 (2.3 \times 10^{-5} \text{ M})$  in benzene were measured with a 10-mm quartz cell at 25 °C. The fatigue resistances of 1 and 2 were measured using a Q-switch Nd:YAG laser (Continuum Minilite II) with the third harmonic at 355 nm (ca. 4 mJ per 5 ns pulse) as the excitation beam.



**Figure S31.** UV-vis absorption spectra of 1 ( $2.1 \times 10^{-5}$  M) (left) and 2 ( $2.3 \times 10^{-5}$  M) (right) in benzene before and after laser shots at 25 °C.

## **10. DFT calculations**

All calculations were carried out using the Gaussian 09 program (Revision D.01)<sup>S2)</sup>. The molecular structures were fully optimized at the M062X/6-31G(d) level of the theory for **2** and the UM062X/6-31G(d) level of the theory for **2R**. The analytical second derivatives were computed using the vibrational analysis to confirm each stationary point to be a minimum. The TDDFT calculations were performed at the MPW1PW91/6-31+G(d) level of the theory for **2** and UMPW1PW91/6-31+G(d) level of the theory for **2R** for the optimized structures.

| Center | Atomic | Atomic | Coordinates (Angstroms)       |
|--------|--------|--------|-------------------------------|
| Number | Number | Туре   | X Y Z                         |
| 1      | 17     | 0      | 0.628470 0.813532 3.508147    |
| 2      | 17     | 0      | 0.881086 0.940766 -2.989685   |
| 3      | 8      | 0      | -3.989950 0.901268 1.510275   |
| 4      | 8      | 0      | -3.666619 -0.634175 -1.651224 |
| 5      | 7      | 0      | 2.213950 1.079457 -0.008867   |
| 6      | 7      | 0      | 2.089257 -1.074957 0.976874   |
| 7      | 7      | 0      | 2.684124 -0.891175 -1.304792  |
| 8      | 7      | 0      | 2.184394 3.030688 1.068875    |
| 9      | 6      | 0      | -5.525890 -0.815527 -0.171582 |
| 10     | 6      | 0      | -4.544712 -1.415149 -0.923920 |
| 11     | 6      | 0      | -6.458611 -1.655593 0.524947  |
| 12     | 6      | 0      | -6.345858 -3.070627 0.425199  |

Table S4. Standard orientation of the optimized geometry for 2.

| 13 | 6 | 0 | -7.270476 | -3.894527 | 1.115345  |
|----|---|---|-----------|-----------|-----------|
| 14 | 1 | 0 | -7.169807 | -4.973301 | 1.027351  |
| 15 | 6 | 0 | -5.313092 | -3.630124 | -0.373911 |
| 16 | 1 | 0 | -5.239201 | -4.711031 | -0.457411 |
| 17 | 6 | 0 | -7.503153 | -1.115397 | 1.321327  |
| 18 | 1 | 0 | -7.596744 | -0.037684 | 1.408352  |
| 19 | 6 | 0 | -4.432608 | -2.823519 | -1.035804 |
| 20 | 1 | 0 | -3.641311 | -3.231147 | -1.657501 |
| 21 | 6 | 0 | -8.269716 | -3.344184 | 1.875847  |
| 22 | 1 | 0 | -8.973391 | -3.982536 | 2.400777  |
| 23 | 6 | 0 | -8.382989 | -1.938854 | 1.978298  |
| 24 | 1 | 0 | -9.173671 | -1.507214 | 2.584159  |
| 25 | 6 | 0 | -5.699955 | 0.666242  | -0.131175 |
| 26 | 6 | 0 | -6.953086 | 2.677590  | -0.834884 |
| 27 | 6 | 0 | -4.954503 | 1.467457  | 0.700646  |
| 28 | 6 | 0 | -6.156917 | 3.451262  | 0.051992  |
| 29 | 1 | 0 | -6.340310 | 4.519586  | 0.127730  |
| 30 | 6 | 0 | -5.181531 | 2.863073  | 0.804090  |
| 31 | 1 | 0 | -4.565797 | 3.438631  | 1.488322  |
| 32 | 6 | 0 | -6.729795 | 1.275238  | -0.924613 |
| 33 | 6 | 0 | -7.967981 | 3.274632  | -1.624269 |
| 34 | 1 | 0 | -8.125026 | 4.347049  | -1.541920 |
| 35 | 6 | 0 | -8.733880 | 2.518104  | -2.473344 |
| 36 | 1 | 0 | -9.508507 | 2.983955  | -3.074279 |
| 37 | 6 | 0 | -7.539590 | 0.518114  | -1.812874 |
| 38 | 1 | 0 | -7.375977 | -0.551659 | -1.894431 |
| 39 | 6 | 0 | -8.512981 | 1.125109  | -2.566508 |
| 40 | 1 | 0 | -9.119947 | 0.529410  | -3.241253 |
| 41 | 6 | 0 | -1.817698 | 1.029226  | 2.401804  |
| 42 | 1 | 0 | -2.189415 | 0.547039  | 3.298585  |
| 43 | 6 | 0 | -2.699193 | 1.349173  | 1.372425  |
| 44 | 6 | 0 | -0.508519 | -1.167728 | 0.138862  |
| 45 | 1 | 0 | -0.144769 | -1.545581 | 1.087627  |
| 46 | 6 | 0 | -0.459600 | 1.274831  | 2.229684  |

| 47 | 6 | 0 | -1.856884 | -1.287186 | -0.165052 |
|----|---|---|-----------|-----------|-----------|
| 48 | 1 | 0 | -2.534681 | -1.744669 | 0.546621  |
| 49 | 6 | 0 | 0.386997  | -0.498970 | -0.695367 |
| 50 | 6 | 0 | -2.248449 | 2.011371  | 0.231813  |
| 51 | 1 | 0 | -2.934845 | 2.270607  | -0.566435 |
| 52 | 6 | 0 | -0.889894 | 2.247652  | 0.092214  |
| 53 | 1 | 0 | -0.517436 | 2.710406  | -0.817650 |
| 54 | 6 | 0 | -0.114286 | 0.008910  | -1.901642 |
| 55 | 6 | 0 | -2.334998 | -0.721108 | -1.343082 |
| 56 | 6 | 0 | -1.456552 | -0.110878 | -2.235989 |
| 57 | 1 | 0 | -1.841364 | 0.327361  | -3.149733 |
| 58 | 6 | 0 | 3.441854  | 2.826584  | 0.551908  |
| 59 | 6 | 0 | 1.480393  | 1.981393  | 0.746143  |
| 60 | 6 | 0 | 2.952513  | -1.973247 | 0.687741  |
| 61 | 6 | 0 | 3.500368  | 1.614788  | -0.101181 |
| 62 | 6 | 0 | 3.337129  | -1.851895 | -0.771031 |
| 63 | 6 | 0 | 1.839939  | -0.326238 | -0.258998 |
| 64 | 6 | 0 | 4.177719  | -4.806693 | 3.626098  |
| 65 | 1 | 0 | 4.480022  | -5.525642 | 4.381570  |
| 66 | 6 | 0 | 3.414584  | -2.957794 | 1.684659  |
| 67 | 6 | 0 | 3.528594  | -2.564131 | 3.021921  |
| 68 | 1 | 0 | 3.305143  | -1.534314 | 3.284056  |
| 69 | 6 | 0 | 3.917374  | -3.485379 | 3.986628  |
| 70 | 1 | 0 | 4.013861  | -3.173995 | 5.021929  |
| 71 | 6 | 0 | 4.047366  | -5.206467 | 2.298504  |
| 72 | 1 | 0 | 4.239159  | -6.237393 | 2.018221  |
| 73 | 6 | 0 | 3.671355  | -4.285081 | 1.326720  |
| 74 | 1 | 0 | 3.568973  | -4.596898 | 0.291386  |
| 75 | 6 | 0 | 4.373751  | -2.575739 | -1.528271 |
| 76 | 6 | 0 | 4.239783  | -2.685870 | -2.917295 |
| 77 | 1 | 0 | 3.338363  | -2.302626 | -3.385716 |
| 78 | 6 | 0 | 5.253408  | -3.260349 | -3.672473 |
| 79 | 1 | 0 | 5.141779  | -3.349201 | -4.748690 |
| 80 | 6 | 0 | 6.559434  | -3.592717 | -1.670007 |

| 81  | 1 | 0 | 7.470264 -3.929593 -1.184722 |
|-----|---|---|------------------------------|
| 82  | 6 | 0 | 6.415789 -3.713786 -3.049201 |
| 83  | 1 | 0 | 7.210655 -4.158864 -3.640323 |
| 84  | 6 | 0 | 5.541259 -3.028601 -0.907700 |
| 85  | 1 | 0 | 5.670858 -2.905101 0.162696  |
| 86  | 6 | 0 | 4.694578 0.979481 -0.705971  |
| 87  | 6 | 0 | 4.832359 0.818293 -2.089119  |
| 88  | 1 | 0 | 4.007256 1.096618 -2.737328  |
| 89  | 6 | 0 | 5.750131 0.607097 0.130997   |
| 90  | 1 | 0 | 5.646398 0.748293 1.203401   |
| 91  | 6 | 0 | 6.000287 0.282592 -2.620345  |
| 92  | 1 | 0 | 6.091244 0.148421 -3.694112  |
| 93  | 6 | 0 | 7.051904 -0.081868 -1.780080 |
| 94  | 1 | 0 | 7.962449 -0.500150 -2.198423 |
| 95  | 6 | 0 | 6.925456 0.083580 -0.404411  |
| 96  | 1 | 0 | 7.740313 -0.197437 0.256352  |
| 97  | 6 | 0 | 4.489511 3.848844 0.730327   |
| 98  | 6 | 0 | 5.572324 3.979237 -0.148001  |
| 99  | 1 | 0 | 5.658266 3.320723 -1.006037  |
| 100 | 6 | 0 | 4.381960 4.741819 1.803476   |
| 101 | 1 | 0 | 3.529175 4.652397 2.468866   |
| 102 | 6 | 0 | 6.532891 4.963979 0.057998   |
| 103 | 1 | 0 | 7.364015 5.052586 -0.635449  |
| 104 | 6 | 0 | 6.425894 5.838868 1.135572   |
| 105 | 1 | 0 | 7.176618 6.607604 1.292459   |
| 106 | 6 | 0 | 5.342929 5.726189 2.004604   |
| 107 | 1 | 0 | 5.245184 6.409538 2.843164   |
| 108 | 6 | 0 | 0.036934 1.837483 1.051461   |


