| 1  | <b>Electronic Supplementary Information</b>                                                                                                                     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                                                                                 |
| 3  | A Bilayer Triangular Lattice with Crown–like Co7 Spin Cluster                                                                                                   |
| 4  | <b>SBUs Exhibiting High Spin Frustration</b>                                                                                                                    |
| 5  | Ya-Min Li,* <sup>a</sup> Hui-Jie Lun, <sup>a</sup> Chang-Yu Xiao, <sup>a</sup> Yan-Qing Xu, <sup>b</sup> Ling Wu, <sup>c</sup> Jing-He Yang, <sup>a</sup> Jing- |
| 6  | Yang Niu <sup>a</sup> and Sheng-Chang Xiang* <sup>c</sup>                                                                                                       |
| 7  |                                                                                                                                                                 |
| 8  | <sup>a</sup> Henan Key Laboratory of Polyoxometalate; Institute of Molecular and Crystal Engineering,                                                           |
| 9  | College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004,                                                                        |
| 10 | China; E-mail: liyamin@henu.edu.cn                                                                                                                              |
| 11 | <sup>b</sup> School of Chemistry, Key Laboratory of Cluster Science, Ministry of Education of China, Beijing                                                    |
| 12 | Institute of Technology, Beijing, 100081, China                                                                                                                 |
| 13 | <sup>c</sup> Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Chemical                                                           |
| 14 | Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, China; E-mail:                                                                                   |
| 15 | scxiang@fjnu.edu.cn                                                                                                                                             |
| 16 |                                                                                                                                                                 |

#### 17 Experimental Section

#### 18 Materials and Physical Measurements

19 All materials were commercially available and used as received. Infrared spectrum was recorded on a Nicolet magna 750 FT-IR spectrophotometer using KBr pellets in the range of 400~4000 cm<sup>-</sup> 20 <sup>1</sup>. Elemental analyses were performed *via* Vario EL III Etro Elemental Analyzer. 21 Thermogravimetric analysis (TGA) was performed under atmosphere with a heating rate of 10 22 23 °C/min<sup>-1</sup> using TGA/SDTA851e. Powder X-ray diffraction (PXRD) pattern was recorded on a Philips X'PertPro instrument with Cu Ka radiation ( $\lambda = 1.54056$  Å) in the range 2  $\theta = 5-50^{\circ}$  at 24 room temperature. Magnetic measurements were carried out on a Quantum Design MPMS-XL 25 SQUID magnetometer, and diamagnetic corrections were estimated from Pascal's constants. 26 27 Synthesis of {[Co7(OH)6(1,4-npa)4(H2O)3](dmt)0.5·4H2O}n (1)

A mixture of CoCl<sub>2</sub>·6H<sub>2</sub>O (0.476 g, 2 mmol), 1,4-npa (0.216 g, 1 mmol) and dmt (0.125 g, 1 mmol), and H<sub>2</sub>O (10 mL) was placed in a Teflon–lined stainless steel vessel, heated to 150 °C for 3 days, then cooled to room temperature. Red crystals of **1** were obtained, washed by H<sub>2</sub>O (Yield: 0.086 g, 22.3 % based on 1,4-npa). Elemental analysis (%): calcd for C 38.50, H 3.07, N 2.24; found C 38.47, H 3.46, N 2.35.

### 33 Crystallographical Section

34 X-ray single crystal data were collected at 113.15 K on a MERCURY-CCD areadetector diffractometer with Mo Ka radiation ( $\lambda = 0.71073$  Å). Data reduction and absorption correction 35 were made with multi-scan methods. These structures were solved by direct methods using 36 SHELXS-97<sup>1</sup> and refined by full matrix least-squares methods using SHELXL-97<sup>2</sup>. Anisotropic 37 displacement parameters were refined for non-hydrogen atoms except O8, O9, O8A, O9A, C12A, 38 C13A, C31 and C31A. Crystal data for  $Co_7C_{50}H_{47.5}N_{2.5}O_{29}$ ,  $M_r = 1559.92$ , trigonal, space group 39 *R*-3, *a* = 14.997(3) Å, *b* = 14.997(3) Å, *c* = 52.244(16) Å, *γ* = 120 °, *V* = 10176 Å<sup>3</sup>, *T* = 113.15 K, 40 Z = 6,  $\mu = 1.749$  mm<sup>-1</sup>,  $\rho = 1.527$  g/cm<sup>-3</sup>, S = 1.048, R = 0.0650, and wR = 0.1912 for independent 41 42 reflections 3694  $[I > 2\sigma(I)]$ . Due to high symmetry, two 1,4-naphthalic acid ligands are disordered and treated as two parts. The disordered guest molecule (2,4-diamine-6-methyl-triazine) or 43 solvents in the lattice pores could not be modeled in terms of atomic sites and were treated using 44 the SQUEEZE routine<sup>3</sup> in the PLATON software package<sup>4</sup>. However, due to the addition of the 45 guest and solvent molecules to the SFAC and UNIT list, the cell content didn't agree, accordingly, 46 Alert level A "CHEMW03\_ALERT\_2\_A ALERT: The ratio of given/expected molecular weight 47

