Controlling the sign and magnitude of screw-sense preference from the Cterminus of an achiral helical foldamer

Bryden A. F. Le Bailly and Jonathan Clayden

School of Chemistry, University of Manchester, Oxford Rd, Manchester M13 9PL, UK

Supporting Information

Table of Contents

Experimental Section	S2
General Experimental and Materials	S3
Instrumentation	S3
Synthetic Procedures	S4
NMR Spectra	S19
Variable Temperature NMR example (Z-Aib*-Aib₄-AlaNHtBu)	S49
X-ray Crystallographic Analysis of 3 -AlaO ^t Bu	S50
References	\$50

General Experimental and Materials

All reactions were carried out in oven-dried glassware under an atmosphere of nitrogen using standard anhydrous techniques. All reagents were obtained from commercially available sources and used without further purification, or where indicated prepared internally. Air- and moisture-sensitive liquids and solutions were transferred *via* syringe or stainless steel cannula. Reactions performed at 0 °C were done so using an ice bath; those performed at -78 °C were done so using an acetone/dry ice bath. Anhydrous dichloromethane was obtained by distillation from calcium hydride. Other anhydrous reaction solvents were obtained from standard anhydrous solvent engineering system. Triethylamine was stored over potassium hydroxide. All products were dried on a rotary evaporator followed by connection to a high vacuum system to remove any residual solvent. Flash chromatography was performed on silica gel (Merck 60H, 40-60 nm, 230 – 300 mesh). Analytical thin layer chromatography was performed on aluminium backed silica (60 F₂₅₄) plates.

Instrumentation

All ¹H and ¹³C nuclear magnetic resonance spectra were obtained using Bruker Ultrashield 300, 400 or 500 MHz spectrometers. Chemical shifts are quoted in parts per million (ppm) and coupling constants (*J*) are quoted in Hz, given to the nearest 0.5 Hz. ¹H-NMR were referenced to the residual deuterated solvent peak (CDCl₃ 7.27; CD₃OD 3.31 ppm) and ¹³C-NMR were referenced to the carbon resonance of the solvent (CDCl₃ 77.0; CD₃OD 49.05 ppm. Multiplicities are denoted as s (singlet), d (doublet), t (triplet), q (quartet), spt (septet) and m (multiplet) or denoted as br (broad), or some combination of these, where appropriate. Where ¹H-NMR spectra were run in CD₃OD, D₂O exchangeable protons (NH, OH) are reported only where observed.

Infra-red spectra were recorded on an ATi Perkin Elmer Spectrum RX1 FT-IR spectrometer. Only absorption maxima (λ_{max}) of interest are reported and quoted in wavenumbers (cm⁻¹). Low and high resolution mass spectra were recorded by staff at the University of Manchester. Electrospray (ES) spectra were recorded on a Waters Platform II and high resolution mass spectra (HRMS) werenrecorded on a Thermo Finnigan MAT95XP and are accurate to ± 0.001 Da. Melting points were determined on a GallenKamp apparatus and are uncorrected. Optical rotation measurements were taken on an AA-100 polarimeter at 20 °C with the solvent and concentration stated. Circular Dichroism (CD) measurements were performed at 20 °C on a JASCO J-815 spectropolarimeter, using a 1 mm cell with the solvent and concentration stated, where applicable.

Methods for the synthesis of H-Aib₄O^tBu,¹ HBr.H-(*R*)-Aib*OH,² Z- α MvOH,³ Z- α MvO^tBu,⁴ Z-AlaN(CH₂)₄⁵ and H-TleO^tBu⁶ have been reported previously.