Figure S32. Optimized structure of 2.

| SCF Done: E(RM062X)                           | =             | -3674.20681880 A.U.         |
|-----------------------------------------------|---------------|-----------------------------|
| Zero-point correction                         | =             | 0.840173 (Hartree/Particle) |
| Thermal correction to Energy                  | =             | 0.892764                    |
| Thermal correction to Enthalpy                | =             | 0.893709                    |
| Thermal correction to Gibbs Free Energy       | =             | 0.750066                    |
| Sum of electronic and zero-point Energies     | =             | -3673.366645                |
| Sum of electronic and thermal Energies        | =             | -3673.314054                |
| Sum of electronic and thermal Enthalpies      | =             | -3673.313110                |
| Sum of electronic and thermal Free Energies = | -36           | 573.456753                  |
| Low frequencies8.3944 -4.4372 -0.0014         | 0.0002 0.0013 | 3.7886                      |
| Low frequencies 10.5397 16.1376 16.6243       |               |                             |

The Result for the TDDFT calculation for  ${\bf 2}$ 

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 2.5889 eV 478.91 nm f=0.0048 <S\*\*2>=0.000 244 -> 245 0.70233

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -3674.69470866

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 3.3013 eV 375.56 nm f=0.0468 <S\*\*2>=0.000 242 -> 245 0.14252

Excited State 3: Singlet-A 3.5666 eV 347.63 nm f=0.0044 <S\*\*2>=0.000 235 -> 245 -0.12277 239 -> 245 0.51249 240 -> 245 -0.42995

| Excited State | 4: Singlet-A | 3.7223 eV 333.09 nm | f=0.0240 <s**2>=0.000</s**2> |
|---------------|--------------|---------------------|------------------------------|
| 237 -> 245    | -0.14892     |                     |                              |
| 242 -> 245    | 0.66210      |                     |                              |
| 243 -> 245    | -0.13513     |                     |                              |

Excited State 5: Singlet-A 3.8042 eV 325.92 nm f=0.0151 <S\*\*2>=0.000 225 -> 245 0.11349 226 -> 245 0.12050 232 -> 245 -0.11062 235 -> 245 -0.15999 236 -> 245 -0.35050 238 -> 245 -0.20708 239 -> 245 0.26061

- 240 -> 245 0.40069
- Excited State 6: Singlet-A 3.8350 eV 323.29 nm f=0.0125 <S\*\*2>=0.000 244 -> 246 0.66336 244 -> 248 -0.20970

| Excited State | 7: | Singlet-A | 3.8541 eV | 321.69 nm | f=0.0004 | <s**2>=0.000</s**2> |
|---------------|----|-----------|-----------|-----------|----------|---------------------|
| 241 -> 245    |    | 0.68634   |           |           |          |                     |
| 243 -> 245    |    | 0.11487   |           |           |          |                     |

| Excited State | 8: | Singlet-A | 3.8806 | eV | 319.50 nm | f=0.0051 | <s**2>=</s**2> | =0.000 |
|---------------|----|-----------|--------|----|-----------|----------|----------------|--------|
| 244 -> 246    |    | 0.16945   |        |    |           |          |                |        |
| 244 -> 247    |    | -0.29360  |        |    |           |          |                |        |
| 244 -> 248    |    | 0.60508   |        |    |           |          |                |        |

| Excited State | 9: Singlet-A  | 3.8832 eV 319.29 nm f=0.0213 <s**2>=0.000</s**2> |
|---------------|---------------|--------------------------------------------------|
| 235 -> 245    | 0.12062       |                                                  |
| 236 -> 245    | -0.14188      |                                                  |
| 237 -> 245    | 0.12076       |                                                  |
| 238 -> 245    | 0.57423       |                                                  |
| 239 -> 245    | 0.18518       |                                                  |
| 240 -> 245    | 0.21616       |                                                  |
|               |               |                                                  |
| Excited State | 10: Singlet-A | 3.9538 eV 313.58 nm f=0.0006 <s**2>=0.000</s**2> |
| 244 -> 246    | 0.12454       |                                                  |
| 244 -> 247    | 0.62414       |                                                  |
| 244 -> 248    | 0.27435       |                                                  |
|               |               |                                                  |
| Excited State | 11: Singlet-A | 3.9781 eV 311.67 nm f=0.0210 <s**2>=0.000</s**2> |
| 225 -> 245    | -0.11472      |                                                  |
| 226 -> 245    | -0.14065      |                                                  |
| 230 -> 245    | 0.12515       |                                                  |
| 232 -> 245    | 0.16552       |                                                  |
| 235 -> 245    | 0.37227       |                                                  |
| 237 -> 245    | -0.34277      |                                                  |
| 238 -> 245    | -0.18746      |                                                  |
| 239 -> 245    | 0.25014       |                                                  |
| 240 -> 245    | 0.12987       |                                                  |
|               |               |                                                  |
| Excited State | 12: Singlet-A | 4.0425 eV 306.70 nm f=0.0225 <s**2>=0.000</s**2> |
| 235 -> 245    | -0.16573      |                                                  |
| 236 -> 245    | 0.52101       |                                                  |
| 237 -> 245    | 0.26014       |                                                  |
| 239 -> 245    | 0.22873       |                                                  |
| 240 -> 245    | 0.25035       |                                                  |
|               |               |                                                  |
| Excited State | 13: Singlet-A | 4.1264 eV 300.46 nm f=0.1130 <s**2>=0.000</s**2> |

237 -> 245 0.17576

| 242 -> 246    | -0.13356      |                                                  |
|---------------|---------------|--------------------------------------------------|
| 243 -> 246    | 0.60353       |                                                  |
|               |               |                                                  |
| Excited State | 14: Singlet-A | 4.1308 eV 300.15 nm f=0.0094 <s**2>=0.000</s**2> |
| 229 -> 245    | 0.14237       |                                                  |
| 230 -> 245    | 0.13298       |                                                  |
| 233 -> 245    | 0.13891       |                                                  |
| 235 -> 245    | 0.18596       |                                                  |
| 236 -> 245    | -0.20204      |                                                  |
| 237 -> 245    | 0.44354       |                                                  |
| 238 -> 245    | -0.21610      |                                                  |
| 242 -> 245    | 0.11484       |                                                  |
| 243 -> 246    | -0.24144      |                                                  |
|               |               |                                                  |
| Excited State | 15: Singlet-A | 4.1599 eV 298.04 nm f=0.0081 <s**2>=0.000</s**2> |
| 244 -> 249    | 0.66673       |                                                  |
| 244 -> 250    | -0.12382      |                                                  |
|               |               |                                                  |
| Excited State | 16: Singlet-A | 4.1931 eV 295.69 nm f=0.0199 <s**2>=0.000</s**2> |
| 241 -> 246    | 0.11137       |                                                  |
| 241 -> 247    | 0.15026       |                                                  |
| 242 -> 246    | -0.15761      |                                                  |
| 242 -> 247    | -0.10474      |                                                  |
| 243 -> 247    | 0.59634       |                                                  |
|               |               |                                                  |
| Excited State | 17: Singlet-A | 4.2155 eV 294.11 nm f=0.0540 <s**2>=0.000</s**2> |
| 242 -> 246    | 0.63773       |                                                  |
| 243 -> 246    | 0.13329       |                                                  |
| 243 -> 247    | 0.13092       |                                                  |
|               |               |                                                  |
| Excited State | 18: Singlet-A | 4.2279 eV 293.25 nm f=0.0069 <s**2>=0.000</s**2> |
| 225 -> 245    | 0.20477       |                                                  |
| 230 -> 245    | -0.22563      |                                                  |
| 231 -> 245    | -0.27296      |                                                  |

| 232 -> 245 | -0.30516 |
|------------|----------|
| 233 -> 245 | 0.14562  |
| 235 -> 245 | 0.38704  |
| 236 -> 245 | 0.12607  |

Excited State 19: Singlet-A 4.2689 eV 290.43 nm f=0.0100 <S\*\*2>=0.000 231 -> 245 0.16721 233 -> 245 0.47534 235 -> 245 -0.16804 244 -> 250 -0.16922 244 -> 252 0.28618 244 -> 254 -0.19229

| Excited State | 20: Singlet- | A 4.2923 eV | 288.85 nm | f=0.0167 | <S**2>=0.000 |
|---------------|--------------|-------------|-----------|----------|--------------|
| 233 -> 245    | 0.17011      |             |           |          |              |
| 241 -> 246    | -0.36241     |             |           |          |              |
| 241 -> 247    | 0.21078      |             |           |          |              |
| 242 -> 247    | 0.46284      |             |           |          |              |
| 244 -> 250    | 0.10439      |             |           |          |              |
| 244 -> 252    | -0.15783     |             |           |          |              |
|               |              |             |           |          |              |

