Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

SUPPORTING INFORMATION

Fluorine Effects in Organocatalysis -Asymmetric Brønsted acid assisted Lewis base catalysis for the synthesis of trifluoromethylated heterocycles by exploiting the negative hyperconjugation of the CF₃-group

Chandra M. R. Volla, Arindam Das, Iuliana Atodiresei and Magnus Rueping*

Corresponding Author: Prof. Magnus Rueping Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen (Germany) Tel: +49.241.8094710 Fax: +49.241.8092665 E-mail: magnus.rueping@rwth-aachen.de Methods: Unless otherwise stated, reactions were conducted in flame-dried glassware. Solvents after reactions and extraction were evaporated in a rotatory evaporator under vacuum. TLC for reaction monitoring was performed on 60 F₂₅₄ (Merck) with detection by UV light and charring with KMnO₄ or Pancaldi reagent. ¹H and ¹³C NMR spectra were recorded by using Varian Inova 400 and Inova 600 spectrometers and are reported relative to Me₄Si (δ 0.0) or to the solvents residual ¹H-signal (CH-Cl₃, $\delta(H)$ 7.27, CH₂Cl₂ $\delta(H)$ 5.3). Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration. Data for ¹³C NMR spectra are reported in terms of chemical shift. IR spectra were recorded on a Perkin-Elmer-100 spectrometer and are reported in frequency of absorption (cm⁻¹). LC-MS mass spectra were measured on a LCQ FLEET instrument. The enantiomeric excesses were determined by HPLC analysis using a chiral stationary phase column (column, Daicel Co. CHIRALCEL OD-H, CHIRALPAK AD-H or CHIRALPAK AS-H; eluent: nhexane/ 2-propanol). The chiral HPLC methods were calibrated with the corresponding racemic mixtures. Optical rotations were measured on a Perkin Elmer 241 polarimeter.

Typical Experimental Procedure: In a screw-cap tube were placed 20 mol% of TMS-prolinol ether catalyst (0.026 mmol) and 1.0 equiv. (0.13 mmol) of the trifluoromethylacetaldehyde hydrazone. 1.0 mL of dry DCM was added to the tube followed by 2.0 equiv. (0.26 mmol) of freshly distilled α , β unsaturated aldehyde. The tube was stirred at 0 °C for 10 mins. After 10 mins 1.0 equiv. of acetic acid (0.13 mmol) was added to the reaction. The reaction was stirred until the complete disappearance of the trifluoromethylacetaldehyde hydrazone by TLC. 40 mol% of TFA (0.052 mmol) was added to the reaction and then it was stirred at the same temperature overnight. The crude reaction mixture was subjected to column chromatography over silica gel to get the pure product.

1,4-Diphenyl-3-(trifluoromethyl)-1,4-dihydropyridazine (9a)

¹**H NMR (400 MHz, CDCl₃):** $\delta = 4.42$ (d, J = 5.3 Hz, 1H), 5.23 (dd, J = 7.8, 5.3 Hz, 1H), 6.92 (d, J = 7.8 Hz, 1H), 7.18-7.12 (m, 1H), 7.25 (d, J = 7.1 Hz, 2H), 7.29 (d, J =

 $F_{3}C \xrightarrow{N} I_{3} I_{2} I_{3} I_{2} I_{3} I_{3} I_{3} I_{4} I_{1} I_{1} I_{3} I_{1} I_{2} I_{1} I_{1} I_{1} I_{2} I_{1} I_{1$ 36.55

IR (film): 3442, 3034, 2922, 2856, 1729, 1671, 1597, 1494, 1383, 1245, 1132, 1060, 997, 832, 755, $697, 604, 520 \text{ cm}^{-1}$

MS (EI): (C₁₇H₁₃F₃N₂), 302.4 (22, M⁺), 225.4 (99, M⁺ - 77).

 $[\alpha]_D = -234.0 (c = 7.6, CHCl_3, 96\% ee)$

HPLC conditions: OD-H column, *n*-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, major enantiomer: $t_R = 6.55$ min, minor enantiomer: $t_R = 7.51$ min.

1-(4-Methoxyphenyl)-4-phenyl-3-(trifluoromethyl)-1,4-dihydropyridazine (9b)

¹H NMR (600 MHz, CDCl₃): δ = 3.82 (s, 3H, OMe), 4.40 (d, J = 5.3 Hz, 1H), 5.17 (dd, J = 7.7, 5.4 Hz, 1H), 6.80 (d, J = 7.7 Hz, 1H), 6.93 (d, J = 9.0 Hz, 2H), 7.24 (d, J = 6.9 Hz, 2H), 7.25 - 7.29 (m, 1H), 7.30 - 7.36 (m, 4H)

¹³C NMR (150.9 MHz, CDCl₃): 156.57, 143.16, 137.79, 131.90 (q, $J_{C-F} = 33.5$ Hz), 128.90, 127.53, 127.45, 125.53, 121.54 (q, $J_{C-F} = 274.1$ Hz), 118.33, 114.49, 103.95, 55.59, 36.37

IR (film): 3444, 2924, 2850, 2296, 1727, 1670, 1606, 1509, 1460, 1383, 1246, 1129, 1051, 829, 759, 702, 533 cm⁻¹

MS (EI): (C₁₈H₁₅F₃N₂O), 333.4 (29, M⁺ +1), 332.3 (89, M⁺), 255.3 (99, M⁺ - 77).

 $[\alpha]_D = -86.0 (c = 21.1, CHCl_3, 96\% ee)$

HPLC conditions: OD-H column, 95/5 *n*-hexane/2-propanol, flow 1.0 mL/min, major enantiomer: $t_R = 7.52$ min, minor enantiomer: $t_R = 9.12$ min.

