SUPPORTING INFORMATION

for

Chemoselective Reduction of a-Keto Amides by Nickel Catalyst

N. Chary Mamillapalli and G. Sekar*

Department of Chemistry, Indian Institute of Technology Madras, Chennai,

Tamil Nadu-600 036, India

gsekar@iitm.ac.in

Table of contents

•	Optimization Table	2
•	General considerations	3
•	General experimental procedure for synthesis of α -keto amides	3
	and their spectral data	
•	General experimental procedure for chemo selective reduction	5
	of α -keto amides and their spectral data	
•	General experimental procedure for complete reduction	8
	of α -keto amides and their spectral data	
•	References	11
•	¹ H and ¹³ C spectra for all compounds	12

O HN O	Ni salt Ligand (EtO) ₃ Sil THF,	(5 mol %) (5 mol %) H (2 equiv.) rt, 48 h	OH N O
Entry	Ligand	Nickel salt	Yiled (%)
1	L1	Ni(OAc) ₂	30
2	L2	Ni(OAc) ₂	32
3	L3	Ni(OAc) ₂	16
4	L4	Ni(OAc) ₂	20
5	L5	Ni(OAc) ₂	10
6	L6	Ni(OAc) ₂	22
7	L7	Ni(OAc) ₂	18
8	L8	Ni(OAc) ₂	5
9	L9	Ni(OAc) ₂	12
10	L2	NiCl ₂	10
11	L2	NiBr ₂	8
12	L2	Ni(acac) ₂	10
13	L2	Ni(OAc) ₂ .4H ₂ O	8
14	L2	NiCl ₂ .6H ₂ O	6
15	L2	NiBr ₂ .3H ₂ O	4

Table 1: Optimization of ligands and nickel salts in the reduction of α -keto amides^{*a*}

^aReaction condition. 0.5 mmol of **1a** in THF. ^bIsolated yield.

Figure 1: Ligands screened for the reduction of α -ketoamides

General considerations

Nickel(II) acetate (98% pure), TMEDA (99% pure), DBU (99% pure), NaOAc (99% pure), NaOtBu (97% pure) and KOtBu (98% pure) were purchased from SpectrochemPvt. Ltd. India. Hydrosilanes, nickel(II) bromide (98% pure), nickel(II) chloride (98%), DABCO (>99% pure) and 1,10-phenanthroline (\geq 99% pure) werepurchesed from Sigma aldrich chemicals, USA. Thinlayer chromatography (TLC) was performed using Merck silica gel 60 F254 precoated plates (0.25 mm) and visualized by UV fluorescence quenching. Silica gel for column chromatography (particle size 100-200 mesh) was purchased from SRL India. ¹H and ¹³C NMR spectra were recorded on a Bruker 400 MHz instrument. ¹H NMR spectra were reported relative to residual CHCl₃ (δ 7.26 ppm) or DMSO (δ 2.50 ppm). ¹³C NMR were reported relative to CDCl₃ (δ 77.16 ppm) or DMSO-d₆ (δ 39.52 ppm). FTIR spectra were recorded on aJASCOspectrometer and are reported in frequency of absorption (cm⁻¹). High resolution mass spectra (HRMS) were recorded on Q-Tof Micro mass spectrometer.

General experimental procedure for synthesis of α -keto amides

Thionyl chloride (0.3 ml, 4 mmol) was added dropwise to a stirred mixture of benzyl formic acid (0.300 g, 2 mmol) and Et_3N (0.5 ml, 4 mmol) in CH_2Cl_2 (10 mL) at 0°C under nitrogen atmosphere. The stirring was continued for 20 min. and then a suspension of corresponding amine (2 mmol) in CH_2Cl_2 (10 mL) was added slowly to the reaction mixture at 0 °C under nitrogen flow. The stirring was continued in the room temperature and the completion of the reaction manitored through TLC. A saturated aqueous solution of NaHCO₃ (20 mL) was added slowly under stirring to the reaction mixture. The organic layer separated, washed with water (3 × 15 mL) and evaporated under reduced pressure. The solid residue purified through silica gel cloumn chromatography.

Spectral data for α-keto amides

N-(4-acetylphenyl)-2-oxo-2-phenylacetamide

Green colure solid, mp = 163-162 °C R_f 0.36; (hexanes : ethyl acetate, 90:10 v/v): ¹H NMR (400 MHz, CDCl₃): δ 9.18 (bs, 1H), 8.41 (d, J = 7.6 Hz, 2H), 8.01 (d, J = 8.8 Hz, 2H), 7.81 (d, J = 8.8 Hz, 2H), 7.67 (t, J = 7.6 Hz, 1H), 7.52 (t, J = 7.6 Hz, 2H), 2.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.0, 186.9, 159.1, 140.9, 135.0, 133.9, 132.9, 131.6, 130.0, 128.8, 119.5, 26.6; IR (neat) 3315, 1675, 1597, 1526, 1442, 1167 cm⁻¹;

HRMS (*m*/*z*): [M+H]⁺ calcd for C₁₆H₁₄NO₃, 268.0974; found, 268.0966.

N-(3-benzoylphenyl)-2-oxo-2-phenylacetamide

Yellow colure solid, mp = 148-149 °C R_f 0.35; (hexanes : ethyl acetate, 90:10 v/v): ¹H NMR (400 MHz, CDCl₃): δ 9.11 (bs, 1H), 8.40 (dd, J = 7.2, 1.2 Hz, 2H), 8.05 (dd, J = 9.8, 2.0 Hz, 2H), 7.83 (dd, J = 7.2, 1.6 Hz, 2H), 7.66 (t, J = 7.6, 1.2 Hz, 1H), 7.60 (t, J = 7.6, 1.2 Hz, 2H), 7.54-7.47 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 196.1, 187.2, 159.2,

138.8, 137.3, 136.9, 134.9, 133.0, 131.6, 130.2, 129.4, 128.8, 128.5, 126.9, 123.8, 121.4; IR (neat) 3252, 1676, 1636, 1591, 1552, 1169 cm⁻¹; HRMS (m/z): [M+H]⁺ calcd for C₂₁H₁₆NO₃, 330.1130; found, 330.1119.