48 as calculated..." appeared. Crystal data and refinement details are presented in Table S1. Selected49 bond distances and bond angles are listed in Table S2.

| Table S1 | Crystallographic data for compound 1. |  |
|----------|---------------------------------------|--|
|----------|---------------------------------------|--|

| 1                                   | l                                       |
|-------------------------------------|-----------------------------------------|
| Empirical formula                   | $C_{50}H_{47.5}Co_7N_{2.5}O_{29}$       |
| Formula weight                      | 1559.92                                 |
| Crystal system                      | trigonal                                |
| Space group                         | <i>R</i> –3                             |
| Unit cell dimensions                |                                         |
| <i>a</i> (Å)                        | 14.997(3)                               |
| <i>b</i> (Å)                        | 14.997(3)                               |
| <i>c</i> (Å)                        | 52.244(16)                              |
| γ (°)                               | 120                                     |
| $V(Å^3)$                            | 10176(4)                                |
| Ζ                                   | 6                                       |
| $\rho$ calcd.(Mg/m <sup>3</sup> )   | 1.527                                   |
| $\mu$ (mm <sup>-1</sup> )           | 1.749                                   |
| <i>F</i> (000)                      | 4716                                    |
| $\theta$ limits (°)                 | 2.96 to 25                              |
| h, k, l limits                      | -17 to 17, -17 to 17, -58 to 62         |
| Reflections collected / unique      | 22014 / 3694 [ <i>R</i> (int) = 0.0232] |
| Data / restraints / parameters      | 3952 / 655 / 432                        |
| GOOF                                | 1.084                                   |
| <i>R</i> index $[I \ge 2\sigma(I)]$ | $R_1 = 0.0650, wR_2 = 0.1912$           |
| R (all data)                        | $R_1 = 0.0672, wR_2 = 0.1941$           |
| Largest and mean delta/sigma        | 0.001/0.000                             |

| Bond length [Å]   |            |                      |            |  |  |
|-------------------|------------|----------------------|------------|--|--|
| Co(1)-O(6)        | 2.048(4)   | Co(2)–O(7)           | 2.090(4)   |  |  |
| Co(1)-O(4)        | 2.049(4)   | Co(2)-O(5)           | 2.092(4)   |  |  |
| Co(1)-O(9)        | 2.049(4)   | Co(2)-O(3)           | 2.109(4)   |  |  |
| Co(1)-O(1)        | 2.077(4)   | Co(2)–O(2)           | 2.261(3)   |  |  |
| Co(1)-O(2)        | 2.155(3)   | Co(3)-O(8A)          | 1.983(13)  |  |  |
| Co(1)-O(8)#1      | 2.161(12)  | Co(3)-O(8A)#1        | 2.396(12)  |  |  |
| Co(1)–Co(3)       | 2.9143(9)  | Co(3)–O(2)           | 2.168(3)   |  |  |
| Co(2)-O(1)        | 2.054(3)   |                      |            |  |  |
|                   | Bond       | angles [°]           |            |  |  |
| O(6)–Co(1)–O(4)   | 86.3(2)    | O(7)–Co(2)–O(2)      | 98.29(14)  |  |  |
| O(6)-Co(1)-O(9)   | 80.3(2)    | O(5)–Co(2)–O(2)      | 98.11(14)  |  |  |
| O(4)–Co(1)–O(9)   | 80.4(2)    | O(3)–Co(2)–O(2)      | 174.02(13) |  |  |
| O(6)-Co(1)-O(1)   | 97.81(16)  | O(2)–Co(3)–O(8)      | 100.7(4)   |  |  |
| O(9)–Co(1)–O(1)   | 177.2(2)   | O(8)#3–Co(3)–O(8)#2  | 71.6(6)    |  |  |
| O(6)–Co(1)–O(2)   | 177.67(18) | O(8)#3–Co(3)–O(2)#2  | 103.4(4)   |  |  |
| O(4)–Co(1)–O(2)   | 94.69(18)  | O(8)#2Co(3)-O(2)#2   | 100.7(4)   |  |  |
| O(9)–Co(1)–O(2)   | 97.8(2)    | O(8)-Co(3)-O(2)#2    | 171.7(4)   |  |  |
| O(1)–Co(1)–O(2)   | 84.15(11)  | O(8–Co(3)–O(2)#3     | 103.4(4)   |  |  |
| O(1)-Co(2)-O(1)#2 | 98.79(15)  | O(2)#2o(3)–O(2)#3    | 83.89(12)  |  |  |
| O(1)–Co(2)–O(7)   | 171.38(16) | O(8)#3-Co(3)-O(2)    | 171.4(4)   |  |  |
| O(1)-Co(2)-O(5)   | 90.29(16)  | O(8)#3-Co(3)-O(8A)#4 | 35.0(5)    |  |  |
| O(7)–Co(2)–O(5)   | 81.1(2)    | O(8)#2–Co(3)–O(8A)#4 | 98.2(5)    |  |  |
| O(1)-Co(2)-O(3)   | 94.04(13)  | O(2)#2-Co(3)-O(8A)#4 | 76.4(4)    |  |  |
| O(7)–Co(2)–O(3)   | 86.27(15)  | O(2)#3-Co(3)-O(8A)#4 | 76.0(3)    |  |  |
| O(5)–Co(2)–O(3)   | 86.37(15)  | O(2)–Co(3)–O(8A)#4   | 153.1(3)   |  |  |
| O(1)-Co(2)-O(2)   | 82.03(11)  |                      |            |  |  |

