Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Reversible mechanochromism and enhanced AIE in tetraphenylethene substituted phenanthroimidazoles

Rajneesh Misra,* Thaksen Jadhav, Bhausaheb Dhokale, and Shaikh M. Mobin

Department of Chemistry, Indian Institute of Technology Indore, Indore- 452 017, India.

rajneeshmisra@iiti.ac.in

Table of Contents

I.	Experimental section ······S2
II.	Crystallographic data ······S6
III.	Thermogravimetric analysis
IV.	Photophysical properties······S10
V.	Mechanochromism······S13
VI.	DFT calculations······S15
VII.	Copies of ¹ H NMR, ¹³ C NMR and HRMS spectra of the new compounds······S21
VIII.	References······S32

Experimental section

General methods

Chemicals were used as received unless otherwise indicated. All oxygen or moisture sensitive reactions were performed under nitrogen/argon atmosphere. ¹H NMR (400 MHz), and ¹³C NMR (100MHz) spectra were recorded on on the Bruker Avance (III) 400 MHz instrument by using CDCl₃. ¹H NMR chemical shifts are reported in parts per million (ppm) relative to the solvent residual peak (CDCl₃, 7.26 ppm). Multiplicities are given as: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), dt (doublet of triplets), m (multiplet), and the coupling constants, *J*, are given in Hz. ¹³C NMR chemical shifts are reported relative to the solvent residual peak (CDCl₃, 77.36 ppm. Thermogravimetric analyses were performed on the Metler Toledo Thermal Analysis system. UV-visible absorption spectra were recorded on a Carry-100 Bio UV-visible Spectrophotometer. Emission spectra were taken in a fluoromax-4p fluorimeter from HoribaYovin (model: FM-100). The excitation and emission slits were 2/2 nm for the emission measurements. All of the measurements were done at 25°C. HRMS was recorded on Brucker-Daltonics, micrOTOF-Q II mass spectrometer. The density functional theory (DFT) calculation were carried out at the B3LYP/6-31G(d) level in the Gaussian 09 program.¹ TD-DFT calculations was performed at the B3LYP/6-31 G(d) level in dichloromethane solvent using IEFPCM formulation for solvent effect.²

Synthesis

Scheme S1. Synthetic route to intermediate 5.

Compound 4 was prepared according to the synthetic route shown in Scheme S1. Details can be found in the previous publication.³

Synthesis and Characterization of intermediates 5 and 2b:

5: Pd(dppf)Cl₂(0.12 mmol) was added to a well degassed solution of bromo-tetraphenylethene (2.4 mmol), bis(pinacolato)diboron (3.84 mmol) and KOAc (7.2 mmol) in anhydrous 1,4-dioxane (20 mL). The resulting mixture was stirred at 90 °C for 16 h under argon atmosphere. After cooling, the mixture was evaporated to dryness and taken up with CH₂Cl₂. The organic layer was washed with H₂O, dried over MgSO₄, filtered and evaporated to dryness. Column chromatography (SiO₂, Hexane/CH₂Cl₂ 95:5) gave compound **5** as a colorless solid in 68% yield. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.53–7.55 (m, 2H), 7.07–7.10 (m, 9H), 6.98-7.04 (m, 8H),1.31 (s, 12H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 146.8, 143.7, 143.6, 143.5, 141.4, 140.9, 134.1, 131.4, 131.3, 131.3, 130.7, 127.7, 127.6, 126.5, 126.5, 126.4, 83.7, 24.9, 0.0 ppm; HRMS (ESI): calcd. for C₃₂H₃₁BO₂: 459.2495 (M+H)⁺, found 459.2491.