N-(3-acetylphenyl)-2-oxo-2-phenylacetamide

Pale yellow colure solid, mp = 88-89 °C R_f 0.36; (hexanes : ethyl acetate, 90:10 v/v): ¹H NMR (400 MHz, CDCl₃): δ 9.12 (bs, 1H), 8.42 (d, *J* = 7.6 Hz, 2H), 8.28 (s, 1H), 7.97 (d, *J* = 8.0 Hz, 1H), 7.78 (t, *J* = 7.6 Hz, 1H), 7.67 (t, *J* = 7.6 Hz, 1H), 7.56-7.46 (m, 3H), 2.63 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.6, 187.1, 159.2, 138.2, 137.3,

134.9, 133.1, 131.6, 129.7, 128.8, 125.2, 124.4, 119.8, 26.8; IR (neat) 3291, 1672, 1599, 1543, 1486, 1170 cm⁻¹; HRMS (m/z): [M+H]⁺ calcd for C₁₆H₁₄NO₃, 268.0974; found, 268.0967.

N-(4-(2-oxo-2-phenylacetamido)phenyl)benzamide

Lite Green colure solid, mp = 195-196 °C ; R_f 0.35; (hexanes : ethyl acetate, 80:20 v/v): ¹H NMR (400 MHz, CDCl₃:DMSO- d_{6} , 8:2): δ 9.61 (bs, 1H), 9.26 (bs, 1H), 8.20 (dd, J = 17.2, 8.0 Hz, 2H), 7.84 (t, J = 8.0 Hz, 2H), 7.60-7.75 (m, 4H), 7.59-7.49 (m, 1H), 7.48-7.30 (m, 5H); ¹³C NMR (100 MHz, CDCl₃:DMSO- d_{6} , 8:2): δ 188.1, 165.8, 160.5, 135.6, 134.9, 134.1, 133.0, 132.9, 131.1, 130.5, 128.2, 128.0, 127.3, 120.7, 120.3; IR (KBr) 3989,

1659, 1537, 1402 cm⁻¹; HRMS (*m/z*): [M+Na]⁺ calcd for C₂₁H₁₆N₂O₃Na₁, 367.1059; found, 367.1057.

4-(2-oxo-2-phenylacetamido)-N-phenylbenzamide

Green colure solid, mp = 180-181 °C ; R_f 0.49; (hexanes : ethyl acetate, 70:30 v/v): ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.20 (bs, 1H), 10.17 (bs, 1H), 8.07 (d, *J* = 7.6 Hz, 2H), 8.01 (d, *J* = 8.0 Hz, 2H), 7.89 (d, *J* = 8.0 Hz, 2H), 7.78 (d, *J* = 8.0 Hz, 3H), 7.62 (t, *J* = 7.6 Hz, 2H) 7.35 (t, *J* = 7.6 Hz, 2H) 7.10 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 189.1, 164.8, 163.5, 140.5, 139.2, 134.9, 132.5, 130.7, 130.0, 129.1, 128.7, 128.6, 123.6,

120.4, 119.5; IR (KBr) 3333, 1671, 1650, 1595, 1525, 1180 cm⁻¹; HRMS (*m/z*): [M+Na]⁺ calcd for C₁₅H₁₂N₂O₃Na₁, 291.0746; found, 291.0759.

3-chloro-N-methyl-4-(2-oxo-2-phenylacetamido)-N-phenylbenzamide

Pale Green colure solid, mp = 155-156 °C ; R_f 0.55; (hexanes : ethyl acetate, 50:50 v/v): ¹H NMR (400 MHz, DMSO-*d*₆): δ 10. 56 (bs, 1H), 8.05 (d, *J* = 8.0, 2H), 7.76 (dd, *J* = 8.0, 13.2 Hz, 2H), 7.60 (t, *J* = 8.0 Hz, 2H), 7.46 (bs, 1H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.29-7.18 (m, 4H), 3.38 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 188.7, 167.4 163.5, 144.2, 135.0, 134.8, 134.2, 132.6, 130.0, 129.7, 129.3, 129.0, 127.7, 126.9, 125.9, 124.7, 38.0; IR

(KBr) 3358, 1705, 1678, 1637, 1600, 1569, 1525, 1054 cm⁻¹; HRMS (*m*/*z*): [M+H]⁺ calcd for C₂₂H₁₈N₂O₃Cl, 393.1006; found, 393.1016.

N-benzyl-4-(2-oxo-2-phenylacetamido)benzamide

Pale Green colure solid, mp = 142-143 °C ; R_f 0.55; (hexanes : ethyl acetate, 50:50 v/v): ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.17 (bs, 1H), 9.00 (t, *J* = 5.6 1H), 8.06 (d, *J* = 7.6 Hz, 2H), 7.94 (d, *J* = 8.0 Hz, 2H), 7.83 (d, *J* = 8.0 Hz, 2H), 7.77 (t, *J* = 7.2, 1H), 7.62 (t, *J* = 7.6 Hz, 2H), 7.32 (bs, 4H), 7.25 (d, *J* = 4.4 Hz, 1H), 4.49 (d, *J* = 5.6 Hz,

2H); ¹³C NMR (100 MHz, DMSO- d_6): δ 189.2, 165.6, 163.5, 140.3, 139.8, 135.0, 132.5, 130.2, 130.0, 129.1, 128.3, 127.3, 126.8, 126.3, 119.5, 42.7; IR (KBr) 3326, 1803, 1666, 1630, 1168 cm⁻¹; HRMS (m/z): [M+H]⁺ calcd for C₂₂H₁₉N₂O₃, 359.1396; found, 359.1390.