Synthetic Procedures

General Procedure A: Coupling of Cbz-Aib*-Aib₄-OH and H-Xaa-Y

(where $R^1 = H$, $Y = O^t Bu$ or $NH^t Bu$)

Z-(*R*)-Aib^{*}-Aib₄-OH (1 eq.) and 1-Hydroxybenzotriazole hydrate (1.3 eq.) were dissolved in CH_2CI_2 (60 mL/mmol) and the suspension cooled to 0 °C. *N*-(3-Dimethylaminopropyl)-*N*'-ethylcarbodiimide (1.1 eq.) was added and the reaction was allowed to warm to room temperature and stirred until it was homogenous. The amino acid derivative "H-Xaa-Y" (prepared by the quantitative hydrogenolysis of Z-Xaa-Y)(2.5 eq.) and triethylamine (2 eq. if using the free amine, 3 eq. if using the HCl salt) were added and the reaction mixture stirred for 72 h. The solvent was removed *in vacuo* and EtOAc (400 mL/mmol) was added. The organic phase was washed with KHSO₄ (5%, 2 x 100 mL/mmol), NaHCO₃ (2 x 100 mL/mmol), brine (100 mL/mmol), dried (MgSO₄), filtered and concentrated. The pure peptide was isolated by column chromatography.

General Procedure B: Coupling of Cbz-Aib*-Aib₄-OH and H-Xaa-Y

(where $R^1 \neq H$, Y = O^tBu, NH^tBu or α Mv-NH^tBu)

Z-(*R*)-Aib^{*}-Aib₄-OH (1 eq.) was dissolved in CH₂Cl₂ (60 mL/mmol) and the suspension cooled to 0 °C. *N*-(3-Dimethylaminopropyl)-*N*'-ethylcarbodiimide (1.5 eq.) was added and the reaction was allowed to warm to room temperature and stirred for 4 h. The solvent was removed *in vacuo* and EtOAc (200 mL/mmol) was added. The organic phase was washed with KHSO₄ (2 x 75 mL/mmol), brine (75 mL/mmol), dried (MgSO₄), filtered and concentrated *in vacuo*. The crude azlactone was then placed under high vacuum (<0.1 mbar) before being dissolved in MeCN (60 mL/mmol). The amino acid derivative "H-Xaa-Y" (1.5 eq.) was added and the reaction stirred at reflux for 5 d. After removing the solvent *in vacuo*, the pure peptide was isolated by column chromatography.

General Procedure C: Synthesis of Cbz-Xaa-NH^tBu

Z-Xaa-OH (1 eq.), ^tBuNH₂ (1.1 eq.) and 1-hydroxy-7-azabenzotriazole (1 eq.) were dissolved in CH₂Cl₂ (3 mL/mmol). 4-Methylmorpholine (3 eq.) and then *N*-(3-Dimethylaminopropyl)-*N*'ethylcarbodiimide hydrochloride (1 eq.) were added and the reaction stirred for 16 h. EtOAC (7 mL/mmol) was then added and the organic phase washed with H₂O (2 x 3 mL/mmol), NaHCO₃ (sat., 2 x 3 mL/mmol), NH₄Cl (sat., 2 x 3 mL/mmol), dried (Na₂SO₄), filtered and concentrated. In all cases, the product was isolated as pure without further purification.

Z-(R)-Aib*-OH (R)-1

Benzyl chloroformate (0.64 mL, 4.47 mmol) was added to H-(R)-Aib*-OH (719 mg, 3.89 mmol) over 30 min in acetone/NaOH (2 M) (3.75 mL of each) at 0 °C. The pH was adjusted to 13 by the addition of NaOH (2 M) and the reaction stirred for 16 h at room temperature. A second portion of benzyl chloroformate (0.64 mL, 4.47 mmol) was added at 0 °C over 30 min and the reaction basified so that pH=13. After stirring for 6 h at room temperature, the acetone was removed in vacuo and the resulting mixture diluted with NaOH (2 M, 20 mL) then washed with Et₂O (2 x 20 mL). The aqueous phase was acidified so that pH=1 with HCl (conc.) and was extracted with EtOAc (3 x 30 mL). The combined organic phases were dried (MgSO₄), filtered and concentrated in vacuo. The crude reaction product was purified by column chromatography (1:1 PE:EtOAc) to give Cbz-(R)-Aib*-OH (751 mg, 81%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ_{H} 7.30-7.40 (5H, m, ArCH x5), 5.35 (1H, br s, NH), 5.12 (2H, s, PhCH₂), 1.59 (3H, d, ³J_{CH}=4.5 Hz, CH₃), 1.59 (3H, d, ¹J_{CH}=130.0 Hz, CH₃). ¹³C-NMR (101 MHz, CDCl₃) δ_{c} 179.5 (CO), 155.3 (CO), 136.1 (ArC), 128.5 (ArCH), 128.1 (ArCH), 66.9 (CH₂), 56.3 (d, J=36.5, α C-*CH₃), 25.1 (*CH₃). IR (neat) ν_{max}/cm^{-1} = 3328, 3036, 2989, 2932, 1716, 1683. HRMS (ES⁻ , CH₂Cl₂) Calc. for C₁₁¹³CH₁₄NO₄ ([M-H]⁺) = 237.0961, found 237.0968. Mp 69-71 °C. The *e.r.* of the product was determined by integration of the 13 C-NMR spectrum of the crude mixture of Z-(R)-Aib*-PheOtBu diastereoisomers following coupling to H-PheO^tBu.