**Table S2** Selected bond lengths [Å] and angles [°] for compound 1.

57 Symmetry transformations used to generate equivalent atoms: #1 - x + y + 1, -x - 1, *z*; #2 2 - x, *y*-2, 58 1+z; #3 3+x, 2+y, 2+z; #4 - x+y, -x, 2+z.

59

**Table 3** BVS analyses of Co,  $\mu_3$ -O and  $\mu_4$ -O atoms for compound 1.

| Table 9 Dyb analyses of Co, $\mu_3$ O and $\mu_4$ O atoms for compound 1. |                  |                  |                  |                     |                     |  |  |
|---------------------------------------------------------------------------|------------------|------------------|------------------|---------------------|---------------------|--|--|
| Atoms                                                                     | Co(1)            | Co(2)            | Co(3)            | μ <sub>3</sub> O(1) | μ <sub>4</sub> Ο(2) |  |  |
| BVS                                                                       | 1.970            | 1.969            | 2.148            | 1.104               | 1.134               |  |  |
| Assignment                                                                | Co <sup>2+</sup> | Co <sup>2+</sup> | Co <sup>2+</sup> | OH-                 | OH-                 |  |  |

60 The oxidation state of a particular atom can be taken as the nearest integer to the value.<sup>5</sup>

61

# 62 Physical Characterization Section

From IR spectra (Fig. S1), the sharp peak at 3605 cm<sup>-1</sup> of **1** should be attributed to the stretching vibration of OH groups, demonstrating the existence of OH group in compound **1**. The antisymmetric stretching vibration of carboxylic group is assigned to the 1573 cm<sup>-1</sup>, while the symmetric stretching vibration at 1371 cm<sup>-1</sup>, which show the bridging mode of carboxylic group.<sup>6</sup>



**Fig. S1** IR spectra for the compound **1**.



Fig. S2 PXRD curves for the cmpound 1.



**Fig. S3** TGA curve for the compound **1**.



Fig. S4 FCM and ZFCM curves at 100 Oe and 200 Oe for 1.



Fig. S5 The curves of magnetization vs. applied fields at 2 K in 1.



Fig. S6 Plots of the temperature dependence of the ac susceptibility  $\chi'$  and  $\chi''$  obtained at 3 Oe field for 1.



Fig. S7 The cobalt skeleton highlighting the polyhedron with eleven triangular faces shaded in blue for 1.

## References

- 1 G. M. Sheldrick, SHELXS-97, *Program for X-ray Crystal Structure Solution*, University of Göttingen, Göttingen, Germany, 1997.
- 2 G. M. Sheldrick, SHELXL-97, *Program for X-ray Crystal Structure Refinement*, University of Göttingen, Göttingen, Germany, 1997.
- 3 P. van der Sluis and A. L. Spek, Acta Cryst., 1990, A46, 194–201.
- 4 A. L. Spek, J. Appl. Cryst., 2003, 36, 7–13.
- 5 I. D. Brown, Chem. Rev., 2009, 109, 6858–6919.
- 6 (a) X.-J. Li, X.-Y. Wang, S. Gao and R. Cao, *Inorg. Chem.*, 2006, 45, 1508–1516; (b) T. K. Maji, S. Sain, G. Mostafa, T.-H. Lu, J. Ribas, M. Monfort and N. R. Chaudhuri, *Inorg. Chem.*, 2003, 42, 709–716; (c) X.-Y. Yi, H.-C. Fang, Z.-G. Gu, Z.-Y. Zhou, Y.-P. Cai, J. Tian and P. K. Thallapally, *Cryst. Growth Des.*, 2011, 11, 2824–2828.