N-benzyl-N-methyl-4-(2-oxo-2-phenylacetamido)benzamide

Pale Green colure solid, mp = 120-121 °C ; R_f 0.40; (hexanes : ethyl acetate, 70:30 v/v): ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.85 (bs, 1H), 8.07 (dd, *J* = 1.2 Hz, 5.6 Hz, 2H), 7.81 (d, *J* = 6.4 Hz, 2H), 7.74 (t, *J* = 6.0 Hz, 1H), 7.60 (t, J= 6.4 Hz, 2H), 7.49 (d, *J* = 6.8 Hz, 2H), 7.38 (t, *J* = 6.4 Hz, 2H), 7.29 (t, *J* = 5.2 Hz, 3H), 4.62 (s, 2H), 2.90 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆, temp. 90 °C): δ 188.6, 169.8, 162.9 138.1, 136.9, 134.0,

132.6, 132.2, 129.3, 128.4, 128.0, 127.2, 126.8, 126.6, 119.6, 51.7, 34.7; IR (KBr) 3069, 1694, 1688, 1682, 1632, 1612, 1071 cm⁻¹; HRMS (*m/z*): [M+H]⁺ calcd for C₂₃H₂₁N₂O₃, 373.1552; found, 367.1569.

General experimental procedure for chemo selective reduction of α -keto amides

A mixture of TMEDA (4 μ L, 0.025 mmol), nickel(II)acetate (4.4 mg, 0.025 mmol), NaOAc (4 mg, 0.05 mmol) and α -keto amide (0.5 mmol) in 1.5 mL of dry THF were taken in a reaction tube fitted with rubber septum under nitrogen atmosphere. The reaction mixture was stirred at room temperature for 10 min., then PMHS (120 μ L, 2 mmol) was slowly added to the reaction mixture. Then the rubber septum was replaced with glass stopper under nitrogen flow and the reaction was stirred at 60 °C. The progress of the reaction mixture was monitered by TLC. After complete disappearance of starting material, 5 mL of 2N aq. NaOH was added and the resulting reaction mixture was stirred for 30 min. Then the reaction mixture was extracted with ethyl acetate (2x10 mL). The combined organic layers was washed with brine, dried over anhydrous MgSO₄, filtered off and the solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography (eluents: hexanes-ethyl acetate, 80:20) to get pure α -hydroxy amide.

Spectral data for α-hydroxy amides

2-Hydroxy-N, 2-diphenylacetamide¹

Colorless solid, mp = 152-153 °C (Lit.¹ mp = 150-151 °C); R_f 0.56; (hexanes : ethyl acetate, 80:20 v/v): ¹H NMR (400 MHz, CDCl₃): δ 8.11 (bs, 1H), 7.55-7.46 (m, 4H), 7.43-7.35 (m, 3H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.12 (t, *J* = 7.6 Hz, 2H), 5.19 (s, 1H), 3.42 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 170.1, 139.1, 137.2, 129.2, 129.1, 129.00, 127.0, 124.9, 120.0, 74.9; IR (KBr) 3675, 3409, 1655,

1602, 1544, 1191 cm⁻¹; HRMS (*m/z*): [M+Na]⁺ calcd for C₁₄H₁₃NO₂Na₁, 250.0844; found, 250.0833

2-Hydroxy-2-phenyl-N-p-tolylacetamide²

Colorless solid, mp = 168-169 °C (Lit.² mp = 169-170 °C); R_f 0.46; (hexanes : ethyl acetate, 70:30 v/v): ¹H NMR (400 MHz, CDCl₃): δ 8.00 (bs, 1H), 7.48 (dd, *J* = 8.0 Hz, 1.6 Hz, 2H), 7.43-7.31 (m, 5H), 7.11 (d, *J* = 8.4 Hz, 2H), 5.17 (d, *J* = 3.2 Hz, 1H), 3.44 (d, *J* = 3.2 Hz 1H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.9, 139.2, 134.6, 134.5, 129.7, 129.2, 129.1, 127.1,

120.0, 74.8, 21.0; IR (KBr) 3322, 1646, 1602, 1546, 1527, 1495 cm⁻¹; HRMS (*m*/*z*): [M+H]⁺ calcd for C₁₅H₁₆NO₂, 242.1181; found, 242.1192

2-Hydroxy-N-(naphthalen-1-yl)-2-phenylacetamide

Colorles solid, mp = 114-115 °C ; R_f 0.55; (hexanes : ethyl acetate, 90:10 v/v): ¹H NMR (400 MHz, CDCl₃): δ 8.72 (bs, 1H), 7.96 (d, *J*= 7.6, 1H), 7.84 (d, *J*= 5.2 Hz, 1H), 7.67 (d, *J*= 8.4 Hz, 2H), 7.64 (d, *J*= 3.2 Hz 1H), 7.56-7.34 (m, 8H), 5.26 (d, *J*= 3.2 Hz, 1H), 3.92 (d, *J*= 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 171.1, 139.3, 134.1, 131.5, 129.0, 128.9, 126.9, 126.8,

126.6, 126.1, 126.0, 125.8, 120.3, 120.1, 74.9; IR (KBr) 3360, 3265, 1659, 1592, 1523, 1514, 1497 cm⁻¹; HRMS (m/z): [M+H]⁺ calcd for C₁₈H₁₅NO₂, 300.1000; found, 300.1001.

2-Hydroxy-N-(4-methoxyphenyl)-2-phenylacetamide³

Colorless solid, mp = 154-155 °C (Lit.³ mp= 153-154 °C); R_f 0.34; (hexanes : ethyl acetate, 80:20 v/v): ¹H NMR (400 MHz, CDCl₃): δ 8.01 (bs, 1H), 7.48 (d, *J* = 7.2 Hz, 3H), 7.45-7.33 (m, 5H), 6.84 (d, *J* = 2.8 Hz, 1H), 5.17 (d, *J* = 2.8 Hz, 1H), 3.77 (s, 3H), 3.49 (d, *J* = 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 170.0, 156.8, 139.2, 130.3, 129.0, 128.9, 127.0, 121.7,

114.3, 74.7, 55.6; IR (KBr) 3655, 1644, 1599, 1556, 1545, 1192 cm⁻¹; HRMS (*m/z*): [M+H]⁺ calcd for C₁₅H₁₆ NO₃, 258.1130; found, 258.1133.