4-(4-Methoxyphenyl)-1-phenyl-3-(trifluoromethyl)-1,4-dihydropyridazine (9c)

Ph

¹H NMR (600 MHz, CDCl₃): δ = 3.79 (s, 3H, OMe), 4.35 (dd, *J* = 5.2, 2.6 Hz, 1H), 5.21 (ddd, *J* = 7.8, 5.3, 2.5 Hz, 1H), 6.87 (dd, *J* = 8.8, 2.8 Hz, 2H), 6.92 (dd, *J* = 7.8, 2.4 Hz, 1H), 7.14-7.11 (m, 1H), 7.16 (dd, *J* = 8.9, 2.4 Hz, 2H), 7.36 - 7.44 (m, 4H) ¹³C NMR (150.9 MHz, CDCl₃): 159.07, 143.66, 135.16, 133.18 (q, *J*_{C-F} = 33.4 Hz), 129.30, 128.65, 124.53, 123.84, 121.49 (q, *J*_{C-F} = 274.7 Hz), 116.20, 114.28, 104.89, 55.23, 35.62

IR (film): 3442, 3008, 2926, 2843, 1726, 1663, 1601, 1503, 1463, 1383, 1299, 1252, 1175, 1129, 1054, 953, 833, 755, 691, 541 cm⁻¹

MS (EI): (C₁₈H₁₅F₃N₂O), 333.4 (34, M⁺+1), 332.3 (99, M⁺), 225.3 (97, M⁺ - 107).

 $[\alpha]_D = -41.3 (c = 9.0, CHCl_3, 94\% ee)$

HPLC conditions: OD-H column, *n*-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, minor enantiomer: $t_R = 6.35$ min, major enantiomer: $t_R = 8.65$ min.

4-(2-Methoxyphenyl)-1-phenyl-3-(trifluoromethyl)-1,4-dihydropyridazine (9d)

¹H NMR (400 MHz, CD₂Cl₂): $\delta = 3.84$ (s, 3H, OMe), 4.86 (d, J = 5.4 Hz, 1H), 5.25 (dd, J = 7.8, 5.4 Hz, 1H), 6.86 (d, J = 7.8 Hz, 1H), 6.92 (d, J = 7.6 Hz, 2H), 7.08 (dd, J = 7.8, 1.7 Hz, 1H), 7.10 - 7.15 (m, 1H), 7.24 (ddd, J = 8.3, 7.4, 1.7 Hz, 1H), 7.37 - 7.40 (m, 4H) OMe

¹³C NMR (100.6 MHz, CD₂Cl₂): 155.98, 143.80, 132.14 (q, $J_{C-F} = 33.5$ Hz), 130.73, 129.18, 128.72, 128.55, 124.78, 123.64, 121.15 (q, $J_{C-F} = 274.2$ Hz),

120.93, 116.09, 110.74, 104.31, 55.41, 29.96

IR (film): 3442, 3306, 2923, 2850, 1731, 1663, 1596, 1494, 1382, 1247, 1129, 1054, 950, 837, 753, 693, 617, 570 cm⁻¹

MS (EI): $(C_{18}H_{15}F_{3}N_{2}O)$, 333.3 (21, M⁺+1), 332.3 (99, M⁺), 225.3 (98, M⁺ - 107).

 $[\alpha]_D = -77.3 \ (c = 25.5, CHCl_3, 96\% ee)$

HPLC conditions: OD-H column, *n*-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, major enantiomer: $t_R = 5.46$ min, minor enantiomer: $t_R = 7.40$ min.

4-(2-Nitrophenyl)-1-phenyl-3-(trifluoromethyl)-1,4-dihydropyridazine (9e)

¹**H** NMR (400 MHz, CD₂Cl₂): $\delta = 5.13$ (d, J = 5.4 Hz, 1H), 5.48 (dd, J = 7.8, 5.4 Hz, 1H), 6.94 (d, J = 7.8 Hz, 1H), 7.18 (dd, J = 8.8, 4.5 Hz, 1H), 7.37 (dd, J = 7.9, 1.4 Hz, 1H), 7.40 - 7.43 (m, 4H), 7.42 - 7.47 (m, 1H), 7.62 (dt, J = 7.7, 7.6, 1.4 Hz, 1H), 7.94 (dd, J = 8.2, 1.4 Hz, 1H)

² ¹³**C NMR (100.6 MHz, CD₂Cl₂):** 147.07, 143.45, 136.79, 134.04, 131.09 (q, $J_{C-F} = 22.6 \text{ Hz}$), 130.68, 129.29, 128.39, 125.77, 124.74, 124.35, 121.27 (q, $J_{C-F} = 274.2$

Hz), 116.53, 103.60, 32.17

IR (film): 3440, 3071, 3022, 1952, 1685, 1599, 1529, 1496, 1385, 1350, 1241, 1136, 1062, 1002, 951, 855, 828, 755, 694, 618, 517 cm⁻¹

MS (EI): $(C_{17}H_{12}F_3N_3O_2)$, 347.3 (20, M⁺), 330.3 (99, M⁺ - 17).

 $[\alpha]_D = -4.1 \ (c = 25.7, CHCl_3, 99.5\% ee)$

HPLC conditions: OD-H column, *n*-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, major enantiomer: $t_R = 7.10$ min, minor enantiomer: $t_R = 21.58$ min.