4.2954 eV 288.64 nm f=0.1051 <S\*\*2>=0.000 Excited State 21: Singlet-A 233 -> 245 -0.35871 241 -> 246 -0.15392 241 -> 247 0.10232 242 -> 247 0.19912 244 -> 250 -0.23783 244 -> 252 0.37849 244 -> 254 -0.19980

| Excited State | 22: | Singlet-A | 4.3711 eV | 283.65 nm | f=0.1093 | <s**2>=0.000</s**2> | ) |
|---------------|-----|-----------|-----------|-----------|----------|---------------------|---|
| 230 -> 245    | -   | -0.21504  |           |           |          |                     |   |
| 231 -> 245    | -   | -0.36046  |           |           |          |                     |   |
| 232 -> 245    |     | 0.51649   |           |           |          |                     |   |

| Excited State | 23: Singlet-A | 4.4003 eV 281.76 nm f=0.0093 <s**2>=0.000</s**2> |
|---------------|---------------|--------------------------------------------------|
| 234 -> 246    | 0.12017       |                                                  |
| 241 -> 246    | 0.49154       |                                                  |
| 241 -> 247    | 0.11281       |                                                  |
| 242 -> 247    | 0.30454       |                                                  |
| 242 -> 250    | -0.10596      |                                                  |
| 243 -> 246    | -0.10690      |                                                  |
| 243 -> 249    | 0.18431       |                                                  |
|               |               |                                                  |
| Excited State | 24: Singlet-A | 4.4082 eV 281.26 nm f=0.0593 <s**2>=0.000</s**2> |
| 244 -> 250    | -0.31449      |                                                  |
| 244 -> 251    | -0.32839      |                                                  |
| 244 -> 253    | -0.20452      |                                                  |
| 244 -> 254    | 0.45273       |                                                  |
|               |               |                                                  |
| Excited State | 25: Singlet-A | 4.4402 eV 279.23 nm f=0.0285 <s**2>=0.000</s**2> |
| 241 -> 247    | 0.10037       |                                                  |
| 244 -> 250    | -0.17301      |                                                  |
| 244 -> 251    | 0.60233       |                                                  |
| 244 -> 252    | 0.11248       |                                                  |
| 244 -> 253    | -0.10421      |                                                  |
| 244 -> 254    | 0.22175       |                                                  |
|               |               |                                                  |
| Excited State | 26: Singlet-A | 4.4530 eV 278.43 nm f=0.0548 <s**2>=0.000</s**2> |
| 241 -> 247    | 0.57477       |                                                  |
| 242 -> 247    | -0.25317      |                                                  |
| 243 -> 247    | -0.19792      |                                                  |
|               |               |                                                  |
| Excited State | 27: Singlet-A | 4.4841 eV 276.50 nm f=0.0285 <s**2>=0.000</s**2> |
| 229 -> 245    | -0.31584      |                                                  |
| 230 -> 245    | 0.29732       |                                                  |

231 -> 245 -0.15674

| 234 -> 245 | 0.32120  |
|------------|----------|
| 241 -> 246 | 0.14392  |
| 243 -> 249 | -0.28451 |

Excited State 28: Singlet-A 4.5133 eV 274.71 nm f=0.0183 <S\*\*2>=0.000

| 231 -> 245 | -0.10182 |
|------------|----------|
| 234 -> 245 | 0.39057  |
| 237 -> 246 | 0.11037  |
| 238 -> 246 | -0.10819 |
| 241 -> 247 | 0.13122  |
| 241 -> 250 | 0.12652  |
| 242 -> 249 | 0.14104  |
| 243 -> 249 | 0.39083  |

| Excited State | 29: Singlet-A | 4.5335 eV | 273.49 nm | f=0.0086 | <S**2>=0.000 |
|---------------|---------------|-----------|-----------|----------|--------------|
| 229 -> 245    | 0.10074       |           |           |          |              |
| 234 -> 245    | -0.15883      |           |           |          |              |
| 234 -> 247    | -0.16648      |           |           |          |              |
| 237 -> 246    | 0.22083       |           |           |          |              |
| 238 -> 246    | -0.20912      |           |           |          |              |
| 241 -> 249    | 0.12574       |           |           |          |              |
| 241 -> 250    | 0.19958       |           |           |          |              |
| 242 -> 249    | 0.10848       |           |           |          |              |
| 242 -> 253    | -0.15149      |           |           |          |              |
| 243 -> 247    | 0.16228       |           |           |          |              |
| 243 -> 248    | -0.20719      |           |           |          |              |
| 243 -> 249    | -0.15781      |           |           |          |              |
| 243 -> 250    | 0.20609       |           |           |          |              |

| Excited State 3 | 0: Singlet-A | 4.5380 eV 273.21 nr | n f=0.0108 <s**2>=0.000</s**2> |
|-----------------|--------------|---------------------|--------------------------------|
| 225 -> 245      | 0.16495      |                     |                                |
| 226 -> 245      | 0.14985      |                     |                                |
| 228 -> 245      | 0.34256      |                     |                                |
| 229 -> 245      | -0.11803     |                     |                                |
|                 |              |                     |                                |

| 230 -> 245 | 0.35940  |
|------------|----------|
| 232 -> 245 | 0.13717  |
| 234 -> 245 | -0.18873 |
| 243 -> 249 | 0.27113  |

Excited State 31: Singlet-A 4.5454 eV 272.77 nm f=0.0080 <S\*\*2>=0.000 244 -> 249 0.14513 244 -> 250 0.42590 244 -> 252 0.39834 244 -> 254 0.22265 244 -> 256 -0.14996

| Excited State | 32: Singlet-A | 4.5582 eV 272.00 nm f=0.0092 <s**2>=0.000</s**2> |
|---------------|---------------|--------------------------------------------------|
| 228 -> 245    | 0.33747       |                                                  |
| 229 -> 245    | 0.37594       |                                                  |
| 231 -> 245    | 0.11219       |                                                  |
| 234 -> 245    | 0.19728       |                                                  |
| 234 -> 246    | -0.10353      |                                                  |
| 237 -> 247    | 0.11409       |                                                  |
| 242 -> 247    | 0.10464       |                                                  |
|               |               |                                                  |

| 242 -> 250 | 0.15813  |
|------------|----------|
| 243 -> 249 | -0.12728 |

| Excited State | 33: Singlet-A | 4.5652 eV 271.59 nm f=0.0360 <s**2>=0.000</s**2> |  |
|---------------|---------------|--------------------------------------------------|--|
| 228 -> 245    | -0.15411      |                                                  |  |
| 229 -> 245    | -0.16184      |                                                  |  |
| 234 -> 245    | -0.22600      |                                                  |  |
| 234 -> 246    | -0.21776      |                                                  |  |
| 237 -> 247    | 0.19334       |                                                  |  |
| 238 -> 247    | -0.16875      |                                                  |  |
| 241 -> 249    | 0.12012       |                                                  |  |
| 241 -> 253    | -0.13384      |                                                  |  |
| 242 -> 247    | 0.15328       |                                                  |  |
| 242 -> 250    | 0.28947       |                                                  |  |

243 -> 246 0.11144

Excited State 34: Singlet-A 4.5831 eV 270.53 nm f=0.0186 <S\*\*2>=0.000 227 -> 245 0.11540 242 -> 248 0.11452 243 -> 248 0.59511

| Excited State | 35: Singlet-A | 4.5923 eV 269.98 nm f=0.0205 <s**2>=0.000</s**2> |
|---------------|---------------|--------------------------------------------------|
| 222 -> 245    | 0.16669       |                                                  |
| 225 -> 245    | 0.13020       |                                                  |
| 226 -> 245    | 0.23518       |                                                  |
| 227 -> 245    | 0.39397       |                                                  |
| 228 -> 245    | -0.18830      |                                                  |
| 231 -> 245    | 0.12620       |                                                  |
| 233 -> 245    | -0.11781      |                                                  |
| 234 -> 245    | 0.23883       |                                                  |
| 235 -> 245    | 0.15303       |                                                  |
| 243 -> 248    | -0.14956      |                                                  |

Excited State 36: Singlet-A 4.6078 eV 269.07 nm f=0.0094 <S\*\*2>=0.000 244 -> 255 0.16305 244 -> 256 0.39635 244 -> 258 0.44585 244 -> 260 -0.16994

| Excited State | 37: Singlet-A | 4.6679 eV 2 | 265.61 nm | f=0.0052 | <s**2>=0.000</s**2> |
|---------------|---------------|-------------|-----------|----------|---------------------|
| 225 -> 245    | 0.17555       |             |           |          |                     |
| 226 -> 245    | 0.10028       |             |           |          |                     |
| 227 -> 245    | -0.30212      |             |           |          |                     |
| 229 -> 245    | -0.30053      |             |           |          |                     |
| 230 -> 245    | -0.23427      |             |           |          |                     |
| 231 -> 245    | 0.37005       |             |           |          |                     |
| 232 -> 245    | 0.16880       |             |           |          |                     |
| 237 -> 245    | 0.11459       |             |           |          |                     |

| Excited State | 38: Singlet-A | 4.7331 eV | 261.95 nm | f=0.0113 | <s**2>=0.000</s**2> |
|---------------|---------------|-----------|-----------|----------|---------------------|
| 222 -> 245    | 0.14079       |           |           |          |                     |
| 225 -> 245    | -0.30046      |           |           |          |                     |
| 226 -> 245    | -0.11572      |           |           |          |                     |
| 227 -> 245    | 0.17278       |           |           |          |                     |
| 228 -> 245    | 0.32077       |           |           |          |                     |
| 229 -> 245    | -0.21429      |           |           |          |                     |
| 230 -> 245    | -0.18313      |           |           |          |                     |
| 233 -> 245    | -0.12377      |           |           |          |                     |
| 244 -> 253    | 0.17922       |           |           |          |                     |
| 244 -> 257    | -0.16477      |           |           |          |                     |
|               |               |           |           |          |                     |
| Excited State | 39: Singlet-A | 4.7387 eV | 261.64 nm | f=0.1070 | <s**2>=0.000</s**2> |
| 225 -> 245    | 0.13657       |           |           |          |                     |