2-Hydroxy-2-(4-methoxyphenyl)-N-phenylacetamide

Colorless solid, mp = 94-95 °C; R_f 0.32; (hexanes : ethyl acetate, 80:20 v/v): ¹H NMR (400 MHz, CDCl₃): δ 8.25 (bs, 1H), 7.51 (d, *J*= 7.6 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 1H), 7.30 (t, *J*= 8.4 Hz, 2H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.89 (d, *J*= 8.4 Hz, 2H), 5.07 (d, *J* = 2.8 Hz, 1H), 3.79 (s, 1H), 3.65 (d, *J*= 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 160.0,

137.2, 131.3, 129.1, 128.3, 124.7, 119.9, 114.4, 74.3, 55.4; IR (KBr) 3359, 2923, 1662, 1602, 1530, 1523, 1513 cm⁻¹; HRMS (*m/z*): [M+Na]⁺ calcd for C₁₅H₁₅NO₃Na₁, 280.0950; found, 280.0954.

N-(4-Cyanophenyl)-2-hydroxy-2-phenylacetamide

Colorless solid, mp= 130-131°C; R_f 0.37; (hexanes : ethyl acetate, 80:20 v/v): ¹H NMR (400 MHz, CDCl₃): δ 8.53 (s, 1H), 7.70 (d, J = 8.8 Hz 2H), 7.61 (d, J = 8.8 Hz, 2H), 7.49 (dd, J = 8.0, 1.6 Hz 2H), 7.45-7.37 (m, 3H), 5.26 (d, J = 3.2 Hz, 1H), 3.13 (d, J = 3.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 170.3, 141.3, 138.6, 133.5, 131.3, 129.3, 129.2, 126.9, 119.8,

119.6, 75.0; IR (KBr) 3289, 3109, 2227, 1744, 1703, 1667, 1604, 1597 cm⁻¹; HRMS (m/z): [M+H]⁺ calcd for C₁₅H₁₃O₂N₂, 253.0977; found, 253.0978

2-Hydroxy-N-(2-iodophenyl)-2-phenylacetamide

Colorless solid, mp = 75-76 °C ; R_f 0.35; (hexanes : ethyl acetate, 80:20 v/v): ¹H NMR (400 MHz, CDCl₃): δ 8.57 (bs, 1H), 8.22 (dd, J= 8.4, 1.2 Hz, 1H), 7.76 (dd, J = 8.0,1.6 Hz, 1H), 7.52 (d, J= 7.2 Hz, 2H), 7.45-7.35 (m, 3H), 7.35-7.29(m, 1H), 6.84 (td, J= 7.8, 0.8 Hz, 1H), 5.21 (d, J = 1.2 Hz, 1H), 3.69 (d, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 139.0, 138.0, 137.7,

129.4, 129.2, 129.1, 127.1, 126.4, 121.6, 89.8, 75.1; IR (KBr) 3445, 2958, 1731, 1183, 1067 cm⁻¹; HRMS (*m/z*): [M+H]⁺ calcd for C₁₄H₁₃NO₂I, 353.9991; found, 354.0004.

N-(4-Chlorophenyl)-2-hydroxy-2-phenylacetamide⁴

Colorless solid, mp = 160-161 °C (Lit.⁴ mp = 161-164 °C); R_f 0.58; (hexanes : ethyl acetate, 70:30 v/v): ¹H NMR (400 MHz, CDCl₃): δ 8.18 (bs, 1H),7.49-7.42 (m, 4H), 7.41-7.32 (m, 3H), 7.25 (d, J = 2.4 Hz, 2H), 5.18 (d, J = 2.8 Hz 1H), 3.24 (d, J = 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 169.9, 138.9, 135.8, 129.9, 129.2, 129.19, 127.0, 121.2, 74.9; IR (KBr)

3297, 1650, 1596, 1540, 1068 cm⁻¹; HRMS (*m*/*z*): [M+Na]⁺ calcd for C₁₄H₁₂NO₂Na₁Cl, 284.0454; found, 284.0443.

2-Hydroxy-N-phenylpentanamide

Colorless solid mp = 129-130 °C; R_f 0.30; (hexanes : ethyl acetate, 80:20 v/v): ¹H NMR (400 MHz, CDCl₃): δ 8.38 (bs, 1H), 7.57 (dd, J = 8.4, 1.2 Hz, 2H), 7.31-7.37 (m, 2H), 7.15-7.37 (m, 1H), 4.23 (m, 1H), 2.58 (d, J = 4.4 Hz, 1H), 2.05-1.93 (m, 1H), 1.87-1.74 (m, 1H), 1.04 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.3, 137.2, 129.2, 124.7, 120.0, 73.6, 30.0, 9.3;

IR (KBr) 3402, 3392, 1647, 1601, 1531, 1444, 1120 cm⁻¹; HRMS (m/z): [M+H]⁺ calcd for C₁₀H₁₄NO₂, 180.1025; found, 180.1033.

N-Benzyl-2-hydroxy-2-phenylacetamide⁵

Colorless solid, mp = 133-134 °C (Lit.⁵ mp = 133-135 °C); R_f 0.35; (hexanes : ethyl acetate, 80:20 v/v): ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.33 (m, 5H),7.33-7.27 (m, 3H), 7.18 (dd, J = 6.8, 1.2 Hz, 1H), 6.47 (bs, 1H), 5.08 (d, J = 3.2 Hz, 1H), 4.52-4.38 (m, 2H), 3.60 (d, J = 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 172.2, 139.5, 137.8, 129.0, 128.9, 127.7, 127.0, 74.4,

43.7; IR (KBr) 3568, 3281, 2921, 1626, 1534, 1348, 1028 cm⁻¹; HRMS (*m/z*): [M+Na]⁺ calcd for C₁₄H₁₁NO₂Na₁, 248.0687; found, 248.0691.

