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1 Experimental Section

2 1. Materials. 

3 NMR measurements were performed on a Bruker (Billerica, MA) 300MHz Avance system and 

4 analyzed using TopSpin software. Chemical shifts are expressed as parts per million using 

5 tetramethylsilane or CDCl3 solvent peaks as internal standards. MALDI-TOF measurements were 

6 performed on a Bruker Daltonics MicroFlex LT system (Billerica, MA). High Performance flash 

7 chromatography (HPFC) was carried out using a Grace Reveleris Flash System (Columbia, MD) with 

8 prepacked silica gel columns. Elemental analysis was performed by the Microanalytical Laboratory at 

9 the University of California Berkeley using an ICP Optima 7000 DV instrument. Zeta potential and size 

10 measurements were carried out using a Nano-ZS Dynamic Light Scattering Instrument from Malvern 

11 (Westborough, MA). Differential Scanning Calorimetry (DSC) measurements were obtained using a 

12 high temperature MC-DSC 4100 calorimeter from Calorimetry Sciences Corp. (Lindonk, UT). 

13 Fluorescence measurements were made on a FLUOstar plate reader from BMG Labtech (Durham, NC) 

14 with excitation at 485 nm and emission at 518 nm. TEM images were obtained using an FEI Tecnai 12 

15 transmission electron microscope at the University of California Berkeley Robert D. Ogg Electron 

16 Microscope Laboratory or the University of California, San Francisco Molecular Electron Microscopy 

17 Lab.

18

19 2. General Synthetic Scheme.

20 Lipids were prepared in a two-step synthesis (Scheme 1) starting with the acylation of 3-

21 (dimethylamino)-1,2-propanediol as previously reported (Kohli, 2012). Synthesis of 1-bromo-3-

22 propanesulfate (1) was performed by stirring 1 mmol of 1-bromo-3-propanol at 0.2 M in DCM as 4 

23 mmol sulfurtrioxide-pyridine complex (45%) and 1 mmol diisopropyl ethylamine was added. The 
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1 reaction was then heated to 40 °C overnight under nitrogen. The reaction was concentrated and taken up 

2 in DCM to afford a solid, which was removed by filtration and the filtrate purified by silica gel flash 

3 chromatography (0-10% methanol in DCM). The product eluted as the 1-bromo-3-propanesulfate – 

4 diisopropyl ethylamine salt in a 1:1 ratio as determined by NMR.

5 The diacyl tertiary amine lipid (2a-f) (1 mmol) was then quaternized with 1-bromo-3-

6 propanesulfate (1) (3.5 mmol) and 2 mmol diisopropyl ethylamine in dimethylformamide at 0.15 M. The 

7 reactions were heated to 60 °C overnight under nitrogen. A precipitate formed in the reactions with 

8 saturated lipid tails (distearoyl (3b), dipalmitoyl (3c), dimyristoyl (3d), dilauryl (3e) and dicapryloyl 

9 (3f)) and these solutions were then heated to 80 °C for 2 hours before cooling to room temperature. The 

10 precipitate reformed and was filtered and washed with DMF to yield a white solid. Quaternization of the 

11 unsaturated lipid (dioleoyl (3a)) was performed in the same manner, but did not result in a precipitate.  

12 The reaction mixture was concentrated and taken up in DCM and purified by silica gel flash 

13 chromatography (0-10% methanol in chloroform with 0.1% NH4OH).  

14

15 3. Chemical Characterization.

16 1-bromo-3-propanesulfate – diisopropyl ethylamine salt (1). Yield (74%). 1H NMR (CDCl3): 

17 δ 1.44 (d, 6H, DIPEA), 1.51 (d, 6H, DIPEA), 1.51 (d, 6H, DIPEA), 1.53 (t, 3H, DIPEA), 2.24 (tt, 2H), 

18 2.24 (tt, 2H), 3.13 (m, 2H, DIPEA), 3.54 (t, 2H), 3.69 (m, 2H, DIPEA), 4.19 (t, 2H). 13C NMR (CDCl3): 

19 δ 12.4 (DIPEA), 17.3 (DIPEA), 18.6 (DIPEA), 30.2, 32.7, 42.8 (DIPEA), 54.5 (DIPEA), 65.3.