4-(4-Bromophenyl)-1-phenyl-3-(trifluoromethyl)-1,4-dihydropyridazine (9f)

h ¹H NMR (600 MHz, CDCl₃): δ = 4.40 (d, J = 5.3 Hz, 1H), 5.20 (dd, J = 7.6, 5.2 Hz, 1H), 6.93 (d, J = 7.8 Hz, 1H), 7.11 (d, J = 8.4 Hz, 2H), 7.14 - 7.18 (m, 1H), 7.38 - 7.42 (m, 4H), 7.46 (d, J = 8.3 Hz, 2H)

¹³C NMR (150.9 MHz, CDCl₃): 143.50, 141.79, 132.22 (q, $J_{C-F} = 34.0$ Hz), 131.87, 129.36, 129.22, 125.06, 124.15, 121.68, 121.36 (q, $J_{C-F} = 274.5$ Hz), 116.35, 104.16, 36.01

IR (film): 3439, 3049, 2923, 2855, 1663, 1597, 1493, 1377, 1304, 1270, 1242, 1180, 1130, 1058, 1007, 950, 829, 755, 692, 609, 519 cm⁻¹

MS (EI): $(C_{17}H_{12}BrF_{3}N_{2})$, 382.2 (44, M⁺ + 2), 380.3 (44, M⁺), 225.3 (99, M⁺ - 155).

 $[\alpha]_D = -69.7 (c = 6.5, CHCl_3, 96\% ee)$

HPLC conditions: OD-H column, *n*-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, minor enantiomer: $t_R = 5.16$ min, major enantiomer: $t_R = 7.05$ min.

4-(2-Bromophenyl)-1-phenyl-3-(trifluoromethyl)-1,4-dihydropyridazine (9g)

¹**H NMR (400 MHz, CDCl₃):** δ = 4.95 (d, *J* = 5.4 Hz, 1H), 5.35 (dd, *J* = 7.8, 5.4 Hz, 1H), 6.83 (d, *J* = 7.8 Hz, 1H), 7.07 - 7.18 (m, 3H), 7.23 - 7.30 (m, 1H), 7.37 - 7.40 (m, 4H), 7.55 (dd, *J* = 8.0, 1.4 Hz, 1H)

¹³C NMR (100.6 MHz, CDCl₃): 143.55, 141.44, 133.06, 131.72 (q, J_{C-F} = 34.6 Hz), 129.55, 129.32, 128.92, 128.44, 125.14, 124.12, 121.25 (q, J_{C-F} = 274.3 Hz), 121.43, 116.40, 103.45, 35.97

IR (film): 3448, 3061, 2921, 2855, 1953, 1731, 1656, 1595, 1493, 1383, 1246, 1186, 1128, 1053, 1009, 951, 826, 748 cm⁻¹

MS (EI): $(C_{17}H_{12}BrF_{3}N_{2})$, 382.2 (5, M⁺ + 2), 380.3 (6, M⁺), 225.3 (99, M⁺ - 155).

 $[\alpha]_D = -287.8 (c = 17.9, CHCl_3, 96\% ee)$

HPLC conditions: OD-H column, *n*-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, major enantiomer: $t_R = 5.49$ min, minor enantiomer: $t_R = 10.57$ min.

1-Phenyl-3-(trifluoromethyl)-4-(2-(trifluoromethyl)phenyl)-1,4-dihydropyridazine (9h)

Ph

F₃C

29.73

¹**H NMR** (600 **MHz**, **CDCl**₃): $\delta = 4.83$ (d, J = 5.3 Hz, 1H), 5.25 (dd, J = 7.8, 5.3 Hz, 1H), 6.84 (d, J = 7.8 Hz, 1H), 7.13 - 7.19 (m, 1H), 7.36 (t, J = 8.9, 8.9 Hz, 2H), 7.39 - 7.43 (m, 4H), 7.53 (t, J = 7.6, 7.6 Hz, 1H), 7.66 (d, J = 7.7 Hz, 1H) ¹³**C NMR** (150.9 **MHz**, **CDCl**₃): 143.48, 142.03, 132.99, 132.13 (q, $J_{C-F} = 34.8$ Hz), 130.49, 129.36, 127.41, 126.23 (q, $J_{C-F} = 30.1$ Hz), 125.82 (q, $J_{C-F} = 5.5$ Hz), 124.60, 124.19, 124.16 (q, $J_{C-F} = 273.8$ Hz), 116.41, 104.97, 32.56

IR (film): 3781, 3442, 2921, 2853, 2426, 2226, 1861, 1727, 1657, 1600, 1488, 1385, 1301, 1244, 1119, 1049, 952, 832, 729, 508 cm⁻¹

MS (EI): $(C_{18}H_{12}F_6N_2)$, 370.2 (99, M⁺).

 $[\alpha]_D = -98.2 (c = 9.0, CHCl_3, 98\% ee)$

HPLC conditions: OD-H column, *n*-hexane/2-propanol = 95/5, flow rate = 1.0 mL/min, major enantiomer: $t_R = 4.50$ min, minor enantiomer: $t_R = 5.66$ min.

4-(Furan-2-yl)-1-phenyl-3-(trifluoromethyl)-1,4-dihydropyridazine (9i)

¹**H** NMR (600 MHz, CDCl₃): $\delta = 4.57$ (d, J = 5.3 Hz, 1H), 5.18 (dd, J = 7.7, 5.3 Hz, 1H), 6.14 (d, J = 3.2 Hz, 1H), 6.30 - 6.33 (m, 1H), 6.94 (d, J = 7.7 Hz, 1H), 7.11 - 7.16 (m, 1H), 7.33 - 7.35 (m, 1H), 7.35 - 7.40 (m, 4H)

¹³C NMR (150.9 MHz, CDCl₃): 153.74, 143.60, 142.41, 129.62 (q, $J_{C-F} = 34.3$ Hz), 129.26, 126.12, 124.09, 121.22 (q, $J_{C-F} = 273.9$ Hz), 116.43, 110.59, 106.67, 100.78,

IR (film): 3438, 2923, 2854, 1724, 1661, 597, 1496, 1374, 1241, 1185, 1133, 1054, 1005, 959, 911, 796, 751, 692, 600, 517 cm⁻¹

MS (EI): $(C_{15}H_{11}F_{3}N_{2}O)$, 292.3 (99, M⁺), 225.3 (35, M⁺ - 67).