2-Hydroxy-N-methyl-N, 2-diphenylacetamide

Colorless solid, mp = 89-90 °C; R_f 0.40; (hexanes : ethyl acetate, 70:30 v/v): ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.22 (m, 3H), 7.22-7.10 (m, 3H), 6.86-6.77 (m, 4H), 5.01 (d, *J*= 6.8 Hz, 1H), 4.49 (d, *J* = 7.2 Hz, 1H), 3.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.9, 141.6, 139.3, 129.7, 128.4, 128.2, 128.1, 127.4, 71.7, 38.4; IR (KBr) 3423, 2952, 1655, 1596, 1585, 1496, 1020 cm⁻¹; HRMS

(*m/z*): [M+Na]⁺ calcd for C₁₅H₁₅NO₂Na₁, 264.1010; found, 264.1000.

N-tert-Butyl-2-hydroxy-2-phenylacetamide⁶

Colorless solid, mp = 103-104 °C; R_f 0.31; (hexanes : ethyl acetate, 70:30 v/v): ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.31 (m, 5H), 5.76 (s, 1H), 4.90 (d, J = 3.6 Hz, 1H), 3.64 (s, 1H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 171.4, 140.0, 129.0, 128.6, 127.0, 74.3, 51.6, 28.8; IR (KBr) 3225, 1645, 1538, 1409, 1452, 1065 cm⁻¹; HRMS (*m*/*z*): [M+Na]⁺ calcd for C₁₂H₁₇NO₂Na₁,

230.1157; found, 230.1167

N-(4-Acetylphenyl)-2-hydroxy-2-phenylacetamide

Colourless solid, mp = 148-149 °C R_f 0.39; (hexanes : ethyl acetate, 70:30 v/v): ¹H NMR (400 MHz, DMSO-d₆): δ 10.78 (bs, 1H), 8.42 (d, J = 8.8 Hz, 2H), 8.37 (d, J = 8.8 Hz, 2H), 8.04 (d, J = 8.0 Hz, 2H), 7.87 (t, J = 7.2 Hz, 2H), 7.84-7.78 (m, 1H), 7.02 (d, J = 4.4 Hz, 1H), 5.66 (d, J = 4.4 Hz, 1H), 3.03 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 196.6, 171.8, 142.9, 140.6, 132.0, 129.3, 128.2, 127.8, 126.6, 119.0, 74.1, 26.5; IR

(neat) 3285, 1674, 1657, 1598, 1543, 1183 cm⁻¹; HRMS (m/z): [M+H]⁺ calcd for C₁₆H₁₆NO₃, 270.1130; found, 270.1118.

N-(3-Benzoylphenyl)-2-hydroxy-2-phenylacetamide

Colurless solid, mp = 126-127 °C R_f 0.35; (hexanes : ethyl acetate, 70:30 v/v): ¹H NMR (400 MHz, CDCl₃): δ 8.52 (bs, 1H), 7.94-7.90 (m 1H), 7.81 (t, *J* = 1.6, Hz, 1H), 7.77 (dd, *J* = 7.2, 1.6 Hz, 2H), 7.61-7.55 (m 1H), 7.51-7.41 (m, 5H), 7.41-7.32 (m, 4H), 5.17 (d, *J* = 3.6 Hz, 1H), 3.76 (d, *J* = 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 196.5, 170.5,

138.9, 138.5, 137.5, 137.3, 132.9, 130.2, 129.2, 129.1, 129.0, 128.5, 126.9, 126.4, 123.9, 121.1, 74.8; IR (neat) 3324, 1659, 1591, 1532, 1499, 1180 cm⁻¹; HRMS (m/z): [M+H]⁺ calcd for C₂₁H₁₈NO₃, 332.1287; found, 332.1286.

N-(3-Acetylphenyl)-2-hydroxy-2-phenylacetamide

Yellow colure solid, mp = 118-119 °C, R_f 0.38; (hexanes : ethyl acetate, 70:30 v/v): ¹H NMR (400 MHz, DMSO-d₆): δ 10.16 (bs, 1H), 8.32 (t, J = 1.6 Hz, 1H), 7.98 (dd, J = 8.2, 1.2 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.53 (d, J = 7.2 Hz, 2H), 7.44 (t, J = 8.0 Hz, 1H), 7.36 (t, J = 7.2 Hz, 2H), 7.33-7.26 (m 1H), 6.48 (d, J = 4.8 Hz, 1H), 5.13 (d, J =

4.4 Hz, 1H), 2.54 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 197.7, 171.6, 140.8, 139.0, 137.3, 129.1, 128.2, 127.7, 126.6, 124.2, 123.4, 119.3, 74.1, 26.8; IR (neat) 3335, 1674, 1604, 1542, 1485, 1192 cm⁻¹; HRMS (*m/z*): [M+H]⁺ calcd for C₁₆H₁₆NO₃, 270.1130; found, 270.1130.

General experimental procedure for complete reduction of α-keto amides.

A mixture of TMEDA (4 μ L, 0.025 mmol), nickel(II)acetate (4.4 mg, 0.025 mmol), KO'Bu (6 mg, 0.05 mmol) in 1.5 mL of dry THF were taken in a reaction tube fitted with rubber septum under nitrogen atmosphere. The reaction mixture was stirred at room temperature for 10 min. Then the α -keto amide (0.5 mmol) was added to the reaction mixture and stirred for 10 min. then Ph₂SiH₂ (370 μ L, 2 mmol) was added slowly to the reaction mixture. After that, the rubber septum was replaced with glass stopper under nitrogen flow. The resulting reaction mixture was stirred at room temperature. The progress of the reaction was monitered by TLC. After complete disappearance of substrate, 5 mL of 2N aq. NaOH was added to the reaction and the resulting mixture was stirred for 30 min. The reaction mixture was extracted with ethyl acetate (2x10 mL). The combined organic layers was washed with brine, dried over anhydrous MgSO₄, filtered off and the solvents was removed under reduced pressure and the resulting residue was purified by neutral aluminium oxide column chromatography (eluents: hexanes-ethyl acetate, 90:10) to obtain pure β -amino alcohol.