20 DOAS (3a). Yield: 45%. 1H NMR (CDCl3): δ 0.89 (t, 6H), 1.29 (m, 40H), 1.59 (m, 4H), 2.02 (m, 

21 8H), 2.26 (m, 2H), 2.32 (m, 4H), 3.21 (s, 3H), 3.28 (s, 3H), 3.49 (m, 2H), 3.68 (t, 2H), 3.94 (dd, 1H), 

22 4.12 (t, 2H), 4.51 (dd, 1H), 5.35 (m, 4H), 5.64 (m, 1H). 13C NMR (CDCl3): δ 14.12, 22.68, 24.70, 24.80, 

23 27.22, 27.24, 29.10, 29.16, 29.20, 29.22, 29.28, 29.32, 29.34, 29.54, 29.78, 31.91, 33.89, 34.19, 51.18, 
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1 51.63, 63.37, 65.81, 129.70, 130.05, 172.80, 173.23. MALDI-TOF calculated for [C44H83NO8S] (m/z): 

2 785.58, observed: 787.39. Elemental analysis for [C44H83NO8S]: C, 67.22; H, 10.64; N, 1.78; S, 4.08. 

3 Found: C, 67.22; H, 10.90; N, 1.68; S, 4.33.

4 DSAS (3b). Yield: 42%. 1H NMR (CDCl3:MeOD (20:1)): δ 0.76 (t, 6H), 1.14 (m, 56H), 1.49 (m, 

5 4H), 2.06 (m, 2H), 2.24 (m, 4H), 2.99 (s, 3H), 3.03 (s, 3H), 3.49 (m, 2H), 3.57 (t, 2H), 3.93 (dd, 1H), 

6 4.00 (t, 2H), 4.34 (dd, 1H), 5.48 (m, 1H). 13C NMR (CDCl3): δ 13.60, 22.31, 24.30, 24.38, 25.28, 28.77, 

7 29.00, 29.16, 29.33, 31.57, 33.49, 33.75, 50.51, 51.25, 57.60, 62.95, 63.54, 63.83, 65.18, 172.65, 173.23. 

8 MALDI-TOF calculated for [C44H87NO8S] (m/z): 789.62, observed: [M+H] 791.16. Elemental analysis 

9 for [C44H87NO8S]: C, 66.79; H, 11.21; N, 1.77; S, 4.05. Found: C, 66.58; H, 11.54; N, 1.74; S, 4.65. 

10 Note: Elemental analysis of sulfur is believed to be high due to free sulfate.

11 DPAS (3c). Yield: 71%. 1H NMR (CDCl3:MeOD (20:1)): δ 0.79 (t, 6H), 1.17 (m, 48H), 1.52 (m, 

12 4H), 2.09 (m, 2H), 2.26 (m, 4H), 3.01 (s, 3H), 3.05 (s, 3H), 3.51 (m, 2H), 3.61 (t, 2H), 3.95 (dd, 1H), 

13 4.03 (t, 2H), 4.35 (dd, 1H), 5.51 (m, 1H). 13C NMR (CDCl3): δ 13.95, 22.57, 22.85, 24.56, 24.63, 29.00, 

14 29.04, 29.22, 29.26, 29.43, 29.55, 29.57, 29.59, 31.82, 33.74, 34.03, 50.82, 51.34, 57.98, 63.22, 63.79, 

15 63.90, 64.22, 64.39, 65.48, 172.86, 173.41. MALDI-TOF calculated for [C40H79NO8S] (m/z): 733.55, 

16 observed: [M+H] 734.88. Elemental analysis for [C40H79NO8S]: C, 65.35; H, 10.97; N, 1.91; S, 4.36. 

17 Found: C, 65.17; H, 11.33; N, 1.95; S, 4.79.

18 DMAS (3d). Yield: 71%. 1H NMR (CDCl3:MeOD (20:1)): δ 0.82 (t, 6H), 1.20 (m, 40H), 1.53 

19 (m, 4H), 2.14 (m, 2H), 2.29 (m, 4H), 3.05 (s, 3H), 3.10 (s, 3H), 3.56 (m, 2H), 3.67 (t, 2H), 3.99 (dd, 1H), 

20 4.06 (t, 2H), 4.38 (dd, 1H), 5.53 (m, 1H). 13C NMR (CDCl3): δ 13.89, 22.51, 22.81, 24.50, 24.57, 28.97, 

21 29.19, 29.35, 29.49, 31.76, 33.68, 33.97, 50.66, 51.22, 63.09, 63.61, 63.88, 64.47, 65.37, 172.75, 173.31. 

22 MALDI-TOF calculated for [C36H71NO8S] (m/z): 677.49, observed: [M+H] 678.59. Elemental analysis 
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1 for [C36H71NO8S]: C, 63.68; H, 10.69; N, 2.06; S, 4.72. Found: C, 63.52; H, 10.92; N, 1.98; S, 5.35. 