 $[\alpha]_{D} = -61.2 (c = 5.5, CHCl_{3}, 82\% ee)$

HPLC conditions: OD-H column, 95/5 *n*-hexane/2-propanol, flow 1.0 mL/min, major enantiomer: $t_R =$ 5.65 min, minor enantiomer: $t_R = 6.16$ min.

4-Methyl-1-phenyl-3-(trifluoromethyl)-1,4-dihydropyridazine (9j)

¹**H NMR (400 MHz, CDCl₃):** $\delta = 1.17$ (d, J = 6.8 Hz, 3H, Me), 3.13 - 3.37 (m, 1H), 5.07 (dd, J = 7.6, 5.5 Hz, 1H), 6.75 (d, J = 7.6 Hz, 1H), 7.06 - 7.12 (m, 1H), 7.33 - 7.36 (m, 4H)

¹³C NMR (100.6 MHz, CDCl₃): 143.90, 134.63 (q, J_{C-F} = 33.7 Hz), 129.20, 125.68, 123.59, 121.67 (q, J_{C-F} = 273.9 Hz), 116.01, 105.00, 24.90, 21.30

IR (film): 3435, 2924, 2854, 1650, 1597, 1496, 1383, 1273, 1240, 1183, 1127, 1035, 756, 724, 692, 589 cm⁻¹

MS (EI): $(C_{12}H_{11}F_{3}N_{2})$, 239.9 (22, M⁺), 224.9 (99, M⁺ - 15).

 $[\alpha]_D = -173.6 (c = 9.6, CHCl_3, 76\% ee)$

SFC conditions: OJ-H column, 2.5 mLCO₂ – 1% *n*-hexane/2-propanol (1:1), minor enantiomer: $t_R =$ 3.53 min, major enantiomer: $t_R = 3.73$ min.

4-Ethyl-1-phenyl-3-(trifluoromethyl)-1,4-dihydropyridazine (9k)

¹**H NMR (600 MHz, CDCl₃):** $\delta = 0.91$ (t, J = 7.5, 7.5 Hz, 3H), 1.52 - 1.60 (m, 2H), 3.28 (ddd, J = 7.6, 5.6, 3.8 Hz, 1H), 5.04 (t, J = 6.6, 6.6 Hz, 1H), 6.82 (d, J = 7.6 Hz, 1H), 7.07 - 7.11 (m, 1H), 7.32 - 7.36 (m, 4H) ¹³C NMR (150.9 MHz, CDCl₃): 143.85, 129.30 (q, $J_{C-F} = 34.6$ Hz), 129.19, 126.38,

123.56, 121.61 (q, $J_{C-F} = 274.0 \text{ Hz}$), 116.00, 102.88, 31.38, 27.84, 8.91

IR (film): 3448, 2922, 2858, 2052, 1597, 1459, 1383, 1264, 1120, 753, 690, 602 cm⁻¹

MS (EI): $(C_{13}H_{13}F_{3}N_{2})$, 509.5 (29, 2M⁺1), 508.5 (99, 2M⁺).

 $[\alpha]_D = -70.0 (c = 3.1, CHCl_3, 90\% ee)$

SFC conditions: OJ-H column, 2.5 mLCO₂ – 1% *n*-hexane/2-propanol (1:1), minor enantiomer: $t_R =$ 3.54 min, major enantiomer: $t_R = 4.07$ min.

1-Phenyl-4-propyl-3-(trifluoromethyl)-1,4-dihydropyridazine (9l)

¹**H NMR (600 MHz, CDCl₃):** $\delta = 0.91$ (t, J = 7.2, 7.2 Hz, 3H), 1.30 - 1.58 (m, 4H), 3.29 (ddd, J = 9.5, 5.7, 3.8 Hz, 1H), 5.07 (dd, J = 7.6, 5.8 Hz, 1H), 6.79 (d, J = 7.6 Hz, 1H), 7.06 - 7.12 (m, 1H), 7.33 - 7.36 (m, 4H) ¹³C NMR (150.9 MHz, CDCl₃): 143.89, 134.06 (q, J_{C-F} = 33.6 Hz), 129.19, 126.23,

123.54, 121.61 (q, $J_{C-F} = 274.3$ Hz), 115.96, 103.34, 37.13, 30.14, 17.85, 13.83

IR (film): 3443, 2922, 2855, 2031, 1621, 1452, 1383, 1027, 698, 513 cm⁻¹

MS (EI): $(C_{14}H_{15}F_{3}N_{2})$, 268.5 (9, M⁺), 225.3 (99, M⁺ - 43).

 $[\alpha]_D = -87.9 (c = 6.8, CHCl_3, 93\% ee)$

SFC conditions: OJ-H column, 2.5 mLCO₂ – 1% *n*-hexane/2-propanol (1:1), minor enantiomer: $t_R = 3.83$ min, major enantiomer: $t_R = 4.53$ min.