Spectral data for β -amino alchols

1-Phenyl-2-(phenylamino)ethanol7

Colourless oily liqued; $R_f 0.36$; (hexanes : ethyl acetate, 80:20 v/v): ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.37 (m, 4H), 7.36-7.31 (m, 1H), 7.21 (t, J = 8.4 Hz, 2H), 6.77 (t, J = 7.6 Hz, 1H), 6.69 (d, J = 7.6 Hz, 2H), 4.93 (dd, J = 8.8, 4.0 Hz, 1H), 3.44 (dd, J = 13.2, 4.0 Hz, 1H), 3.30 (dd, J = 13.2, 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 148.0, 142.1, 129.5, 128.8, 128.1, 126.0, 118.3,

113.6, 72.6, 51.9; IR (Neat) 3395, 3113, 1603, 1559, 1508, 1454 cm⁻¹; HRMS (m/z): [M+H]⁺ calcd for C₁₄H₁₆NO, 214.1232; found, 214.1240

1-Phenyl-2-(p-tolylamino)ethanol⁸

Colourless oil; R_f 0.39; (hexanes : ethyl acetate, 80:20 v/v): ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.30 (m, 5H), 7.02 (d, J = 8.0 Hz, 2H), 6.62 (t, J = 8.0 Hz, 2H), 4.91 (dd, J = 8.6, 3.6 Hz, 1H), 3.41 (dd, J = 13.2, 4.0 Hz, 1H) 3.27 (dd, J = 13.2, 8.4 Hz, 1H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 145.6, 142.2, 130.0, 128.7, 128.0, 127.6, 126.0, 113.8, 72.5,

52.4, 20.5; IR (Neat) 3451, 3444, 1646, 1547, 1407, 1258 cm⁻¹; HRMS (m/z): [M+H]⁺ calcd for C₁₅H₁₈NO, 228.1388; found, 228.1378

2-(4-Methoxyphenylamino)-1-phenylethanol⁹

Pale yellow oil; R_f 0.34; (hexanes : ethyl acetate, 80:20 v/v): ¹H NMR (400 MHz, CDCl₃): δ 7.44-7.36 (m, 4H), 7.35-7.29 (m, 1H), 6.80 (d, J = 9.2 Hz, 2H), 6.66 (d, J = 8.8 Hz, 2H), 4.92 (dd, J = 8.8, 3.6 Hz, 1H), 3.75 (s, 3H), 3.38 (dd, J = 12.8, 4.0 Hz, 1H), 3.25 (dd, J = 13.2, 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 152.8, 142.2, 142.1, 128.8,

128.1, 126.0, 115.2, 115.1, 72.6, 55.9, 53.1; IR (Neat) 3363, 3061, 1653, 1510, 1450, 1034 cm⁻¹; HRMS (*m/z*): [M+H]⁺ calcd for C₁₅H₁₈NO₂, 244.1338; found, 244.1332

2-(Methyl(phenyl)amino)-1-phenylethanol7

Pale yellow oil; R_f 0.37; (hexanes : ethyl acetate, 80:20 v/v): ¹H NMR (400 MHz, CDCl₃): δ 7.33 (d, J = 7.6 Hz 2H), 7.20 (t, J = 7.6 Hz, 2H), 6.92 (d, J = 7.6 Hz, 1H), 6.76 (t, J = 7.2 Hz, 1H), 6.67 (d, J = 7.6 Hz, 2H), 4.86 (dd, J = 8.4, 3.6 Hz, 1H), 3.82 (s, 3H), 3.38 (dd, J = 13.0, 4.0 Hz, 1H), 3.29 (dd, J = 12.6, 8.4 Hz, 1H); ¹³C NMR (100 MHz,

CDCl₃): δ 159.5, 148.0, 134.3, 129.4, 127.3, 118.2, 114.1, 113.6, 72.2, 55.4, 51.8; IR (Neat) 3395, 3113, 1603, 1559, 1508, 1454 cm⁻¹; HRMS (*m/z*): [M+H]⁺ calcd for C₁₅H₁₈NO₂, 244.1338; found, 244.1340

1-(Phenylamino)butan-2-ol¹⁰

Colourless oil; R_f 0.40; (hexanes : ethyl acetate, 80:20 v/v): ¹H NMR (400 MHz, CDCl₃): δ 7.21-7.16 (m, 2H), 6.74 (tt, J = 6.0, 0.8 Hz, 1H), 6.66 (dd, J = 8.5, 1.0 Hz, 2H), 3.80-3.74 (m, 1H), 3.28 (dd, J = 13.0, 3.0 Hz, 1H), 3.01 (dd, J = 13.0, 8.5 Hz, 1H), 1.65-1.50 (m, 2H), 1.02 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 148.4, 129.4, 118.0, 113.4, 71.9, 50.0, 28.1, 10.1; IR

(Neat) 3281, 3054, 1677, 1605, 1503, 1461 cm⁻¹; HRMS (*m/z*): [M+H]⁺ calcd for C₁₀H₁₆NO, 166.1232; found, 166.1235

2-(methyl(phenyl)amino)-1-phenylethanol

Colourless oily liqued; R_f 0.62; (hexanes : ethyl acetate, 80:20 v/v): ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.38 (m, 4H), 7.37-7.27 (m, 3H), 6.89 (d, *J* = 8.0 Hz, 2H), 6.82 (t, *J* = 7.2 Hz, 1H), 5.01 (dd, *J* = 8.8, 4.4 Hz, 1H), 3.54 (dd, *J* = 14.6, 8.4 Hz, 1H), 3.46 (dd, *J* = 14.8, 4.4 Hz, 1H), 2.96 (s, 3H), 2.66 (bs, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 150.0, 142.1, 129.4, 128.7, 127.9, 126.0, 117.7,

113.4, 71.8, 62.1, 39.6; IR (Neat) 3405, 3043, 1598, 1498, 1357, 1043 cm⁻¹; HRMS (m/z): [M+H]⁺ calcd for C₁₅H₁₈NO, 228.1388; found, 228.1385