-0.14846

0.10462

0.39082

0.15747

0.16443

-0.38951

-0.11781

228 -> 245 229 -> 245

244 -> 253

244 -> 254

244 -> 256

244 -> 257

244 -> 258

| Excited State | 40: Singlet-A | 4.7959 eV 258.52 nm f=0.0706 <s**2>=0.000</s**2> |
|---------------|---------------|--------------------------------------------------|
| 238 -> 246    | 0.14386       |                                                  |
| 239 -> 248    | -0.25307      |                                                  |
| 240 -> 248    | 0.21679       |                                                  |
| 243 -> 250    | 0.25467       |                                                  |
| 243 -> 252    | -0.16128      |                                                  |
| 244 -> 255    | 0.36907       |                                                  |
| 244 -> 256    | -0.19873      |                                                  |



MO245



MO244



MO243



MO242



MO237

**Figure S33.** The relevant molecular orbitals of **2** calculated at the MPW1PW91/6-31+G(d)//M062X/6-31G(d) level.

|   | Center | Atomic | Atomic | Coordinates (Angstroms)       |  |
|---|--------|--------|--------|-------------------------------|--|
|   | Number | Number | Туре   | X Y Z                         |  |
| - | 1      | 6      | 0      | -8.743167 3.193483 1.895170   |  |
|   | 2      | 6      | 0      | -8.755948 2.689803 0.573852   |  |
|   | 3      | 6      | 0      | -7.840986 1.748362 0.174556   |  |
|   | 4      | 6      | 0      | -6.860182 1.260755 1.079212   |  |
|   | 5      | 6      | 0      | -6.847352 1.770993 2.407875   |  |
|   | 6      | 6      | 0      | -7.807474 2.742130 2.789660   |  |
|   | 7      | 6      | 0      | -5.886582 0.285882 0.688180   |  |
|   | 8      | 6      | 0      | -4.962302 -0.128770 1.617107  |  |
|   | 9      | 6      | 0      | -4.952589 0.359802 2.945872   |  |
|   | 10     | 6      | 0      | -5.874601 1.293390 3.326429   |  |
|   | 11     | 6      | 0      | -5.886129 -0.285917 -0.688452 |  |
|   | 12     | 6      | 0      | -6.859568 -1.260673 -1.080154 |  |
|   | 13     | 6      | 0      | -6.845901 -1.770941 -2.408786 |  |
|   | 14     | 6      | 0      | -5.872500 -1.293431 -3.326683 |  |
|   | 15     | 6      | 0      | -4.950632 -0.359954 -2.945508 |  |
|   | 16     | 6      | 0      | -4.961119 0.128603 -1.616736  |  |
|   | 17     | 6      | 0      | -7.841030 -1.748172 -0.176145 |  |
|   | 18     | 6      | 0      | -8.755801 -2.689549 -0.576023 |  |
|   | 19     | 6      | 0      | -8.742169 -3.193278 -1.897320 |  |
|   | 20     | 6      | 0      | -7.805839 -2.742018 -2.791190 |  |
|   | 21     | 8      | 0      | -4.074935 -1.122685 1.258621  |  |
|   | 22     | 8      | 0      | -4.073796 1.122307 -1.257599  |  |
|   | 23     | 6      | 0      | -2.734458 -0.928190 1.422205  |  |
|   | 24     | 6      | 0      | -2.733315 0.928014 -1.421540  |  |
|   | 25     | 6      | 0      | -1.952084 -2.075147 1.306873  |  |
|   | 26     | 6      | 0      | -0.570154 -1.981771 1.341258  |  |
|   | 27     | 6      | 0      | 0.071654 -0.735610 1.511781   |  |
|   | 28     | 6      | 0      | -0.757558 0.397830 1.634500   |  |
|   | 29     | 6      | 0      | -2.137689 0.322126 1.601153   |  |
|   | 30     | 6      | 0      | -1.951039 2.075063 -1.306607  |  |
|   | 31     | 6      | 0      | -0.569087 1.981792 -1.341151  |  |

 Table S5. Standard orientation of the optimized geometry for 2R.

| 32 | 6 | 0 | 0.072796  | 0.735634  | -1.511295 |
|----|---|---|-----------|-----------|-----------|
| 33 | 6 | 0 | -0.756357 | -0.397898 | -1.633708 |
| 34 | 6 | 0 | -2.136477 | -0.322292 | -1.600296 |
| 35 | 6 | 0 | 1.505456  | -0.524422 | 1.550151  |
| 36 | 6 | 0 | 1.506582  | 0.524416  | -1.549535 |
| 37 | 7 | 0 | 2.034320  | -0.733048 | -1.428788 |
| 38 | 6 | 0 | 3.338685  | -0.558740 | -1.565339 |
| 39 | 6 | 0 | 3.585592  | 0.890605  | -1.769676 |
| 40 | 7 | 0 | 2.415052  | 1.508612  | -1.767315 |
| 41 | 7 | 0 | 2.413808  | -1.508779 | 1.768392  |
| 42 | 6 | 0 | 3.584296  | -0.890794 | 1.770450  |
| 43 | 6 | 0 | 3.337716  | 0.558460  | 1.565692  |
| 44 | 7 | 0 | 2.033319  | 0.732911  | 1.429110  |
| 45 | 6 | 0 | 4.258945  | 1.696758  | 1.591857  |
| 46 | 6 | 0 | 4.807126  | -1.683175 | 1.907494  |
| 47 | 6 | 0 | 4.808194  | 1.683490  | -1.906647 |
| 48 | 6 | 0 | 4.259425  | -1.697479 | -1.591525 |
| 49 | 6 | 0 | 3.913628  | -2.863264 | -0.890088 |
| 50 | 6 | 0 | 4.765436  | -3.958903 | -0.894217 |
| 51 | 6 | 0 | 5.960588  | -3.918196 | -1.611645 |
| 52 | 6 | 0 | 6.291464  | -2.780291 | -2.344328 |
| 53 | 6 | 0 | 5.445231  | -1.677277 | -2.339837 |
| 54 | 6 | 0 | 6.038276  | 1.280018  | -1.370695 |
| 55 | 6 | 0 | 7.138661  | 2.127777  | -1.409294 |
| 56 | 6 | 0 | 7.032849  | 3.384893  | -1.999621 |
| 57 | 6 | 0 | 5.816407  | 3.792559  | -2.547736 |
| 58 | 6 | 0 | 4.710191  | 2.957048  | -2.491636 |
| 59 | 6 | 0 | 4.711090  | -2.955174 | 2.495954  |
| 60 | 6 | 0 | 5.818044  | -3.789820 | 2.551582  |
| 61 | 6 | 0 | 7.032947  | -3.382718 | 1.999644  |
| 62 | 6 | 0 | 7.136614  | -2.127135 | 1.405608  |
| 63 | 6 | 0 | 6.035501  | -1.280345 | 1.367371  |
| 64 | 6 | 0 | 3.912913  | 2.863388  | 0.891920  |
| 65 | 6 | 0 | 4.765309  | 3.958555  | 0.896046  |