4-Isopropyl-1-phenyl-3-(trifluoromethyl)-1,4-dihydropyridazine (9m)

¹H NMR (600 MHz, CDCl₃): $\delta = 0.83$ (d, J = 6.8 Hz, 3H), 0.92 (d, J = 6.9 Hz, 3H), ¹H NMR (600 MHz, CDCl₃): $\delta = 0.83$ (d, J = 6.8 Hz, 3H), 0.92 (d, J = 6.9 Hz, 3H), ^{1.96} (dt, J = 13.1, 13.1, 6.5 Hz, 1H), 3.29 (dd, J = 5.6, 4.2 Hz, 1H), 4.96 (dd, J = 7.7, 5.7Hz, 1H), 6.87 (d, J = 7.8 Hz, 1H), 7.06 - 7.11 (m, 1H), 7.25 - 7.27 (m, 4H) ¹³C NMR (150.9 MHz, CDCl₃): 143.74, 133.85, 133.63, 129.18, 127.09, 123.56, 119.30, 118.72, 115.98, 99.87, 36.76, 32.28, 18.12, 16.75

IR (film): 3446, 2921, 2853, 1615, 1507, 1454, 1384, 1248, 1120, 1067, 830, 762, 699 cm⁻¹

MS (EI): $(C_{14}H_{15}F_{3}N_{2})$, 268.5 (10, M⁺), 225.3 (99, M⁺ - 43).

 $[\alpha]_D = -114.7 (c = 5.1, CHCl_3, 96\% ee)$

SFC conditions: OJ-H column, 2.5 mLCO₂ – 1% *n*-hexane/2-propanol (1:1), minor enantiomer: $t_R = 3.25$ min, major enantiomer: $t_R = 4.18$ min.

4-Isopropyl-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1,4-dihydropyridazine (9n)

¹**H NMR (400 MHz, CD₂Cl₂):** $\delta = 0.82$ (d, J = 6.8 Hz, 3H), 0.89 (d, J = 6.9 Hz, 3H), 1.90 (dq, J = 11.0, 6.8 Hz, 1H), 3.27 (dd, J = 5.7, 4.1 Hz, 1H), 3.77 (s, 3H), 4.91 (dd, J = 7.7, 5.7 Hz, 1H), 6.78 (d, J = 7.7 Hz, 1H), 6.87 (d, J = 9.2 Hz, 2H), 7.22 (d, J = 9.2 Hz, 2H)

¹³C NMR (100.6 MHz, CD₂Cl₂): 158.34, 139.76, 134.40 (q, J_{C-F} = 33.5 Hz), 129.69, 123.76 (q, J_{C-F} = 274.0 Hz), 119.89, 116.17, 100.95, 57.36, 38.45, 34.32, 19.59, 18.38
IR (film): 2966, 2931, 1656, 1508, 1462, 1372, 1251, 1182, 1119, 1040, 977, 901, 831,

737, 707, 671

cm⁻¹

MS (EI): $(C_{15}H_{17}F_3N_2O)$, 297,9 (25, M⁺), 254.8 (99, M⁺ - 43).

 $[\alpha]_D = -271.8 (c = 5.7, CHCl_3, 99\% ee)$

HPLC conditions: AD-H column, 99.5/0.5 *n*-hexane/2-propanol, flow 1.0 mL/min, minor enantiomer: $t_R = 5.40$ min, major enantiomer: $t_R = 5.93$ min.

(E)-4-(Hex-3-enyl)-1-phenyl-3-(trifluoromethyl)-1,4-dihydropyridazine (90)

Ph ¹H NMR (400 MHz, CDCl₃): $\delta = 0.95$ (t, J = 7.5, 7.5 Hz, 3H), 1.46 - 1.59 (m, 2H), 1.98 - 2.16 (m, 4H), 3.31 (ddd, J = 8.2, 5.7, 4.2 Hz, 1H), 5.07 (dd, J = 7.6, 5.8 Hz, 1H), 5.25 - 5.34 (m, 1H), 5.35 - 5.44 (m, 1H), 6.81 (d, J = 7.6 Hz, 1H), hex-3-ene 7.10 (dd, J = 8.6, 4.4 Hz, 1H), 7.34 - 7.36 (m, 4H), ¹³**C NMR (100.6 MHz, CDCl₃):** 143.87, 133.82 (q, $J_{C-F} = 33.8$ Hz), 132.70, 129.20, 127.56, 126.49, 123.64, 121.60 (q, $J_{C-F} = 273.9$ Hz), 116.05, 103.01, 34.80, 29.91, 22.29, 20.48, 14.26

IR (film): 3007, 2937, 2875, 1655, 1599, 1495, 1456, 1378, 1341, 1270, 1240, 1190, 1124, 1060, 1039, 969, 753, 723, 693, 615, 517 cm⁻¹

MS (EI): (C₁₇H₁₉F₃N₂), 307.9 (86, M+), 278.9 (7, M⁺ - 29), 225.2 (99, M⁺ - 83).

 $[\alpha]_D = -229.2 (c = 11.2, CHCl_3, 91\% ee)$

SFC conditions: OJ-H column, 2.5 mLCO₂ – 1% *n*-hexane/2-propanol (1:1), minor enantiomer: $t_R = 3.88$ min, major enantiomer: $t_R = 4.90$ min.

1,4-Diphenyl-3-(trifluoromethyl)-1,4,5,6-tetrahydropyridazine (10a)

Ph ¹H NMR (600 MHz, CDCl₃): $\delta = 2.03 - 2.13$ (m, 1H), 2.18 - 2.25 (m, 1H), 3.28 - 3.37 (m, 1H), 3.81 - 3.87 (m, 1H), 3.89 (d, J = 5.2 Hz, 1H), 6.96 - 7.05 (m, 1H), 7.13 (d, J = 7.0 Hz, 2H), 7.25 - 7.30 (m, 1H), 7.31 - 7.37 (m, 6H) ¹³C NMR (150.9 MHz, CDCl₃): 146.07, 141.53, 129.81, 129.28, 129.07, 128.73, 127.80,

¹³C NMR (150.9 MHz, CDCl₃): 146.07, 141.53, 129.81, 129.28, 129.07, 128.73, 127.80, 127.17, 121.78, 121.66 (q, *J*_{C-F} = 272.6 Hz), 114.40, 38.95, 35.19, 25.77

IR (film): 2927, 2858, 1736, 1593, 1497, 1459, 1398, 1280, 1176, 1108, 1041, 965, 889, a cm⁻¹

830, 749, 693 cm^{-1}

MS (EI): $(C_{17}H_{15}F_{3}N_{2})$, 304.1 (75, M⁺), 235.1 (5, M⁺ - 69), 77.0 (99, M⁺ - 227).