2b: The 9,10-phenanthrenequinone (9.6 mmol), 4-bromobenzaldehyde (9.6 mmol), 4-aminobenzonitrile (14.4 mmol), and ammonium acetate (96.1 mmol) in glacial acetic acid (50 mL) refluxed for 4 h under an argon atmosphere. After cooling to room temperature, a pale yellow mixture was obtained and poured into a methanol solution under stirring. The separated solid was filtered off, washed with 30ml water, and dried to gave compound **2b** as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 8.82 (dd, 1H, *J*=1.6, 8 Hz), 8.79 (d, 1H, *J*=8 Hz), 8.71 (d, 1H, *J*=8 Hz), 7.92 (dt, 2H, *J*=2, 8 Hz), 7.74-7.78 (m, 1H), 7.63-7.71 (m, 3H), 7.54-7.58 (m, 1H), 7.47 (dt, 2H, *J*=2.4, 8 Hz), 7.29-7.37 (m, 3H), 7.09 (dd, 1H, *J*=0.8, 8 Hz) ppm; HRMS (ESI): calcd. for C₂₈H₁₆BrN₃: 474.0600 (M+H)⁺, found 474.0593.

Synthesis and Characterization of 3a-3b:

3a: Pd(PPh₃)₄ (0.004 mmol) was added to a well degassed solution of 2-(4-Bromo-phenyl)-1-phenyl-1H-phenanthro[9,10-d]imidazole (**2a**) (0.4 mmol), **5** (0.48 mmol), $K_2CO_3(1.2 \text{ mmol})$ in a mixture of toluene (12 mL)/ ethanol (4.0 mL)/ H₂O (1.0 mL). The resulting mixture was stirred at 80 °C for 24 h under argon atmosphere. After cooling, the mixture was evaporated to dryness and the residue subjected to column chromatography on silica (Hexane-DCM 80:20 in vol.) to yield the desired product **3a** as colorless powder. The compound was recrystalized from DCM:ethanol (8:2) mixtures as colorless niddle like crystals. Yield: 67.0%. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 8.89 (dd, 4H, *J*=0.8, 8 Hz), 8.78 (d, 1H, *J*=8 Hz), 8.71 (d, 1H, *J*=8 Hz), 7.73-7.77 (m, 1H), 7.59-7.68 (m, 6H), 7.47-7.55 (m, 5H), 7.34 (dt, 2H, *J*=2, 8 Hz) 7.24-7.29 (m, 1H), 7.18 (dd, 1H, *J*=0.8, 8 Hz) 7.02-7.14 (m, 17H) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 150.6, 143.7, 143.6, 143.6, 143.2, 141.2, 140.7, 140.4, 138.8, 137.8, 137.5, 131.8, 131.4, 131.3, 130.2, 129.8, 129.6, 129.2, 129.2, 129.1, 128.2, 128.2, 127.8, 127.7, 127.6, 127.3, 127.2, 126.5, 126.5, 126.4, 126.4, 126.1, 125.6, 124.8, 124.1, 123.1, 123.0, 122.7, 120.8, 0.0 ppm; HRMS (ESI): calcd. for C₅₃H₃₆N₂: 701.2951 (M+H)⁺, found 701.2953.

3b: Pd(PPh₃)₄ (0.004 mmol) was added to a well degassed solution of 4-[2-(4-Bromo-phenyl)-phenanthro [9,10-d]imidazol-1-yl]-benzonitrile (**2b**) (0.4 mmol), **5** (0.48 mmol), $K_2CO_3(1.2 \text{ mmol})$ in a mixture of toluene (12 mL)/ ethanol (4.0 mL)/ H2O (1.0 mL). The resulting mixture was stirred at 80 °C for 24 h under argon atmosphere. After cooling, the mixture was evaporated to dryness and the residue subjected to column chromatography on silica (Hexane-DCM 70:30 in vol.) to yield the desired product **3b** as colorless powder. The compound was recrystalized from DCM:ethanol (8:2) mixtures as colorless niddle like crystals. Yield: 78.0%. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 8.86 (dd, 1H, *J*=1.2, 8 Hz), 8.80 (d, 1H, *J*=8 Hz) 8.72 (d, 1H, *J*=8 Hz), 7.91 (dt, 2H, *J*=2, 8.8 Hz) 7.74-7.78 (m, 1H), 7.66-7.70 (m, 3H), 7.49-7.57 (m, 5H), 7.30-7.36 (m, 3H) 7.02-7.15 (m, 18H) ppm; ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 150.5, 143.6, 143.5, 142.8, 141.3, 141.3, 140.3, 137.9, 137.5, 134.0, 131.9, 131.4, 131.3, 131.3, 130.2, 129.7, 129.4, 128.4, 128.3, 127.8, 127.7, 127.6, 127.5, 126.9, 126.7, 126.5, 126.5, 126.1, 126.0, 125.2, 124.4, 123.1, 122.8, 122.4, 120.4, 117.7, 113.8, 0.0 ppm; HRMS (ESI): calcd. for C₅₄H₃₅N₃: 726.2904 (M+H)⁺, found 726.2923.