| 66 | 6 | 0 | 5.961319  | 3.916581  | 1.611969  |
|----|---|---|-----------|-----------|-----------|
| 67 | 6 | 0 | 6.292457  | 2.777846  | 2.343219  |
| 68 | 6 | 0 | 5.445655  | 1.675288  | 2.338733  |
| 69 | 1 | 0 | -9.473629 | 3.937750  | 2.196506  |
| 70 | 1 | 0 | -9.496138 | 3.054614  | -0.131493 |
| 71 | 1 | 0 | -7.854147 | 1.369650  | -0.842616 |
| 72 | 1 | 0 | -7.784285 | 3.121925  | 3.807814  |
| 73 | 1 | 0 | -4.211053 | -0.023858 | 3.639649  |
| 74 | 1 | 0 | -5.880039 | 1.675811  | 4.343443  |
| 75 | 1 | 0 | -5.877294 | -1.675825 | -4.343711 |
| 76 | 1 | 0 | -4.208628 | 0.023600  | -3.638840 |
| 77 | 1 | 0 | -7.854844 | -1.369430 | 0.841007  |
| 78 | 1 | 0 | -9.496490 | -3.054278 | 0.128841  |
| 79 | 1 | 0 | -9.472473 | -3.937503 | -2.199131 |
| 80 | 1 | 0 | -7.781985 | -3.121855 | -3.809313 |
| 81 | 1 | 0 | -2.437187 | -3.031424 | 1.149885  |
| 82 | 1 | 0 | -0.267546 | 1.360303  | 1.741870  |
| 83 | 1 | 0 | -2.742324 | 1.220467  | 1.661378  |
| 84 | 1 | 0 | -2.436197 | 3.031349  | -1.149850 |
| 85 | 1 | 0 | -0.266278 | -1.360365 | -1.740830 |
| 86 | 1 | 0 | -2.741059 | -1.220689 | -1.660281 |
| 87 | 1 | 0 | 2.989665  | -2.872970 | -0.318249 |
| 88 | 1 | 0 | 4.502691  | -4.843816 | -0.322871 |
| 89 | 1 | 0 | 6.627378  | -4.775356 | -1.606788 |
| 90 | 1 | 0 | 7.205736  | -2.754417 | -2.929304 |
| 91 | 1 | 0 | 5.693426  | -0.803155 | -2.933844 |
| 92 | 1 | 0 | 6.126153  | 0.302327  | -0.913782 |
| 93 | 1 | 0 | 8.078279  | 1.807521  | -0.969485 |
| 94 | 1 | 0 | 7.894367  | 4.045101  | -2.031442 |
| 95 | 1 | 0 | 5.728944  | 4.770984  | -3.010548 |
| 96 | 1 | 0 | 3.748785  | 3.272963  | -2.883116 |
| 97 | 1 | 0 | 3.750766  | -3.270696 | 2.890431  |
| 98 | 1 | 0 | 5.732335  | -4.767150 | 3.017030  |
| 99 | 1 | 0 | 7.894929  | -4.042337 | 2.031153  |

| 100 | 1  | 0 | 8.074849 | -1.807659 | 0.962278  |
|-----|----|---|----------|-----------|-----------|
| 101 | 1  | 0 | 6.120767 | -0.304411 | 0.906014  |
| 102 | 1  | 0 | 2.988293 | 2.874095  | 0.321167  |
| 103 | 1  | 0 | 4.502354 | 4.844159  | 0.325865  |
| 104 | 1  | 0 | 6.628551 | 4.773397  | 1.607019  |
| 105 | 1  | 0 | 7.207446 | 2.750906  | 2.927026  |
| 106 | 1  | 0 | 5.694195 | 0.800527  | 2.931604  |
| 107 | 17 | 0 | 0.292817 | 3.470176  | -1.086718 |
| 108 | 17 | 0 | 0.291906 | -3.469887 | 1.086000  |
|     |    |   |          |           |           |



Figure S34. Optimized structure of 2R.

| SCF Done: E(UM062X)                        | =           | -3674.18880187 A.U      | •    |
|--------------------------------------------|-------------|-------------------------|------|
| S**2 before annihilation 0.8370, after     | 0.1535      |                         |      |
| Zero-point correction                      | =           | 0.838224 (Hartree/Parti | cle) |
| Thermal correction to Energy               | =           | 0.891260                |      |
| Thermal correction to Enthalpy             | =           | 0.892204                |      |
| Thermal correction to Gibbs Free Energy    | =           | 0.750214                |      |
| Sum of electronic and zero-point Energies  | =           | -3673.350578            |      |
| Sum of electronic and thermal Energies     | =           | -3673.297542            |      |
| Sum of electronic and thermal Enthalpies   | =           | -3673.296598            |      |
| Sum of electronic and thermal Free Energie | es =        | -3673.438588            |      |
| Low frequencies3.3728 -0.0020 0.           | 0007 0.0018 | 6.1894 7.1811           |      |
| Low frequencies 13.6164 18.0737 25         | 5.5366      |                         |      |

## The Result for the TDDFT calculation for $\mathbf{2R}$

Excitation energies and oscillator strengths:

Excited State 1: 1.732-A 1.0269 eV 1207.42 nm f=0.0024 <S\*\*2>=0.500 244A -> 245A 0.70505 244B -> 245B 0.70424 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -3674.73338606Copying the excited state density for this state as the 1-particle RhoCI density. 1.4051 eV 882.41 nm f=0.0534 <S\*\*2>=-0.009 Excited State 2: 0.983-A 244A -> 245A -0.70133  $244B \rightarrow 245B$ 0.70213 Excited State 3: 2.596-A 1.8925 eV 655.14 nm f=0.0000 <S\*\*2>=1.434 239A -> 245A 0.22041 240A -> 245A 0.62387 239B -> 245B 0.22133 240B -> 245B 0.62187 Excited State 4: 2.642-A 1.9760 eV 627.46 nm f=0.0051 <S\*\*2>=1.495 241A -> 245A 0.32752 242A -> 245A -0.45441 243A -> 245A 0.37723 241B -> 245B -0.32711 242B -> 245B 0.45496 243B -> 245B -0.37517 Excited State 5: 2.217-A 2.0193 eV 613.99 nm f=0.0447 <S\*\*2>=0.978 234A -> 245A 0.11661 238A -> 245A -0.11651 239A -> 245A -0.35280 240A -> 245A -0.52430 234B -> 245B -0.11681 238B -> 245B 0.10273 239B -> 245B 0.35807 240B -> 245B 0.52625 S52

| Excited State | 6: | 2.128-A  | 2.1720 eV | 570.82 nm | f=0.2472 | <s**2>=0.883</s**2> |
|---------------|----|----------|-----------|-----------|----------|---------------------|
| 231A -> 245   | A  | 0.11548  |           |           |          |                     |
| 232A -> 245   | A  | -0.22509 |           |           |          |                     |
| 233A -> 245   | A  | 0.12310  |           |           |          |                     |
| 234A -> 245   | A  | 0.16893  |           |           |          |                     |
| 236A -> 245   | A  | -0.10775 |           |           |          |                     |
| 237A -> 245   | A  | 0.16252  |           |           |          |                     |
| 238A -> 245   | A  | 0.17953  |           |           |          |                     |
| 241A -> 245   | A  | -0.24453 |           |           |          |                     |
| 242A -> 245   | A  | 0.34304  |           |           |          |                     |
| 243A -> 245   | A  | -0.32478 |           |           |          |                     |
| 231B -> 245I  | В  | 0.11751  |           |           |          |                     |
| 232B -> 245I  | В  | -0.22254 |           |           |          |                     |
| 233B -> 245I  | В  | 0.12187  |           |           |          |                     |
| 234B -> 245I  | В  | 0.16886  |           |           |          |                     |
| 236B -> 245I  | В  | -0.10499 |           |           |          |                     |
| 237B -> 245I  | В  | 0.16535  |           |           |          |                     |
| 238B -> 245I  | В  | 0.17589  |           |           |          |                     |
| 241B -> 245I  | B  | -0.24543 |           |           |          |                     |
| 242B -> 245I  | В  | 0.34502  |           |           |          |                     |
| 243B -> 245I  | В  | -0.32448 |           |           |          |                     |

Excited State 7: 2.279-A 2.3010 eV 538.82 nm f=0.0004 <S\*\*2>=1.048

| 228A -> 245A | -0.16440 |
|--------------|----------|
| 229A -> 245A | 0.10852  |
| 231A -> 245A | -0.17570 |
| 232A -> 245A | 0.41800  |
| 233A -> 245A | -0.21821 |
| 234A -> 245A | -0.21958 |
| 235A -> 245A | 0.11595  |
| 236A -> 245A | 0.18744  |
| 237A -> 245A | -0.25095 |
| 238A -> 245A | -0.11061 |

| 243A -> 245A | -0.13175 |
|--------------|----------|
| 228B -> 245B | 0.16071  |
| 229B -> 245B | -0.10872 |
| 231B -> 245B | 0.17832  |
| 232B -> 245B | -0.41162 |
| 233B -> 245B | 0.21449  |
| 234B -> 245B | 0.21820  |
| 235B -> 245B | -0.11203 |
| 236B -> 245B | -0.18089 |
| 237B -> 245B | 0.25311  |
| 238B -> 245B | 0.10552  |
| 243B -> 245B | 0.12402  |

| Excited State | 8: | 2.420-A  | 2.3417 eV | 529.46 nm | f=0.1591 | <s**2>=1.214</s**2> |
|---------------|----|----------|-----------|-----------|----------|---------------------|
| 228A -> 245   | A  | 0.16369  |           |           |          |                     |
| 231A -> 245   | A  | 0.10694  |           |           |          |                     |
| 232A -> 245   | A  | -0.28802 |           |           |          |                     |
| 233A -> 245   | A  | 0.17274  |           |           |          |                     |
| 234A -> 245   | A  | 0.17469  |           |           |          |                     |
| 236A -> 245   | A  | -0.20756 |           |           |          |                     |
| 237A -> 245   | A  | 0.15187  |           |           |          |                     |
| 240A -> 245   | A  | 0.12100  |           |           |          |                     |
| 243A -> 245   | A  | 0.40972  |           |           |          |                     |
| 228B -> 245   | В  | 0.16527  |           |           |          |                     |
| 231B -> 245   | В  | 0.11305  |           |           |          |                     |
| 232B -> 245   | В  | -0.29394 |           |           |          |                     |
| 233B -> 245   | В  | 0.17559  |           |           |          |                     |
| 234B -> 245   | В  | 0.17947  |           |           |          |                     |
| 236B -> 245   | В  | -0.20795 |           |           |          |                     |
| 237B -> 245   | В  | 0.16024  |           |           |          |                     |
| 240B -> 245   | В  | 0.12262  |           |           |          |                     |
| 243B -> 245   | В  | 0.41023  |           |           |          |                     |
|               |    |          |           |           |          |                     |