 $[\alpha]_D = +97.2 (c = 12.0, CHCl_3, 96\% ee)$

HPLC conditions: OD-H column, 97/3 *n*-hexane/2-propanol, flow 0.4 mL/min, major enantiomer: $t_R = 20.70$ min, minor enantiomer: $t_R = 23.02$ min.

2,5-Diphenyl-6-(trifluoromethyl)-4,5-dihydropyridazin-3(2H)-one (12a)

¹**H NMR (400 MHz, CDCl₃):** $\delta = 2.97$ (dd, J = 16.8, 1.9 Hz, 1H), 3.17 (dd, J = 16.8, 8.1 Hz, 1H), 4.21 (dd, J = 8.1, 1.9 Hz, 1H), 7.17 (dd, J = 8.0, 1.6 Hz, 2H), 7.29 - 7.39 (m, 4H), 7.41 - 7.46 (m, 2H), 7.47 - 7.50 (m, 2H)

¹³C NMR (100.6 MHz, CDCl₃): 163.22, 142.55 (q, J_{C-F} = 35.3 Hz), 139.76, 135.97, 129.58, 128.83, 128.47, 127.49, 126.61, 124.63, 120.41 (q, J_{C-F} = 275.3 Hz), 38.02, 36.28

IR (film): 3407, 3067, 2926, 2254, 1708, 1595, 1495, 1387, 1304, 1201, 1142, 1063, 1015, 910, 743, 698, 651, 592 cm⁻¹

MS (EI): (C₁₇H₁₃F₃N₂O), 318.0 (99, M⁺).

Figure 1. Structure of compound 9n as determined by X-ray crystal structure analysis.

Crystallographic data for **9n** were collected at 100 K with a Bruker Kappa APEX II CCDdiffractometer with monochromatic Cu–K α radiation ($\lambda = 1.540562$ Å) and a CCD detector. The structure was solved by direct methods using SHELXS-97 and refined against F2 on all data by fullmatrix least-squares methods using SHELXL-97^{1,2} The (*R*) absolute configuration of the compound determined in this way (Flack Xabs = 0.11(17)) was confirmed by CD-spectroscopy (Fig 2).

Fig 2. Recorded and averaged calculated CD-spectra for (*R*)-9n.

a) Recorded CD-spectrum for 9n.

b) Averaged calculated CD-spectrum for (*R*)-**9n** at the TD-DFT/B3LYP/6-31G*//B3LYP/6-31G* level (the 4 most stable conformers lying in a range of 1.5 kcal/mol have been taken into account).^{3,4}

[1] Sheldrick, G.M. SHELXS/L-97, Programs for the Solution and Refinement of Crystal Structures; University of Göttingen: Göttingen, Germany, 1997.

[2] Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112-122.

[3] Theoretical calculations have been performed by employing the Gaussian 09 program package. Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

[4] The calculations have been performed by using the facilities and computing resources offered by the Center for Computing and Communication of the RWTH Aachen University.

Chromatogram : AD-321_ODH_955_flow1_612

Data file: AD-321_ODH_955_flow1_612.DATA Method: HPLC1_ODH_955_flow1_acq_120 Date: 23.04.2012 15:09:07

Chromatogram : CV-1100_ODH_955_flow1_3214

Data file: CV-1100_ODH_955_flow1_3214.DATA Method: HPLC1_ODH_955_flow1_acq_20 Date: 12.07.2012 21:28:29

Chromatogram : ad461_ODH_955_flow1_222

Data file: ad461_ODH_955_flow1_222.DATA Method: HPLC1_ODH_955_flow1_acq_45 Date: 28.07.2012 01:48:53

Chromatogram : CV-1135_ODH_955_flow1_1311

Data file: CV-1135_ODH_955_flow1_1311.DATA Method: HPLC1_ODH_955_flow1_acq_20 Date: 31.07.2012 12:32:02

Chromatogram : ad462_ODH_955_flow1_444

Data file: ad462_ODH_955_flow1_444.DATA Method: HPLC1_ODH_955_flow1_acq_45 Date: 28.07.2012 03:24:10

Chromatogram : CV-1136_ODH_955_flow1_132

Data file: CV-1136_ODH_955_flow1_132.DATA Method: HPLC1_ODH_955_flow1_acq_20 Date: 31.07.2012 13:07:03

Chromatogram : AD-464_ODH_955_flow1_1346

Data file: AD-464_ODH_955_flow1_1346.DATA Method: HPLC1_ODH_955_flow1_acq_30 Date: 01.08.2012 07:00:51

Chromatogram : CV-1138_ODH_955_flow1_222

Data file: CV-1138_ODH_955_flow1_222.DATA Method: HPLC1_ODH_955_flow1_acq_30 Date: 01.08.2012 12:41:34

Chromatogram : AD-456_ODH_955_flow1_555

Data file: AD-456_ODH_955_flow1_555.DATA Method: HPLC1_ODH_955_flow1_acq_30 Date: 01.08.2012 14:19:43