Crystallographic data

A single crystal X-ray structural study of **3a** and **3b** was performed on a CCD Agilent Technologies (Oxford Diffraction) SUPER NOVA diffractometer. Data were collected at 150(2) K using graphitemonochromated Mo K α radiation ($\lambda_{\alpha} = 0.71073$ Å). The strategy for the Data collection was evaluated by using the CrysAlisPro CCD software. The data were collected by the standard 'phi-omega scan techniques, and were scaled and reduced using CrysAlisPro RED software. The structures were solved by direct methods using SHELXS-97, and refined by full matrix least-squares with SHELXL-97, refining on F^2 . The positions of all the atoms were obtained by direct methods. All non-hydrogen atoms were refined anisotropically. The remaining hydrogen atoms were placed in geometrically constrained positions, and refined with isotropic temperature factors, generally $1.2U_{eq}$ of their parent atoms. The crystal, and refinement data are summarized in Table 1. The CCDC number 997623 and 997624 contain the supplementary crystallographic data for **3a** and **3b**. These data can be obtained free of charge via www.ccdc.cam.ac.uk (or from the Cambridge Crystallographic Data Centre, 12 union Road, Cambridge CB21 EZ, UK; Fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

Parameter	<u>3a</u>	3b
Identification code	rm104	rm121a
Empirical formula	$C_{53} H_{36} N_2$	C ₅₄ H ₃₅ N ₃
Formula weight	700.84	725.85
Temperature	150(2) K	150(2) K
Wavelength(A)	1.5418	0.71073
Crystal system, space group	Triclinic, P-1	Monoclinic, P 21/n
a/ (Å)	9.4287(9)	9.0367(4)
<i>b/</i> (Å)	12.0253(11)	11.5650(8)
c/ (Å)	21.1903(15)	38.221(2)
α/(°)	75.864(7)	90
β/ (°)	86.937(7)	94.875(4)
γ⁄ (°)	74.600(8)	90
Volume	2246.0(3) Å ³	3980.0(4) Å ³

Table S1. Crystal data and structure refinement for 3a and 3b.

Z, Calculated density (mg m ⁻³)	2, 1.036	4, 1.211
Absorption coefficient /(mm ⁻¹)	0.457	0.071
F(000)	736	1520
Crystal size	0.23 x 0.18 x 0.13 mm	0.21 x 0.17 x 0.13 mm
θ range for data collection/(°)	3.93 to 74.82	2.95 to 25.00
Reflections collected / unique	16015 / 8638 [R(int) = 0.0333]	32887 / 7009 [R(int) = 0.1083]
Completeness to theta	$\theta = 74.82; 93.4 \%$	$\theta = 25.00; 99.8 \%$
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	0.9430 and 0.9021	0.9909 and 0.9853
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	8638 / 0 / 497	7009 / 0 / 514
Goodness-of-fit on F ²	0.980	1.005
Final R indices [I>2sigma(I)]	R1 = 0.1095, wR2 = 0.3502	R1 = 0.0652, wR2 = 0.1371
R indices (all data)	R1 = 0.1834, wR2 = 0.3960	R1 = 0.1526, wR2 = 0.1803
Largest diff. peak and hole (eÅ ⁻³)	0.253 and -0.279	0.297 and -0.163

Fig. S1 Crystal structure of 3a.

Fig. S2 Crystal structure of 3b.

Fig. S3 Crystal packing structure of 3a.

Thermogravimetric analysis

Fig. S4 Thermogravimetric analysis of 3a and 3b, measured at a heating rate of 10 $^{\circ}$ C/ min under nitrogen atmosphere.