N-(4-(1-Hydroxy-2-(phenylamino)ethyl)phenyl)benzamide

Colourless oil; R_f 0.33; (hexanes : ethyl acetate, 80:20 v/v): ¹H NMR (400 MHz, CDCl₃): δ 7.96 (s, 1H), 7.82 (d, J = 6.8 Hz, 2H), 7.50 (t, J = 7.2 Hz, 1H), 7.42 (t, J = 7.6 Hz, 2H), 7.39-7.33 (m, 6H), 7.33-7.29 (m, 1H), 6.58 (d, J = 8.8 Hz, 2H), 4.85 (dd, J = 8.9, 3.6 Hz, 1H), 3.35 (dd, J = 13.2, 4.8 Hz, 1H), 3.23 (dd, J = 13.2, 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 166.0, 145.4, 142.3, 135.1, 131.7, 128.8, 128.7, 128.6,

128.0, 127.2, 126.0, 122.9, 113.8, 72.3, 52.1; IR (Neat) 3385, 3060, 1643, 1523, 1474, 1407, 1061 cm⁻¹; HRMS (m/z): [M+Na]⁺ calcd for C₂₁H₂₀N₂O₂, 355.1422; found, 355.1429

4-(1-Hydroxy-2-(phenylamino)ethyl)-N-phenylbenzamide

Pale yellow oil; R_f 0.40; (hexanes : ethyl acetate, 60:40 v/v): ¹H NMR (400 MHz, DMSO-d₆): δ 9.76 (s, 1H), 7.77 (t, J = 8.8 Hz, 4H), 7.42 (d, J = 7.6 Hz, 2H), 7.38-7.24 (m, 5H), 7.04 (t, J = 7.6 Hz, 1H), 6.69 (d, J = 8.0 Hz, 2H), 4.77 (t, J = 6.8 Hz, 1H), 3.31 (dd, J = 13.2, 4.4 Hz, 2H), 3.22 (dd, J = 13.0, 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 165.3, 151.6, 144.0, 139.8, 129.3, 128.5, 128.1, 127.1, 126.1,

122.9, 121.2, 120.2, 111.0, 70.8, 50.9; IR (Neat) 3548, 3412, 3344, 1645, 1603, 1516, 1063 cm⁻¹; HRMS (*m/z*): [M+H]⁺ calcd for C₂₁H₂₁N₂O₂, 333.1615; found, 333.1603

N-Benzyl-4-(1-hydroxy-2-(phenylamino)ethyl)benzamide

Colourless oil; $R_f 0.32$; (hexanes : ethyl acetate, 60:40 v/v): ¹H NMR (400 MHz, DMSO-d₆): δ 8.62 (t, J = 6.0Hz, 1H), 7.68 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 7.2 Hz, 2H), 7.37-7.26 (m, 8H), 6.65 (d, J = 8.4 Hz, 6H), 4.74 (dd, J = 7.8, 4.8 Hz, 1H), 4.43 (d, J = 6.0 Hz, 1H), 3.27 (dd, J = 13.0, 4.4 Hz, 1H), 3.18 (dd, J = 13.0, 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆): δ 166.2, 151.1, 144.0, 140.4,

128.8, 128.2, 128.1, 127.2, 127.1, 126.6, 126.1, 121.2, 111.2, 70.8, 51.0, 42.4; IR (Neat) 3361, 3062, 3032, 1728, 1608, 1512, 1059 cm⁻¹; HRMS (*m/z*): [M+H]⁺ calcd for C₂₂H₂₃N₂O₂, 347.1760; found, 347.1756

N-Benzyl-4-(1-hydroxy-2-(phenylamino)ethyl)-N-methylbenzamide

Yellow oil; R_f 0.35; (hexanes : ethyl acetate, 60:40 v/v): ¹H NMR (400 MHz, DMSO-d₆): δ 7.42-7.29 (m, 7H), 7.28-7.22 (m, 5H), 6.64 (d, J = 8.4 Hz, 2H), 4.74 (dd, J = 7.8, 4.8 Hz, 1H), 4.60 (s, 2H), 3.25 (dd, J = 13.2, 4.4 Hz, 1H) 3.15

(dd, J = 13.2, 8.0 Hz, 1H), 2.87 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 170.9, 149.6, 143.5, 137.4, 128.3, 128.1, 127.6, 126.8, 126.6, 126.5, 125.7, 122.8, 111.1, 70.7, 51.9, 50.8, 35.0; IR (Neat) 3489, 3402, 1610, 1529, 1491, 1070 cm⁻¹; HRMS (*m/z*): [M+H]⁺ calcd for C₂₃H₂₅N₂O₂, 361.1916; found, 361.1911

N-(3-Chloro-4-(1-hydroxy-2-(phenylamino)ethyl)phenyl)-N-methylbenzamide

Colourless oil; R_f 0.43; (hexanes : ethyl acetate, 60:40 v/v): ¹H NMR (400 MHz, DMSO- d_{δ}): δ 7.47 (d, J = 7.6 Hz, 2H), 7.38 (d, J = 7.6 Hz, 2H), 7.33 (t, J = 6.8 Hz, 3H), 7.15 (t, J = 7.6 Hz, 4H), 7.00 (d, J = 8.4 Hz 1H), 6.55 (d, J = 8.4 Hz 1H), 5.64 (d, J = 4.4 Hz, 1H), 5.44 (t, J = 5.2 Hz, 1H), 4.79-4.71 (m, 1H), 3.45 (s, 3H), 3.20-3.10 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 168.1, 145.3, 145.0, 143.5, 136.0,

134.8, 134.0, 129.2, 128.1, 127.5, 126.9, 126.0, 123.4, 116.4, 110.0, 70.5, 50.4, 38.3; IR (Neat) 3404, 3064, 1600, 1526, 1495, 1459, 1060 cm⁻¹; HRMS (*m/z*): [M+H]⁺ calcd for C₂₂H₂₂N₂O₂Cl, 381.1370; found, 381.1355.