2 Note: Elemental analysis of sulfur is believed to be high due to free sulfate.

3 DLAS (3e). Yield: 69%. 1H NMR (CDCl3:MeOD (20:1)): δ 0.77 (t, 6H), 1.15 (m, 32H), 1.50 (m, 

4 4H), 2.07 (m, 2H), 2.24 (m, 4H), 3.00 (s, 3H), 3.05 (s, 3H), 3.49 (m, 2H), 3.60 (t, 2H), 3.95 (dd, 1H), 

5 4.01 (t, 2H), 4.35 (dd, 1H), 5.49 (m, 1H). 13C NMR (CDCl3): δ13.79, 22.44, 22.76, 24.42, 24.50, 28.85, 

6 28.89, 29.05, 29.07, 29.10, 29.24, 29.26, 29.37, 29.40, 31.67, 33.59, 33.88, 50.57, 51.10, 63.03, 63.53, 

7 63.81, 64.30, 65.31, 172.70, 173.29. MALDI-TOF calculated for [C32H63NO8S] (m/z): 621.43, 

8 observed: [M+H] 622.91. Elemental analysis for [C32H63NO8S]: C, 61.80; H, 10.21; N, 2.25; S, 5.16. 

9 Found: C, 61.52; H,9.85; N,2.13; S, 5.03.

10 DCAS (3f). Yield: 65%. 1H NMR (CDCl3): δ0.90 (t, 6H), 1.29 (m, 24H), 1.60 (m, 4H), 2.27 (m, 

11 2H), 2.35 (m, 4H), 3.21 (s, 3H), 3.29 (s, 3H), 3.70 (m, 3H), 3.96 (dd, 1H), 4.13 (t, 3H), 4.51 (dd, 1H), 

12 5.64 (m, 1H). 13C NMR (CDCl3): δ14.10, 22.70, 24.74, 24.84, 29.19, 29.36, 29.49, 31.91, 33.94, 34.25, 

13 51.10, 51.64, 63.39, 63.61, 63.84, 64.56, 65.84, 172.83, 173.25. MALDI-TOF calculated for 

14 [C28H55NO8S] (m/z): 565.37, observed: [M+H] 566.72. Elemental analysis for [C28H55NO8S]: C, 59.44; 

15 H, 9.80; N, 2.48; S, 5.67. Found: C, 59.32; H, 9.67; N, 2.46; S, 5.63.

16

17 4. Elemental analysis.

18 Dry lipid samples (10 mg) were submitted to the Microanalytical Laboratory at the University of 

19 California Berkeley for elemental analysis determinations using an ICP Optima 7000 DV instrument.

20

21 5. Differential Scanning Calorimetry. 

22 DSC experiments were based upon a protocol described in Huang and Szoka.{Huang:2008iy} 

23 Lipids films were prepared in glass tubes from a 20 mg/mL stock solution in 25% methanol in 
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1 chloroform by concentrating the lipids under vacuum. The lipid films were then rehydrated at 20 mM in 

2 10 mM HEPES buffer containing either 150 mM NaCl, 1M NaCl, 1M NaI or 1 M NaClO4. 

3 In all experiments, the lipids were heated to 90 °C for 10 min and sonicated with heating for 10 

4 minutes, then 250 uL of lipid was transferred to a reusable Hestelloy sample ampoule using a glass 

5 syringe. Data were collected over a range of 10-110 °C at 1 °C/min with the relevant buffer as the 

6 reference. The CpCalc 2.1 software package was used to convert the raw data into a molar heat capacity. 

7 The data was then exported to Excel and GraphPad Prism for processing. Samples were scanned through 

8 a heat-cool-heat cycle and data was collected from the second heating cycle.

9

10 6. Transmission electron microscopy.

11 A 2.0 uL drop of liposomes were adsorbed for 60 s on glow-discharged carbon-coated copper 

12 grid (Ted Pella, Redding, CA) and water was wicked off. Then, 2 microliters of a 1% uranyl acetate 

13 negative stain solution was added and left to stain for 60 s and wicked off. The grid was then washed 

14 with double deionized water three times and the water was removed by wicking. Grids were imaged 

15 with an FEI Tecnai T12 TEM (FEI company, Hillsboro, OR) at 120kV. Data were acquired with a 4 x 4 

16 Gatan UltraScan CCD camera (Gatan, Pleasanton, CA).

17

18 7. Small angle X-ray scattering measurements.