Photophysical properties

Compounds	$\lambda_{\max}[nm] (\epsilon [Lmol^{-1}cm^{-1}])^a$	$\lambda_{em.}(nm)$	$\Phi_{f}^{\ b}$	Optical band gap (eV)	Theoretical band gap (eV) ^c	T _d (°C)
	260 (52389)					
3a	344 (33215)	415	0.009	3.12	4.08	330
	363 (29321)					
	257 (51452)					
3b	346 (28593)	458	0.004	3.04	3.31	445
	360 (27064)					

Table S2.	Photophysical	, and thermal	properties	of the 3a and	3b.
	•/				

^a Measured in dichloromethane. ^b The fluorescence quantum yields using 9, 10-diphenylanthracence as a standard in ethanol solution were performed. ^c Theoretical values at B3LYP/6-31G(d) level.

Fig. S5 Fluorescence spectra of 3a and 3b recorded in dichloromethane (concentration = 3×10^{-6} M).

Fig. S6 Solid state absorption spectra of 3a in crystalline and its grinded form.

Fig. S7 Solid state absorption spectra of 3b in crystalline and its grinded form.

Fig. S8 Fluorescence spectra of single crystals of 3a and 3b.

Mechanochromism

Fig. S9 (A) Emission spectra of **3a** as synthesized, grinded and heated solids and their photographs (B and C) taken under UV illumination and XRD patterns (D).

with the	-		-		
0%	30%	50% 70%	80%	90%	98%

Fig. S10 Fluorescence pictures of 3b solutions with different water fractions under UV (365 nm) light.

Fig. S11 Repeated switching of the solid-state fluorescence of 3a by repeated grinding and fuming cycles.

Fig. S12 Repeated switching of the solid-state fluorescence of 3b by repeated grinding and fuming cycles.

DFT calculations.

TD-DFT data:

Table S3. Computed vertical transitions and their oscillator strengths and configurations.

DCM				
$\lambda_{max}[nm]$	F	Configuration		
436.39	1.9068	HOMO→LUMO+1 (-0.69633)		
375 67	0 1205	HOMO-1→LUMO+1 (0.68106)		
575.07	0.1205	HOMO→LUMO+2 (0.14759)		
		HOMO→LUMO+3 (0.64780)		
356.25 0.11	0.1155	HOMO→LUMO+4 (-0.16147)		
		HOMO-1→LUMO+2 (-0.15729)		
	λmax[nm] 436.39 375.67 356.25	λmax[nm] F 436.39 1.9068 375.67 0.1205 356.25 0.1155		

Excitation energies and oscillator strengths:

Excited State 189 ->191 190 ->191	1: Singlet-A -0.15508 0.68867	2.3852 eV 519.81 nm f=0.0010 <s**2>=0.000</s**2>
This state for	optimization and/or	r second-order correction.
Copying the e	xcited state density	v for this state as the 1-particle RhoCI density.
Excited State 190 ->192	2: Singlet-A -0.69633	2.8412 eV 436.39 nm f=1.9068 <s**2>=0.000</s**2>
Excited State 189 ->191 190 ->191	3: Singlet-A -0.68680 -0.15596	2.9757 eV 416.66 nm f=0.0003 <s**2>=0.000</s**2>
Excited State 189 ->192 190 ->193	4: Singlet-A 0.68106 0.14759	3.3003 eV 375.67 nm f=0.1205 <s**2>=0.000</s**2>
Excited State 188 ->191	5: Singlet-A 0.70238	3.4486 eV 359.52 nm f=0.0005 <s**2>=0.000</s**2>
Excited State 189 ->192 190 ->193 190 ->194	6: Singlet-A -0.15729 0.64780 -0.16147	3.4802 eV 356.25 nm f=0.1155 <s**2>=0.000</s**2>
Excited State 189 ->193 189 ->194	7: Singlet-A -0.11273 0.15552	3.5677 eV 347.52 nm f=0.0931 <s**2>=0.000</s**2>