References:

- [1] R. H. Baker, L. E. Linn, J. Am. Chem. Soc. 1948, 70, 3721-3723.
- [2] A. R. Katritzky, H.-Y. He, K. Suzuki, J. Org. Chem. 2000, 65, 8210-8213.
- [3] N. Kambe, T. Inoue, T. Takeda, S.-i. Fujiwara, N. Sonoda, J. Am. Chem. Soc. 2006, 128, 12650-12651.
- [4] S. L. Shapiro, I. M. Rose, L. Freedman, J. Am. Chem. Soc. 1959, 81, 6322-6329.
- [5] A. Westerbeek, W. Szymanski, B. L. Feringa, D. B. Janssen, ACS Catal. 2011, 1, 1654-1660.
- [6] S. Sebti, Tetrahedron, 1986, 42, 1361-1367.
- [7] A. Mukherjee, R. B. Dateer, R. Chaudhuri, S. Bhunia, S. N. Karad, R.-S. Liu, J. Am. Chem. Soc. 2011, 133, 15372-15375.
- [8] Shivani, B. Pujala, A. K. Chakraborti, J. Org. Chem. 2007, 72, 3713-3722.
- [9] Y. Gu, J. Barrault, F. Jerome, Adv. Synth. Catal. 2008, 350, 2007-2012.
- [10] R. I. Kureshy, S. Agrawal, M. Kumar, N. H. Khan, S. H. R. Abdi, H. C. Bajaj, Catal. Lett. 2010, 134, 318-323.

400 Mz ¹H-NMR spectra of 4a in CDCl₃

100 Mz 13 C-NMR spectra of 4a in CDCl₃

400 Mz 1 H-NMR spectra of **4b** in CDCl₃

100 Mz ¹³C-NMR spectra of **4b** in CDCl₃

400 Mz ¹H-NMR spectra of 4c in CDCl₃

100 Mz 13 C-NMR spectra of **4c** in CDCl₃

100 Mz 13 C-NMR spectra of **6a** in DMSO-d₆

100 Mz 13 C-NMR spectra of **6b** in DMSO-d₆

400 Mz ¹H-NMR spectra of 6c in DMSO-d₆

100 Mz ¹³C-NMR spectra of **6c** in DMSO-d₆

400 Mz 1 H-NMR spectra of **6d** in DMSO-d₆

100 Mz $^{13}\text{C-NMR}$ spectra of $\,$ 6d in DMSO-d_6 $\,$

400 Mz ¹H-NMR spectra of 6e in CDCl₃+DMSO-d₆

100 Mz ¹³C-NMR spectra of **6e** in CDCl₃+DMSO-d₆

400 Mz ¹H-NMR spectra of 2a in CDCl₃

100 Mz ¹³C-NMR spectra of **2a** in CDCl₃

400 Mz ¹H-NMR spectra of **2b** in CDCl₃

100 Mz ¹³C-NMR spectra of **2b** in CDCl₃

400 Mz ¹H-NMR spectra of 2c in CDCl₃

100 Mz $^{13}\text{C-NMR}$ spectra of $\,2c$ in CDCl_3 $\,$

400 Mz ¹H-NMR spectra of 2d in CDCl₃

100 Mz $^{13}\text{C-NMR}$ spectra of $\,\textbf{2d}$ in CDCl_3 $\,$

400 Mz ¹H-NMR spectra of 2e in CDCl₃

100 Mz ¹³C-NMR spectra of **2e** in CDCl₃

400 Mz ¹H-NMR spectra of 2f in CDCl₃

100 Mz 13 C-NMR spectra of **2f** in CDCl₃

400 Mz ¹H-NMR spectra of 2g in CDCl₃

100 Mz 13 C-NMR spectra of **2g** in CDCl₃

400 Mz ¹H-NMR spectra of 2h in CDCl₃

100 Mz $^{13}\text{C-NMR}$ spectra of ~2h in CDCl_3

400 Mz ¹H-NMR spectra of 2i in CDCl₃

100 Mz ¹³C-NMR spectra of **2i** in CDCl₃

\

400 Mz ¹H-NMR spectra of **2j** in CDCl₃

100 Mz ¹³C-NMR spectra of **2j** in CDCl₃

400 Mz ¹H-NMR spectra of 2k in CDCl₃

100 Mz ¹³C-NMR spectra of **2k** in CDCl₃

400 Mz 1 H-NMR spectra of **2l** in CDCl₃

100 Mz ¹³C-NMR spectra of **2l** in CDCl₃

100 Mz 13 C-NMR spectra of **5a** in CDCl₃

400 Mz ¹H-NMR spectra of **5b** in CDCl₃

100 Mz 13 C-NMR spectra of **5b** in CDCl₃

400 Mz ¹H-NMR spectra of 5c in CDCl₃

100 Mz ¹³C-NMR spectra of **5c** in CDCl₃

400 MHz ¹H-NMR spectra of 3a in CDCl₃

100 MHz ¹³C-NMR spectra of **3b** in CDCl₃

400 MHz ¹H-NMR spectra of 3c in CDCl₃

100 MHz ¹³C-NMR spectra of **3c** in CDCl₃

400 MHz ¹H-NMR spectra of 3d in CDCl₃

100 MHz $^{13}\text{C-NMR}$ spectra of 3d in CDCl_3

100 MHz ¹³C-NMR spectra of **3e** in CDCl₃

400 MHz ¹H-NMR spectra of **31** in CDCl₃

100 MHz ¹³C-NMR spectra of **3l** in CDCl₃

400 MHz ¹H-NMR spectra of **7a** in DMSO- d_6

100 MHz ¹H-NMR spectra of **7a** in DMSO-*d*₆

100 MHz ¹³C-NMR spectra of 7c in DMSO- d_6

100 MHz ¹³C-NMR spectra of 7d in DMSO-d₆

400 MHz ¹H-NMR spectra of 7e in CDCl₃

100 MHz ¹³C-NMR spectra of 7e in CDCl₃