Excited State 9: 2.558-A 2.3859 eV 519.65 nm f=0.0082 <S\*\*2>=1.386

| 234A -> 245A | -0.10652 |
|--------------|----------|
| 239A -> 245A | 0.21324  |
| 241A -> 245A | -0.17763 |
| 242A -> 245A | 0.45519  |
| 243A -> 245A | 0.37767  |
| 243A -> 246A | 0.10169  |
| 234B -> 245B | -0.10489 |
| 239B -> 245B | 0.20080  |
| 241B -> 245B | -0.17286 |
| 242B -> 245B | 0.44408  |
| 243B -> 245B | 0.36367  |
| 243B -> 246B | 0.10126  |

| F | Excited State 10 | ): 2.075-A | 2.4020 eV 516.18 nm f=0.0014 <s**2>=0.826</s**2> |
|---|------------------|------------|--------------------------------------------------|
|   | 239A -> 245A     | -0.33735   |                                                  |
|   | 240A -> 245A     | 0.19453    |                                                  |
|   | 241A -> 245A     | 0.14473    |                                                  |
|   | 242A -> 245A     | -0.29291   |                                                  |
|   | 243A -> 245A     | -0.44686   |                                                  |
|   | 239B -> 245B     | 0.34344    |                                                  |
|   | 240B -> 245B     | -0.19480   |                                                  |
|   | 241B -> 245B     | -0.15049   |                                                  |
|   | 242B -> 245B     | 0.30622    |                                                  |
|   | 243B -> 245B     | 0.46147    |                                                  |

Excited State 11: 2.136-A 2.4679 eV 502.38 nm f=0.0190 <S\*\*2>=0.891

| 238A -> 245A | -0.18134 |
|--------------|----------|
| 239A -> 245A | -0.38678 |
| 240A -> 245A | 0.38798  |
| 242A -> 245A | 0.20797  |
| 243A -> 245A | 0.31065  |
| 238B -> 245B | 0.16779  |
| 239B -> 245B | 0.39259  |
| 240B -> 245B | -0.38848 |

| 242B -> 245B | -0.20821 |
|--------------|----------|
| 243B -> 245B | -0.31084 |

| Excited State 12: | 2.079-A  | 2.5253 eV | 490.96 nm | f=0.0603 | <s**2>=0.830</s**2> |
|-------------------|----------|-----------|-----------|----------|---------------------|
| 233A -> 245A      | 0.10379  |           |           |          |                     |
| 236A -> 245A      | 0.10212  |           |           |          |                     |
| 238A -> 245A      | 0.13338  |           |           |          |                     |
| 239A -> 245A      | 0.55199  |           |           |          |                     |
| 240A -> 245A      | -0.24334 |           |           |          |                     |
| 242A -> 245A      | -0.23526 |           |           |          |                     |
| 233B -> 245B      | 0.10427  |           |           |          |                     |
| 236B -> 245B      | 0.10032  |           |           |          |                     |
| 238B -> 245B      | 0.11409  |           |           |          |                     |
| 239B -> 245B      | 0.55748  |           |           |          |                     |
| 240B -> 245B      | -0.24429 |           |           |          |                     |
| 242B -> 245B      | -0.23620 |           |           |          |                     |

| Excited State 13: | 2.969-A  | 2.5445 eV | 487.27 nm | f=0.0008 | <s**2>=1.954</s**2> |
|-------------------|----------|-----------|-----------|----------|---------------------|
| 241A -> 245A      | 0.46096  |           |           |          |                     |
| 241A -> 246A      | 0.22293  |           |           |          |                     |
| 242A -> 245A      | 0.31833  |           |           |          |                     |
| 242A -> 246A      | 0.14996  |           |           |          |                     |
| 242A -> 247A      | -0.11762 |           |           |          |                     |
| 243A -> 247A      | -0.22040 |           |           |          |                     |
| 241B -> 245B      | -0.45855 |           |           |          |                     |
| 241B -> 246B      | -0.22292 |           |           |          |                     |
| 242B -> 245B      | -0.31629 |           |           |          |                     |
| 242B -> 246B      | -0.14992 |           |           |          |                     |

| 242B -> 247B | 0.11677 |
|--------------|---------|
| 243B -> 247B | 0.22086 |

| Excited State 14: | 2.616-A  | 2.5645 eV | 483.46 nm | f=0.0052 | <s**2>=1.462</s**2> |
|-------------------|----------|-----------|-----------|----------|---------------------|
| 235A -> 245A      | -0.13478 |           |           |          |                     |
| 238A -> 245A      | -0.31090 |           |           |          |                     |

| 239A -> 245A | 0.11927  |
|--------------|----------|
| 241A -> 245A | 0.34410  |
| 241A -> 247A | 0.18593  |
| 242A -> 245A | 0.26836  |
| 242A -> 246A | -0.12116 |
| 242A -> 247A | 0.11099  |
| 243A -> 246A | -0.21723 |
| 235B -> 245B | -0.13462 |
| 238B -> 245B | -0.32026 |
| 239B -> 245B | 0.10954  |
| 241B -> 245B | 0.34402  |
| 241B -> 247B | 0.18592  |
| 242B -> 245B | 0.26746  |
| 242B -> 246B | -0.12014 |
| 242B -> 247B | 0.11128  |
| 243B -> 246B | -0.21776 |

| Excited State 15 | : 2.560-A | 2.5914 eV | 478.45 nm | f=0.0023 | <s**2>=1.389</s**2> |
|------------------|-----------|-----------|-----------|----------|---------------------|
|------------------|-----------|-----------|-----------|----------|---------------------|

| 232A -> 245A | -0.11809 |
|--------------|----------|
| 235A -> 245A | 0.11205  |
| 237A -> 245A | -0.54763 |
| 238A -> 245A | 0.28704  |
| 232B -> 245B | 0.12036  |
| 235B -> 245B | -0.14189 |
| 236B -> 245B | 0.11723  |
| 237B -> 245B | 0.56902  |
| 238B -> 245B | -0.33958 |

Excited State 16: 3.030-A 2.5935 eV 478.07 nm f=0.0053 <S\*\*2>=2.046 235A -> 245A 0.21457 236A -> 245A -0.27170 237A -> 245A -0.14143 238A -> 245A 0.31346 241A -> 247A 0.24285

| 242A -> 246A | -0.16040 |
|--------------|----------|
| 242A -> 247A | 0.14377  |
| 243A -> 245A | 0.15904  |
| 243A -> 246A | -0.28955 |
| 235B -> 245B | 0.19229  |
| 236B -> 245B | -0.25864 |
| 238B -> 245B | 0.26734  |
| 241B -> 247B | 0.24267  |
| 242B -> 246B | -0.16049 |
| 242B -> 247B | 0.14493  |
| 243B -> 245B | 0.15101  |
| 243B -> 246B | -0.28945 |

Excited State 17: 2.146-A 2.6183 eV 473.53 nm f=0.0001 <S\*\*2>=0.901 235A -> 245A 0.15751 237A -> 245A -0.32983 238A -> 245A 0.27034 241A -> 245A 0.43846 242A -> 245A 0.16462 243A -> 246A 0.12014 235B -> 245B 0.15104 237B -> 245B -0.31352 238B -> 245B 0.26306

241B -> 245B 0.43816 242B -> 245B 0.16469 243B -> 246B 0.12012

Excited State 18: 2.337-A 2.6583 eV 466.40 nm f=0.0132 <S\*\*2>=1.116 231A -> 245A -0.12404 232A -> 245A 0.17551 234A -> 245A -0.18093 236A -> 245A -0.33440 237A -> 245A 0.39886

238A -> 245A 0.13125

| 241A -> 245A | 0.26746  |
|--------------|----------|
| 231B -> 245B | -0.12564 |
| 232B -> 245B | 0.17553  |
| 234B -> 245B | -0.17997 |
| 236B -> 245B | -0.33441 |
| 237B -> 245B | 0.40035  |
| 238B -> 245B | 0.12956  |
| 241B -> 245B | 0.25562  |

Excited State 19: 3.140-A 2.6609 eV 465.96 nm f=0.0010 <S\*\*2>=2.214

| 236A -> 245A | -0.11061 |
|--------------|----------|
| 241A -> 245A | -0.32699 |
| 241A -> 246A | 0.28414  |
| 242A -> 245A | -0.18361 |
| 242A -> 246A | 0.18807  |
| 242A -> 247A | -0.16129 |
| 243A -> 247A | -0.29824 |
| 241B -> 245B | 0.33792  |
| 241B -> 246B | -0.28424 |
| 242B -> 245B | 0.18504  |
| 242B -> 246B | -0.18629 |
| 242B -> 247B | 0.15849  |
| 243B -> 245B | -0.10127 |
| 243B -> 247B | 0.29969  |

2.7080 eV 457.85 nm f=0.0022 <S\*\*2>=0.896 Excited State 20: 2.141-A 230A -> 245A 0.13351 231A -> 245A -0.17720 232A -> 245A 0.15189 234A -> 245A -0.16016 236A -> 245A -0.43372 237A -> 245A 0.20443 238A -> 245A 0.30760

239A -> 245A -0.11555

| 241A -> 245A | 0.13943  |
|--------------|----------|
| 230B -> 245B | 0.13563  |
| 231B -> 245B | 0.17577  |
| 232B -> 245B | -0.15333 |
| 234B -> 245B | 0.16017  |
| 236B -> 245B | 0.43547  |
| 237B -> 245B | -0.20921 |
| 238B -> 245B | -0.31155 |
| 239B -> 245B | 0.10322  |
| 241B -> 245B | -0.14066 |