190 ->193 190 ->194	-0.17345 -0.63538	
Excited State 188 ->192 189 ->195 190 ->194 190 ->195 190 ->196	8: Singlet-A -0.18546 -0.16218 0.12250 0.61728 -0.13686	3.6991 eV 335.18 nm f=0.0260 <s**2>=0.000</s**2>
Excited State 188 ->192 189 ->193 190 ->196	9: Singlet-A -0.19746 0.34844 0.54380	3.8108 eV 325.35 nm f=0.0067 <s**2>=0.000</s**2>
Excited State 186 ->191 187 ->191 SavETr: write	10: Singlet-A 0.10513 0.68827 DOETrn= 770 NS	3.8250 eV 324.14 nm f=0.0002 <s**2>=0.000 Scale= 10 NData= 16 NLR=1 LETran= 180</s**2>

DFT calculation data of 3a, and 3b

Calculation method: B3LYP/6-31+G(d) with Gaussian 09

3a

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)			
Number	Number	Туре	Х	Y	Z			
1	 6	0	-6.408157	0.029202	-0.048620			
2	б	0	-7.713821	0.621892	0.079123			
3	6	0	-7.950879	1.990971	0.344691			
4	1	0	-7.114415	2.664506	0.472428			
5	6	0	-9.235781	2.490410	0.456467			
б	1	0	-9.387729	3.546526	0.662380			
7	6	0	-10.334339	1.632164	0.308674			
8	1	0	-11.346983	2.016644	0.394167			
9	6	0	-10.126930	0.286287	0.062042			
10	1	0	-10.994471	-0.356310	-0.034210			
11	6	0	-8.833464	-0.268663	-0.056503			
12	б	0	-8.639485	-1.705277	-0.294093			
13	6	0	-9.716208	-2.609350	-0.449543			
14	1	0	-10.738928	-2.251475	-0.410265			
15	б	0	-9.503611	-3.961735	-0.657589			
16	1	0	-10.355493	-4.626519	-0.773486			
17	б	0	-8.196850	-4.476091	-0.720220			
18	1	0	-8.035551	-5.538289	-0.883626			
19	б	0	-7.119449	-3.622179	-0.576454			
20	1	0	-6.098343	-3.986794	-0.625294			
21	б	0	-7.324274	-2.243732	-0.366741			

Standard orientation:

22	6	0	-6.221292	-1.336515	-0.229372
23	б	0	-4.749479	1.927440	0.235723
24	6	0	-4.292659	2.320720	1.495532
25	1	0	-4.227596	1.585869	2.291693
26	6	0	-3.924978	3.649443	1.712413
27	1	0	-3.567877	3.954761	2.691787
28	6	0	-4.018184	4.581872	0.677540
29	1	0	-3.732790	5.615792	0.849820
30	6	0	-4.478383	4.184289	-0.580626
31	1	0	-4.551960	4.906620	-1.388668
32	6	0	-4.841596	2.856582	-0.806046
33	1	0	-5.199818	2.532131	-1.778427
34	6	0	-4.238657	-0.517823	-0.127236
35	6	0	-2.768150	-0.451632	-0.099648
36	6	0	-2.008732	0.638525	-0.556263
37	1	0	-2.495855	1.521671	-0.951100
38	6	0	-0.617845	0.599816	-0.523021
39	1	0	-0.058808	1.466842	-0.863285
40	б	0	0.074685	-0.521554	-0.038070
41	б	0	-0.690873	-1.615883	0.404063
42	1	0	-0.189129	-2.513203	0.755122
43	б	0	-2.078533	-1.584427	0.371870
44	1	0	-2.655676	-2.442358	0.699371
45	б	0	1.555808	-0.549897	0.001524
46	б	0	2.323352	0.049802	-1.012184
47	1	0	1.823361	0.509712	-1.860049
48	б	0	3.713156	0.029714	-0.972727
49	1	0	4.276980	0.490748	-1.777409
50	б	0	4.403126	-0.590336	0.083491
51	б	0	3.635465	-1.210638	1.085125
52	1	0	4.139022	-1.708825	1.908662
53	б	0	2.245170	-1.182048	1.050744
54	1	0	1.683935	-1.636905	1.862272
55	б	0	5.894443	-0.649540	0.117478
56	б	0	6.684033	0.440860	-0.120945
57	б	0	6.459340	-1.996960	0.437239
58	б	0	7.424438	-2.160228	1.445342
59	1	0	7.784634	-1.286927	1.980328
60	б	0	7.919155	-3.423731	1.765205
61	1	0	8.661665	-3.526456	2.552354
62	б	0	7.461134	-4.552213	1.082505
63	1	0	7.848349	-5.536898	1.330621
64	б	0	6.495019	-4.407270	0.084527
65	1	0	6.128352	-5.279527	-0.450512
66	б	0	5.991627	-3.144989	-0.226145
67	1	0	5.230920	-3.041354	-0.994955
68	б	0	6.143446	1.834138	-0.164957
69	б	0	5.324935	2.330770	0.863776
70	1	0	5.060046	1.679130	1.690630
71	б	0	4.855611	3.643095	0.835343
72	1	0	4.228416	4.006848	1.645190
73	б	0	5.193280	4.488484	-0.223404
74	1	0	4.826416	5.511272	-0.246005
75	б	0	6.014508	4.012962	-1.247963