Chromatogram : CV-1139_ODH_955_flow1_135

Data file: CV-1139_ODH_955_flow1_135.DATA Method: HPLC1_ODH_955_flow1_acq_20 Date: 31.07.2012 14:38:01

Chromatogram : AD-476_ODH_955_flow1_666

Data file: AD-476_ODH_955_flow1_666.DATA Method: HPLC1_ODH_955_flow1_acq_30 Date: 01.08.2012 14:52:26

Chromatogram : CV-1143_ODH_955_flow1_777

Data file: CV-1143_ODH_955_flow1_777.DATA Method: HPLC1_ODH_955_flow1_acq_30 Date: 01.08.2012 15:25:10

Chromatogram : ad457_ODH_955_flow1_777

Data file: ad457_ODH_955_flow1_777.DATA Method: HPLC1_ODH_955_flow1_acq_45 Date: 28.07.2012 05:47:08

Chromatogram : CV-1140_ODH_955_flow1_137

Data file: CV-1140_ODH_955_flow1_137.DATA Method: HPLC1_ODH_955_flow1_acq_20 Date: 31.07.2012 15:23:29

General Info Log Author Log Date 7/12/2012 11:45:56 AM Report By current_User Report Date 8/9/2012 Method Name Notes 2-5m1CO2-1MeOH-38.met AK-Rue / Vermeeren Injection Info Inj Vol Solvent 36.5 Temp Flow % Modifier 5 n-Hexan-Isoprop-1-1 1 150 Column OJ-H Pressure Sample Well location AD-322 P1: 1E Peak Info Height (mV) 107.6975 8 Area RT (min) Peak No Area K' 56.3054 1461.2776 0.0044 1 3.14 2 43,6946 1133.9915 3.36 89,2942 0.0048 Total: 100 2595.2691

TharSFC

C:\Program Files\SuperChrom\logs\QA\AMDSQA_COL\Das\AD-322_7-12-2012_4.tta

K' 0.0033

0.0035

General Info Log Author Log Date 7/28/2012 5:44:00 PM Report By current_User Report Date 8/9/2012 2-5m1CO2-1MeOH.met AK-Rue / Vermeeren Method Name Notes Injection Info Inj Vol Solvent Temp Flow 35.2 5 2 n-Hexan-Isoprop-1-1 * Modifier 1 Column OJ-H Pressure 149 Sample Well location CV-1130 P1: 4F Peak Info Height (mV) 163.3817 Area 1274.5943 9321.2783 Peak No 8 Area RT (min) 12.0292 3.53 1 2 87.9708 3.73 870.8905 Total: 100 10595.8726

TharSFC

C:\Program Files\SuperChrom\logs\QA\AMDSQA_COL\moli\CV-1130_7-28-2012_2.tta

General Info Log Author Log Date 7/28/2012 6:01:56 PM Report By current_User Report Date 7/31/2012 2-5m1CO2-1MeOH.met AK-Rue / Vermeeren Method Name Notes Injection Info Inj Vol Solvent Temp Flow 35.3 5 2 n-Hexan-Isoprop-1-1 * Modifier 1 Column OJ-H Pressure 150 Sample Well location AD-458 P1: 3E Peak Info Height (mV) 684.6472 629.8868 Area 9636.8168 9705.2126 Peak No 8 Area RT (min) K' 0.0034 49.8232 3.67 1 2 50,1768 4.41 0.0041 Total: 100 19342.0294

TharSFC

C:\Program Files\SuperChrom\logs\QA\AMD5QA_COL\Das\AD-458_7-28-2012_2.tta

TharSFO

General Info Log Author Log Date 7/28/2012 5:26:03 FM Report By current User Report Date 7/31/2012 Method Name 2-5mlCO2-1MeOH.met Notes AK-Rue / Vermeeren Injection Info Inj Vol 5 Solvent n-Hexan-Isoprop-1-1 Column 0.7-H Sample CV-1131 Well location P1: 4E

Well locat	tion P1: 4E				
Peak Info					
Peak No	8 Area	Area	RT (min)	Height (mV)	K'
1	5,2669	280,8215	3.54	32,6776	0.0034
2	94.7331	5051,0363	4.07	496.6204	0.0039
Total:	100	5331,8578			

Temp Flow % Modifier

Pressure

35.3

2

1 151

TharSFC

C:\Program Files\SuperChrom\logs\QA\AMDSQA_COL\noli\CV-1131_7-28-2012_1.tta

General Info Log Author Log Date 7/31/2012 11:25:54 AM Report By Report Date current_User 7/31/2012 2-5m1CO2-1MeOH.met AK-Rue / Vermeeren Method Name Notes Injection Info Inj Vol Solvent 5 n-Hexan-Isoprop-1-1 Column OJ-H Sample Well location AD-459 P1: 3D

Peak Info					
Peak No	8 Area	Area	RT (min)	Height (mV)	K'
1	49.4196	40295.3848	3,98	2713.5611	0.0058
2	50,5804	41241.9159	4.76	2745.4276	0,0069
Total:	100	81537.3007			

Temp

* Modifier

Pressure

35.1

2

1

149

TharSFC

C:\Program Files\SuperChrom\logs\AK-Rue\AD-459_7-31-2012_1.tta

TharSFO

Temp Flow

* Modifier

Height (mV) 25.7088

529,1004

Pressure

35

2

1

150

K' 0.0054

0.0064

General Info Log Author Log Date 7/31/2012 11:44:50 AM Report By current_User Report Date 7/31/2012 2-5mlCO2-1MeOH.met AK-Rue / Vermeeren Method Name Notes Injection Info Inj Vol Solvent 5 n-Hexan-Isoprop-1-1 Column OJ-H Sample Well location CV-1132 P1: 3C Peak Info Area 288.9651 RT (min) Peak No 8 Area 3,5779 3.83 1