19 Pure lipids for SAXS were prepared at 20 mM in 10mM HEPES buffer containing 150 mM 

20 NaCl. Aqueous phases were heated to 90 oC and added to lipid, vortexed and sonicated in a sonicating 

21 bath for 10 min. SAXS data were measured on the SAXS/WAXS beamline at the Australian 

22 Synchrotron. Buffer was drawn into a fixed position flowthrough quartz capillary, mounted in a brass 

23 block fitted with a thermocouple, to allow for background measurements and the temperature ramped 
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1 from ‘nominal’ 20 oC to about 80 oC, and a 10 min equilibration at each temperature prior to acquisition 

2 of scattering for 5 sec. The camera (Pilatus 1M) was positioned 3252 mm from the sample, with X-ray 

3 energy selected at 11 keV. Modeling of scattering data calculations were performed using GIFT.

4

5 Table S1: Elemental analysis of AS lipids.

6

C% H% N% S%
Expected 59.44 9.80 2.48 5.67
Observed 59.32 9.67 2.46 5.63

Expected 61.80 10.21 2.25 5.16
Observed 61.52 9.85 2.13 5.35

Expected 63.68 10.69 2.06 4.72
Observed 63.52 10.92 1.98 5.35

Expected 65.35 10.97 1.91 4.36
Observed 65.17 11.33 1.95 4.79

Expected 66.79 11.21 1.77 4.05
Observed 66.58 11.54 1.74 4.65

Expected 67.22 10.64 1.78 4.08
Observed 67.22 10.9 1.68 4.33

DCAS

DLCS

DMCS

DPCS

DSCS

DOAS

7

8

9

10
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1 Figure S1: BrPrOSO3–DIPEA (1) – 1H NMR
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1 Figure S2: BrPrOSO3-DIPEA (1) – 13C NMR
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1 Figure S3: DOAS (3a) – 1H NMR
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1 Figure S4: DOAS (3a) – 13C NMR
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1 Figure S5: DSAS (3b) – 1H NMR
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1 Figure S6: DSAS (3b) – 13C NMR
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1 Figure S7: DPAS (3c) – 1H NMR
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1 Figure S8: DPAS (3c) – 13C NMR
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1 Figure S9: DMAS (3d) – 1H NMR
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1 Figure S10: DMAS (3d) – 13C NMR
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1 Figure S11: DLAS (3e) – 1H NMR
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1 Figure S12: DLAS (3e) – 13C NMR
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1 Figure S13: DCAS (3f) – 1H NMR
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1 Figure S14: DCAS (3f) – 13C NMR
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1 Figure S15: SAXS scattering profile for DOAS (3a) with increasing temperature (background subtracted).
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3

4 Figure S16: DOAS (3a) scattering profile with increasing temperature.
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DOCS scattering profiles with increasing temperature
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1 Figure S17: Change in lamellar spacing with temperature for DOAS (3a).
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4 Figure S18: DOAS (3a) SAXS data and fit for the thickness pair distance distribution function at 20 oC. 
5 Structure factor for the lamellar phase (modified Caille Theory) number of bilayer: 200, bilayer spacing: 46.0 
6 Å, Caille parameter: 0.14 Å-1.
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1 Figure S19: pt(r) calculated from SAXS data in Figure S18.

2

3

4 Figure S20: DOAS (3a) SAXS data and fit for the thickness pair distance distribution function at 80 oC. 
5 Structure factor for the lamellar phase (modified Caille Theory) number of bilayer: 76.3, bilayer spacing: 43.8 
6 Å, Caille parameter: 0.14 Å-1.
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1 Figure S21: pt(r) calculated from SAXS data in Figure S20.

2
3
4 Figure S22: Electron density within the bilayer thickness calculated via deconvolution of the pt(r) functions.
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1 Figure S23: SAXS scattering profile for DMAS (3d) with increasing temperature.
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5
6 Figure S24: DMAS (3a) scattering profiles with increasing temperature.
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DMCS scattering profiles with increasing temperature
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1 Figure S25: Determination of particle size by dynamic light scattering with increasing temperature. The high 
2 polydispersity index of these measurements are shown in Figure S26.
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Particle size dependence with temperature
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1 Figure S26: Determination of polydispersity by dynamic light scattering with increasing temperature for 
2 DMAS.
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Polydispersity of DMCS dispersion with increasing temperature
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5

6 Figure S27: Differential scanning calorimetry of DMAS in the presence of kosmotropic salts as compared to 
7 DMPC. 
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