76	1	0	6.287621	4.663870	-2.074603
77	б	0	6.493537	2.704371	-1.212599
78	1	0	7.142796	2.345444	-2.006268
79	6	0	8.156963	0.335430	-0.353356
80	б	0	9.048074	1.200925	0.305839
81	1	0	8.656544	1.933244	1.006273
82	6	0	10.421173	1.126656	0.077533
83	1	0	11.091931	1.797308	0.608481
84	б	0	10.932973	0.199565	-0.832798
85	1	0	12.002726	0.146037	-1.016887
86	6	0	10.058770	-0.651499	-1.511636
87	1	0	10.444688	-1.367824	-2.232327
88	6	0	8.686830	-0.584495	-1.274377
89	1	0	8.013623	-1.247944	-1.807987
90	7	0	-5.115731	0.560933	0.006595
91	7	0	-4.890735	-1.657140	-0.268060

Total Energy (HF) = -2150.8798851 Hartree

Data for **3b**:

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	 6	0	-6.298206	-0.294730	-0.072086
2	б	0	-7.609624	0.285073	0.054773
3	б	0	-7.861998	1.648607	0.333392
4	1	0	-7.034288	2.329226	0.479646
5	б	0	-9.151980	2.135507	0.441525
б	1	0	-9.315203	3.187520	0.658742
7	б	0	-10.240927	1.268224	0.277195
8	1	0	-11.257600	1.642418	0.358582
9	б	0	-10.018890	-0.073977	0.023553
10	1	0	-10.879458	-0.724549	-0.080219
11	6	0	-8.719524	-0.616157	-0.089467
12	б	0	-8.510070	-2.050947	-0.323586
13	б	0	-9.576889	-2.964801	-0.489327
14	1	0	-10.603074	-2.615773	-0.466023
15	б	0	-9.349339	-4.316107	-0.687897
16	1	0	-10.193638	-4.988840	-0.812289
17	б	0	-8.037551	-4.819597	-0.729999
18	1	0	-7.865123	-5.881077	-0.885822
19	6	0	-6.969400	-3.955831	-0.576703
20	1	0	-5.944769	-4.311970	-0.611181
21	6	0	-7.189563	-2.578270	-0.377544
22	6	0	-6.096595	-1.659593	-0.237130
23	6	0	-4.647685	1.617485	0.175857
24	б	0	-4.094933	2.030007	1.391970
25	1	0	-3.958403	1.306414	2.188559
26	6	0	-3.723395	3.358843	1.571451