Excited State 21: 2.391-A 2.7351 eV 453.30 nm f=0.0017 <S\*\*2>=1.180

| 230A -> 245A | -0.12367 |
|--------------|----------|
| 231A -> 245A | -0.11965 |
| 233A -> 245A | 0.16454  |
| 235A -> 245A | 0.46345  |
| 236A -> 245A | 0.33158  |
| 237A -> 245A | 0.36045  |
| 239A -> 245A | -0.12413 |
| 230B -> 245B | 0.10919  |
| 231B -> 245B | -0.11239 |
| 233B -> 245B | 0.15128  |
| 235B -> 245B | 0.38822  |
| 236B -> 245B | 0.28794  |
| 237B -> 245B | 0.32993  |
| 239B -> 245B | -0.10335 |

Excited State 22: 2.058-A 2.7504 eV 450.78 nm f= $0.0002 < S^{**}2 > =0.809$ 232A -> 245A 0.15929 235A -> 245A -0.51191 236A -> 245A -0.24268 237A -> 245A -0.15447 238A -> 245A -0.11428 239A -> 245A 0.10707

| 229B -> 245B | 0.10123  |
|--------------|----------|
| 232B -> 245B | -0.17514 |
| 235B -> 245B | 0.58130  |
| 236B -> 245B | 0.28447  |
| 237B -> 245B | 0.19961  |
| 238B -> 245B | 0.12397  |
| 239B -> 245B | -0.11783 |

Excited State 23: 2.520-A 2.7576 eV 449.61 nm f=0.0047 <S\*\*2>=1.337

| 228A -> 245A | 0.11671  |
|--------------|----------|
| 232A -> 245A | -0.29266 |
| 233A -> 245A | -0.19978 |
| 234A -> 245A | -0.13311 |
| 235A -> 245A | 0.34453  |
| 236A -> 245A | -0.21551 |
| 238A -> 245A | -0.28220 |
| 243A -> 245A | -0.16824 |
| 228B -> 245B | 0.11532  |
| 232B -> 245B | -0.28989 |
| 233B -> 245B | -0.20023 |
| 234B -> 245B | -0.13546 |
| 235B -> 245B | 0.33751  |
| 236B -> 245B | -0.22193 |
| 238B -> 245B | -0.28420 |
| 243B -> 245B | -0.16913 |

Excited State 24: 2.265-A 2.7836 eV 445.41 nm f=0.0011 <S\*\*2>=1.033 227A -> 245A -0.13926

| /       |        | 0.10/20  |
|---------|--------|----------|
| 232A -  | >245A  | 0.34339  |
| 233A -> | > 245A | 0.24256  |
| 234A -> | > 245A | 0.24874  |
| 235A -> | >245A  | -0.16548 |
| 236A -> | > 245A | 0.18996  |
| 238A -  | >245A  | 0.30481  |

| 243A -> 245A | 0.10264  |
|--------------|----------|
| 227B -> 245B | 0.13896  |
| 230B -> 245B | -0.10271 |
| 232B -> 245B | -0.34222 |
| 233B -> 245B | -0.24316 |
| 234B -> 245B | -0.25031 |
| 235B -> 245B | 0.15926  |
| 236B -> 245B | -0.19524 |
| 238B -> 245B | -0.30736 |
| 243B -> 245B | -0.10342 |

Excited State 25: 2.471-A 2.8877 eV 429.35 nm f=0.0012 <S\*\*2>=1.276

| 226A -> 245A | -0.12941 |
|--------------|----------|
| 229A -> 245A | 0.13212  |
| 230A -> 245A | -0.12811 |
| 231A -> 245A | -0.34770 |
| 232A -> 245A | 0.14724  |
| 233A -> 245A | 0.36933  |
| 234A -> 245A | 0.17879  |
| 236A -> 245A | -0.21567 |
| 237A -> 245A | -0.10970 |
| 238A -> 245A | -0.15350 |
| 226B -> 245B | -0.12879 |
| 229B -> 245B | 0.13074  |
| 230B -> 245B | 0.12543  |
| 231B -> 245B | -0.35527 |
| 232B -> 245B | 0.14272  |
| 233B -> 245B | 0.37355  |
| 234B -> 245B | 0.17677  |
| 236B -> 245B | -0.21458 |
| 237B -> 245B | -0.11034 |
| 238B -> 245B | -0.15410 |
|              |          |

Excited State 26: 2.510-A 2.9147 eV 425.38 nm f=0.0025 <S\*\*2>=1.325

| 227A -> 245A | 0.29624  |
|--------------|----------|
| 229A -> 245A | 0.26108  |
| 231A -> 245A | -0.29894 |
| 233A -> 245A | 0.37794  |
| 234A -> 245A | -0.13741 |
| 235A -> 245A | -0.17013 |
| 227B -> 245B | -0.29645 |
| 229B -> 245B | -0.25615 |
| 231B -> 245B | 0.29736  |
| 233B -> 245B | -0.37045 |
| 234B -> 245B | 0.13862  |
| 235B -> 245B | 0.17365  |

| 225A -> 245A | 0.18045  |
|--------------|----------|
| 226A -> 245A | -0.20958 |
| 227A -> 245A | -0.22526 |
| 229A -> 245A | 0.15300  |
| 230A -> 245A | -0.12028 |
| 231A -> 245A | -0.19095 |
| 233A -> 245A | 0.14726  |
| 234A -> 245A | 0.25235  |

Excited State 27: 2.183-A 2.9445 eV 421.07 nm f=0.0049 <S\*\*2>=0.942

- 235A -> 245A 0.14537
- 236A -> 245A -0.26492
- 238A -> 245A -0.23904 239A -> 245A 0.16013 225B -> 245B -0.17724 226B -> 245B 0.20825 227B -> 245B 0.22253
- 229B -> 245B -0.15077 230B -> 245B -0.11967 231B -> 245B 0.19847 233B -> 245B -0.15040
- 234B -> 245B -0.25119

| 235B -> 245B | -0.14139 |
|--------------|----------|
| 236B -> 245B | 0.26736  |
| 238B -> 245B | 0.24499  |
| 239B -> 245B | -0.14867 |

Excited State 28: 2.370-A 2.9677 eV 417.78 nm f=0.0040 <S\*\*2>=1.154

| 225A -> 245A | -0.23132 |
|--------------|----------|
| 226A -> 245A | 0.45724  |
| 227A -> 245A | 0.12864  |
| 228A -> 245A | 0.19492  |
| 230A -> 245A | 0.13481  |
| 232A -> 245A | 0.25475  |
| 233A -> 245A | 0.18317  |
| 239A -> 245A | -0.12111 |
| 225B -> 245B | -0.23800 |
| 226B -> 245B | 0.47384  |
| 227B -> 245B | 0.13309  |
| 228B -> 245B | 0.20010  |
| 230B -> 245B | -0.13838 |
| 232B -> 245B | 0.26444  |
| 233B -> 245B | 0.19278  |
| 239B -> 245B | -0.12569 |

Excited State 29: 2.171-A 2.9891 eV 414.78 nm f=0.0010 <S\*\*2>=0.929

| 225A -> 245A | -0.24746 |
|--------------|----------|
| 226A -> 245A | 0.36235  |
| 228A -> 245A | 0.22397  |
| 229A -> 245A | -0.13770 |
| 232A -> 245A | 0.27758  |
| 233A -> 245A | 0.22724  |
| 235A -> 245A | 0.18670  |
| 238A -> 245A | -0.17255 |
| 225B -> 245B | 0.23572  |
| 226B -> 245B | -0.34670 |

| 228B -> 245B | -0.21539 |
|--------------|----------|
| 229B -> 245B | 0.13800  |
| 232B -> 245B | -0.27337 |
| 233B -> 245B | -0.21994 |
| 234B -> 245B | -0.10203 |
| 235B -> 245B | -0.18721 |
| 238B -> 245B | 0.17071  |

| Excited State 30: | 2.394-A  | 3.0190 eV | 410.68 nm | f=0.0021 | <s**2>=1.183</s**2> |
|-------------------|----------|-----------|-----------|----------|---------------------|
| 225A -> 245A      | 0.11842  |           |           |          |                     |
| 226A -> 245A      | -0.18308 |           |           |          |                     |
| 227A -> 245A      | -0.12672 |           |           |          |                     |
| 228A -> 245A      | 0.16013  |           |           |          |                     |
| 230A -> 245A      | 0.20417  |           |           |          |                     |
| 231A -> 245A      | 0.33252  |           |           |          |                     |
| 232A -> 245A      | 0.30795  |           |           |          |                     |
| 234A -> 245A      | 0.19133  |           |           |          |                     |
| 235A -> 245A      | 0.24011  |           |           |          |                     |
| 237A -> 245A      | 0.10657  |           |           |          |                     |
| 225B -> 245B      | 0.12329  |           |           |          |                     |
| 226B -> 245B      | -0.19222 |           |           |          |                     |
| 227B -> 245B      | -0.12665 |           |           |          |                     |
| 228B -> 245B      | 0.15802  |           |           |          |                     |
| 230B -> 245B      | -0.20197 |           |           |          |                     |
| 231B -> 245B      | 0.32988  |           |           |          |                     |
| 232B -> 245B      | 0.30948  |           |           |          |                     |
| 234B -> 245B      | 0.19115  |           |           |          |                     |
| 235B -> 245B      | 0.24283  |           |           |          |                     |
| 237B -> 245B      | 0.10350  |           |           |          |                     |
| 238B -> 245B      | -0.10365 |           |           |          |                     |