96.4221

100

TharSFC

2

Total:

C:\Program Files\SuperChrom\logs\AK-Rue\CV-1132_7-31-2012_1.tta

7787.3334

8076.2985

4.53

General Info Log Author Log Date 7/31/2012 12:03:46 PM Report By current_User Report Date 7/31/2012 Method Name 2-5m1C02-1MeOH.net Notes AK-Rue / Vermeeren Injection Info Inj Vol 5 Solvent n-Hexan-Isoprop-1-1 Column 0J-H Sample AD-460

Column	OJ-H			Pressure	151
Sample	AD-460				
Well loca	tion P1: 3B				
Peak Info					
Peak No	% Area	Area	RT (min)	Height (mV)	K'
1	51.6724	6211,9253	3.55	430,3012	0.0049
2	48,3276	5809.8148	4.41	276.5344	0.0061
Total:	100	12021.7401			

Temp Flow % Modifier 34.9

2

TharSFC

C:\Program Files\SuperChrom\logs\AK-Rue\AD-460_7-31-2012_1.tta

General Info Log Author Log Author Report By Current_User Report Date 7/28/2012 6:37:50 PM Report Date 7/31/2012 Method Name 2-5m1C02-1MeOH.met Notes AK-Rue / Vermeeren Injection Info Inj Vol 5 Solvent n-Hexan-Isoprop-1-1

Injection Inj Vol	Info	5			Temp	35.2
Solvent Column Sample		n-Hexar OJ-H CV-113	n-Isoprop-1-1		Modifier Pressure	1 151
Well locat	tion	P1: 4C				
Peak Info Peak No	8 A.	rea	Area	RT (min)	Height (mV)	K'
1 2 Total:	2.1	713 8 <mark>287</mark>	142.3527 6413.7236 6556 0763	3.25 4.18	10.6362 350,7453	0.0029

TharSFC

C:\Program Files\SuperChrom\logs\QA\AMDSQA_COL\mol1\CV-1133_7-28-2012_1.tta

General In	afo			Report Date	8/2/2012	
Log Author			Method Name	2-5mlCO2-1MeOH.met		
Log Date 8/2/2012 3:27:23 PM			Notes	AK-Rue / Verneeren		
Report By	current_	User	1215775			
Injection	Info			Temp	35	
Inj Vol	5			Flow	2	
Solvent	n-Hexa	n-Isoprop-1-1		* Modifier	1	
Column	OJ-H			Pressure	150	
Sample	AD-482					
Well locat	tion P1: 3F					
Peak Info						
Peak No	\$ Area	Area	RT (min)	Height (m	V)	K'
1	51.0769	9584,5921	4.09	818.2727		0.0044
2	48.9231	9180,4358	4.9	537.0471		0.0053
Total:	100	18765.0279				

TharSFC

C:\Program Files\SuperChrom\logs\AK-Rue\AD-482_8-2-2012_1.tta

General Info Report I	Date 8/2/2012
Log Author Hethod)	
and the store of	Name 2-5m1CO2-1MeOH.met
Log Date 8/2/2012 3:46:19 PM Notes	AK-Rue / Verneeren
Report By current_User	AC GRAN SCHERE
Injection Info Temp	34.9
Inj Vol 5 Flow	2
Solvent n-Hexan-Isoprop-1-1 & Mod:	ifier 1
Column OJ-H Press	ure 150
Sample CV-1134	
Well location P1: 3E	
Peak Info	
Peak No % Area Area RT (min) Heig	ght (mV) K'
1 4.3982 711.6003 3.88 60.5	965 0.0041
2 95.6018 15467.703 4.9 734.	.0619 0.0052
Total: 100 16179.3033	

C:\Program Files\SuperChrom\logs\AK-Rue\CV-1134_8-2-2012_1.tta

Chromatogram : ad466_ODH_955_flow1_555

Data file: ad486_ODH_955_flow1_555.DATA Method: HPLC1_ODH_955_flow1_acq_45 Date: 28.07.2012 04:11:48

Chromatogram : CV-1141R_ODH_955_flow1_4681

Data file: CV-1141R_ODH_955_flow1_4681.DATA Method: HPLC1_ODH_955_flow1_acq_20 Date: 08.08.2012 20:15:03

Chromatogram : AD-403_ODH_955_flow1_333

Data file: AD-403_ODH_955_flow1_333.DATA Method: HPLC1_ODH_955_flow1_acq_30 Date: 01.08.2012 13:14:17

Chromatogram : CV-1144_ODH_955_flow1_444

Data file: CV-1144_ODH_955_flow1_444.DATA Method: HPLC1_ODH_955_flow1_acq_30 Date: 01.08.2012 13:47:00

Chromatogram : CV1201_ADH_99505_flow06_acq601113

Data file: CV1201_ADH_99505_flow06_acq601113.DATA Method: HPLC1_ADH_99505_flow1_acq_60 Date: 02.09.2012 20:41:31

Chromatogram : CV1202_ADH_99505_flow06_acq601210

Data file: CV1202_ADH_99505_flow06_acq601210.DATA Method: HPLC1_ADH_99505_flow1_acq_60 Date: 02.09.2012 21:43:38

Chromatogram : CV-1177_ODH_973_flow04_222

Data file: CV-1177_ODH_973_flow04_222_DATA Method: HPLC1_ODH_973_flow04_acq_90 Date: 30.08.2012 05:00:03

Chromatogram : CV-1200Red_ODH_973_flow04_12347678

Data file: CV-1200Red_ODH_973_flow04_12347678.DATA Method: HPLC1_ODH_973_flow04_acq_90 Date: 01.09.2012 20:50:29