27	1	0	-3.293283	3.685164	2.512449
28	б	0	-3.909486	4.285596	0.532462
29	б	0	-4.468525	3.867533	-0.688017
30	1	0	-4.609000	4.585508	-1.489218
31	б	0	-4.831362	2.536930	-0.864414
32	1	0	-5.260998	2.201309	-1.802813
33	б	0	-4.119488	-0.826427	-0.130291
34	б	0	-2.650462	-0.738033	-0.104720
35	б	0	-1.911473	0.330479	-0.638829
36	1	0	-2.415386	1.172449	-1.099010
37	б	0	-0.520364	0.320080	-0.604616
38	1	0	0.023429	1.170217	-1.006084
39	б	0	0.191538	-0.752749	-0.042971
40	б	0	-0.554120	-1.827801	0.474293
41	1	0	-0.035775	-2.689108	0.885832
42	б	0	-1.942413	-1.823829	0.442190
43	1	0	-2.503600	-2.667792	0.828900
44	б	0	1.672880	-0.750469	-0.001581
45	б	0	2.429747	-0.198800	-1.049877
46	1	0	1.923212	0.196866	-1.925801
47	б	0	3.819425	-0.185933	-1.006722
48	1	0	4.375579	0.237189	-1.837028
49	б	0	4.519344	-0.722765	0.087678
50	б	0	3.762750	-1.298348	1.123743
51	1	0	4.274843	-1.733638	1.977063
52	б	0	2.372282	-1.302900	1.085285
53	1	0	1.818937	-1.719346	1.922494
54	6	0	6.011780	-0.742037	0.129757
55	б	0	6.772525	0.354751	-0.166286
56	б	0	6.609067	-2.054931	0.525022
57	б	0	7.577689	-2.138396	1.539468
58	1	0	7.917053	-1.228186	2.024107
59	б	0	8.102752	-3.369803	1.928561
60	1	0	8.847666	-3.410460	2.719049
61	6	0	7.671931	-4.545451	1.310771
62	1	0	8.082873	-5.505083	1.612946
63	6	0	6.702621	-4.479819	0.307594
64	1	0	6.357229	-5.389133	-0.177583
65	6	0	6.169291	-3.249253	-0.072618
66	1	0	5.406706	-3.207056	-0.845440
67	6	0	6.193424	1.727442	-0.291450
68	6	0	5.356062	2.258905	0.704140
69	1	0	5.106791	1.649372	1.567246
70	б	0	4.847723	3.552580	0.597113
71	1	0	4.206491	3.944621	1.382334
72	б	0	5.164549	4.343865	-0.508785
73	1	0	4.767123	5.351864	-0.592569
74	6	0	6.004479	3.833880	-1.501153
75	1	0	6.261739	4.443089	-2.363842
76	б	0	6.522462	2.544740	-1.387460
77	1	0	7.185668	2.159714	-2.157052
78	6	0	8.248994	0.277670	-0.385921
79	6	0	9.111345	1.202699	0.229088
80	1	0	8.695216	1.960965	0.886432

81	б	0	10.487387	1.154563	0.011807
82	1	0	11.135846	1.871874	0.508300
83	6	0	11.030382	0.193937	-0.844023
84	1	0	12.102304	0.160610	-1.019972
85	б	0	10.184482	-0.717209	-1.479375
86	1	0	10.594678	-1.460591	-2.158019
87	6	0	8.809766	-0.676173	-1.252409
88	1	0	8.158595	-1.386676	-1.751782
89	7	0	-5.008156	0.248794	-0.012387
90	7	0	-4.761682	-1.969466	-0.262814
91	б	0	-3.530076	5.656464	0.715498
92	7	0	-3.222508	6.768463	0.863126

Total Energy (HF) = -2243.1205288 Hartree

Copies of NMR and HRMS spectra of the new compounds:

¹H NMR of **5**

HRMS of 5

HRMS of 2b

¹H NMR of **3a**

¹³C NMR of **3a**

HRMS of 3a

¹H NMR of **3b**

¹³C NMR of **3b**

HRMS of 3b

References

(a) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, 2009. (b) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B*, 1988, **37**, 785–789. (c) Becke, A. D. *J. Chem. Phys.*, 1993, **98**, 1372–1377.

2 B. Mennucci, E. Cances and J. Tomasi, J. Phys. Chem. B, 1997, 101, 10506-10517.

3 R. R. Hu, J. L. Maldonado, M. Rodriguez, C. M. Deng, C. K. W. Jim, J. W. Y. Lam, M. M. F. Yuen, G.
R. Ortiz and B. Z. Tang, *J. Mater. Chem.*, 2012, 22, 232–240.