Excited State 31: 2.431-A 3.0865 eV 401.70 nm f=0.0005 <S\*\*2>=1.228 225A -> 245A 0.16963 226A -> 245A -0.19567

| 229A -> 245A | -0.10539 |
|--------------|----------|
| 230A -> 245A | 0.58915  |
| 236A -> 245A | 0.17374  |
| 225B -> 245B | -0.16794 |
| 226B -> 245B | 0.19702  |
| 229B -> 245B | 0.10204  |
| 230B -> 245B | 0.59066  |
| 236B -> 245B | -0.17615 |

Excited State 32: 2.210-A 3.1132 eV 398.26 nm f=0.0005 <S\*\*2>=0.971

| 225A -> 245A | 0.12892  |
|--------------|----------|
| 226A -> 245A | -0.20119 |
| 227A -> 245A | 0.10065  |
| 228A -> 245A | 0.16132  |
| 230A -> 245A | 0.44906  |
| 231A -> 245A | -0.11935 |
| 233A -> 245A | 0.15288  |
| 234A -> 245A | -0.28231 |
| 236A -> 245A | 0.15281  |
| 225B -> 245B | 0.12845  |
| 226B -> 245B | -0.20279 |
| 227B -> 245B | 0.10691  |
| 228B -> 245B | 0.16151  |
| 230B -> 245B | -0.44425 |
| 231B -> 245B | -0.10977 |
| 233B -> 245B | 0.15606  |
| 234B -> 245B | -0.28457 |
| 236B -> 245B | 0.15154  |

Excited State 33: 2.467-A 3.1355 eV 395.41 nm f=0.0011 <S\*\*2>=1.271 225A -> 245A 0.21886 226A -> 245A -0.23978 227A -> 245A 0.23972 228A -> 245A 0.14561

| 230A -> 245A | -0.16684 |
|--------------|----------|
| 231A -> 245A | 0.35698  |
| 232A -> 245A | 0.16643  |
| 233A -> 245A | 0.10676  |
| 234A -> 245A | -0.21779 |
| 235A -> 245A | 0.15003  |
| 225B -> 245B | -0.21421 |
| 226B -> 245B | 0.23648  |
| 227B -> 245B | -0.24013 |
| 228B -> 245B | -0.14142 |
| 230B -> 245B | -0.17639 |
| 231B -> 245B | -0.35208 |
| 232B -> 245B | -0.16893 |
| 233B -> 245B | -0.10668 |
| 234B -> 245B | 0.21309  |
| 235B -> 245B | -0 15057 |

| Excited State | 34:      | 2.151-A | 3.1837 eV | 389.43 nm                  | f=0.0001 | <s**2>=0.907</s**2> |
|---------------|----------|---------|-----------|----------------------------|----------|---------------------|
|               | <i>c</i> | =       | 0.100/0/  | <i>c c c c c c c c c c</i> | 1 0.0001 | 5 = 0.207           |

| 226A -> 245A | -0.11310 |
|--------------|----------|
| 227A -> 245A | 0.20159  |
| 228A -> 245A | 0.16802  |
| 230A -> 245A | -0.35801 |
| 231A -> 245A | 0.29316  |
| 233A -> 245A | 0.11342  |
| 234A -> 245A | -0.26159 |
| 244A -> 248A | 0.15301  |
| 226B -> 245B | -0.11372 |
| 227B -> 245B | 0.20500  |
| 228B -> 245B | 0.16844  |
| 230B -> 245B | 0.36510  |
| 231B -> 245B | 0.28635  |
| 233B -> 245B | 0.11637  |
| 234B -> 245B | -0.26144 |
| 244B -> 248B | 0.15297  |
|              |          |

Excited State 35: 2.810-A 3.2121 eV 386.00 nm f=0.0008 <S\*\*2>=1.724

| 224A -> 245A | -0.11010 |
|--------------|----------|
| 230A -> 245A | 0.11717  |
| 244A -> 248A | 0.52096  |
| 224B -> 245B | -0.11034 |
| 230B -> 245B | -0.11621 |
| 244B -> 248B | 0.52082  |

Excited State 36: 2.651-A 3.2324 eV 383.56 nm f=0.0024 <S\*\*2>=1.507

| 227A -> 245A | -0.16763 |
|--------------|----------|
| 229A -> 245A | -0.25333 |
| 230A -> 245A | -0.10972 |
| 231A -> 245A | -0.13222 |
| 233A -> 245A | 0.14373  |
| 234A -> 245A | -0.17488 |
| 238A -> 245A | 0.10003  |
| 244A -> 246A | -0.16495 |
| 244A -> 249A | -0.33986 |
| 244A -> 252A | 0.14927  |
| 227B -> 245B | 0.16781  |
| 229B -> 245B | 0.24147  |
| 230B -> 245B | -0.10135 |
| 231B -> 245B | 0.12975  |
| 233B -> 245B | -0.14134 |
| 234B -> 245B | 0.17115  |
| 244B -> 246B | 0.16682  |
| 244B -> 249B | 0.34282  |
| 244B -> 252B | -0.15016 |

Excited State 37: 2.362-A 3.2459 eV 381.97 nm f=0.0010 <S\*\*2>=1.145 227A -> 245A -0.12655 228A -> 245A 0.29215 229A -> 245A 0.49251

| 230A -> 245A | 0.11106  |
|--------------|----------|
| 231A -> 245A | 0.21009  |
| 233A -> 245A | -0.13317 |
| 234A -> 245A | -0.10421 |
| 244A -> 249A | -0.14563 |
| 227B -> 245B | 0.12238  |
| 228B -> 245B | -0.29399 |
| 229B -> 245B | -0.46134 |
| 230B -> 245B | 0.10263  |
| 231B -> 245B | -0.20505 |
| 233B -> 245B | 0.12676  |
| 234B -> 245B | 0.10857  |
| 244B -> 249B | 0.14521  |

| Excited State 38: | 2.092-A  | 3.2644 eV | 379.81 nm | f=0.0179 | <s**2>=0.8</s**2> | 344 |
|-------------------|----------|-----------|-----------|----------|-------------------|-----|
| 226A -> 245A      | 0.12550  |           |           |          |                   |     |
| 228A -> 245A      | 0.13251  |           |           |          |                   |     |
| 229A -> 245A      | 0.59783  |           |           |          |                   |     |
| 233A -> 245A      | -0.13192 |           |           |          |                   |     |
| 226B -> 245B      | 0.12954  |           |           |          |                   |     |
| 228B -> 245B      | 0.15773  |           |           |          |                   |     |
| 229B -> 245B      | 0.62315  |           |           |          |                   |     |

233B -> 245B -0.14160

Excited State 39: 2.647-A 3.2915 eV 376.68 nm f=0.1839 <S\*\*2>=1.501

| 227A -> 245A | 0.28445  |
|--------------|----------|
| 228A -> 245A | -0.20203 |
| 229A -> 245A | -0.10903 |
| 230A -> 245A | 0.16378  |
| 234A -> 245A | 0.18613  |
| 239A -> 245A | 0.10686  |
| 242A -> 249A | -0.11173 |
| 244A -> 246A | -0.18770 |
| 244A -> 249A | -0.21231 |

| 244A -> 252A | 0.10529  |
|--------------|----------|
| 227B -> 245B | 0.28458  |
| 228B -> 245B | -0.20734 |
| 229B -> 245B | -0.10737 |
| 230B -> 245B | -0.16454 |
| 234B -> 245B | 0.18739  |
| 239B -> 245B | 0.10318  |
| 242B -> 249B | -0.11195 |
| 244B -> 246B | -0.18623 |
| 244B -> 249B | -0.21014 |
| 244B -> 252B | 0.10397  |

| Excited State 40: 2.742-A 3 | 3.2934 eV 3' | 76.46 nm 🗄 | f=0.0354 | <s**2>=1.</s**2> | .630 |
|-----------------------------|--------------|------------|----------|------------------|------|
|-----------------------------|--------------|------------|----------|------------------|------|

| 220A -> 245A | -0.12387 |
|--------------|----------|
| 224A -> 245A | -0.18847 |
| 225A -> 245A | -0.10504 |
| 227A -> 245A | -0.12225 |
| 228A -> 245A | -0.10870 |
| 231A -> 245A | 0.12928  |
| 237A -> 255A | 0.10254  |
| 242A -> 248A | 0.10988  |
| 244A -> 248A | -0.36582 |
| 244A -> 250A | -0.21359 |
| 220B -> 245B | 0.12326  |
| 224B -> 245B | 0.18694  |
| 225B -> 245B | 0.10370  |
| 227B -> 245B | 0.12387  |
| 228B -> 245B | 0.10317  |
| 231B -> 245B | -0.12981 |
| 237B -> 255B | -0.10182 |
| 242B -> 248B | -0.10989 |
| 244B -> 248B | 0.36597  |
| 244B -> 250B | 0.21352  |
|              |          |





MO245a





MO244α



MO244β



 $MO243\alpha$ 



MO243β



MO242β

Figure S35. The relevant molecular orbitals of 2R calculated at the UMPW1PW91/6-31+G(d)//UM062X/6-31G(d) level. S71

## 11. References

- S1. (1) Sheldrick GM. SHELXS-97 and SHELXL-97 1997; University of Gottingen, Germany. (2)
   Sheldrick GM. SADABS 1996; University of Gottingen, Germany.
- S2. Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.