Z-(R)-Aib*-Aib₄-O^tBu 2

Cbz-(*R*)-Aib*-OH (72 mg, 0.30 mmol) and pyridine (24 μ L, 0.30 mmol) were dissolved in CH₂Cl₂ (3 mL) and fluoro-N,N,N',N'-tetramethylformamidinium hexafluorophosphate (119 mg, 0.45 mmol) was added. The solution was stirred for 3 h, then diluted with CH₂Cl₂ (7 mL) and washed with ice-cold water (4 x 10 mL). The organic phase was dried (MgSO₄), filtered and concentrated in vacuo. To a solution of H-Aib₄-O^tBu (149 mg, 0.36 mmol) and N,N-diisopropylethylamine (63 μ L, 0.36 mmol) in CH₂Cl₂ (8 mL), a solution of the crude acid fluoride in CH₂Cl₂ (2 mL) was added at 0 °C. The reaction mixture was allowed to warm to room temperature and was stirred for 6 d. The mixture was diluted with EtOAc (40 mL), washed with KHSO₄ (5%, $2 \times 10 \text{ mL}$), NaHCO₃ (sat., $2 \times 10 \text{ mL}$) and brine (10 mL), dried (MgSO₄), filtered and concentrated in vacuo to give Cbz-(R)-Aib*-Aib₄-O'Bu (139 mg, 73%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) δ_{H} 7.39 (1H, br s, NH), 7.38 (1H, br s, NH), 7.36 (5H, m, ArCH x5), 7.32 (1H, br s, NH), 7.21 (1H, br s, NH), 6.33 (1H, br s, NH), 5.48 (1H, br s, NH), 5.12 (2H, s, CH₂O), 1.52 (6H, s, CH₃ x2), 1.47 (6H, s, CH₃ x2), 1.46 (3H, d, ¹J=129.0, *CH₃), 1.46 (3H, d, ³J=4.5, *CH₃-C-CH₃), 1.44 (6H, s, CH₃ x2), 1.43 (9H, s, C(CH₃)₃), 1.32 (6H, s, CH₃ x2). ¹³C-NMR (75 MHz, CDCl₃) δ_{c} 174.0 (CO), 173.8 (CO), 173.6 (CO), 173.50 (CO), 173.5 (CO), 155.7 (CO), 136.0 (ArC), 128.7 (ArCH), 128.7 (ArCH), 128.2 (ArCH), 79.7 (CMe₃), 67.5 (CH₂O), 57.5 (^aC), 57.0 (^aC), 56.9 (^aC), 56.7 (^aC), 56.3 (d, J_c = 40.0 Hz, $^{\alpha}$ C-*CH₃), 27.9 (C(CH₃)₃), 25.5 (CH₃), 25.2 (CH₃), 25.1 (*CH₃), 24.8 (CH₃). IR (neat) ν_{max}/cm^{-1} = 3338,

2982, 2925, 1731, 1702, 1699, 1682, 1649, 1530. HRMS (ES⁺, CH_2Cl_2) Calc. for $C_{31}^{13}CH_{52}N_5O_8$ ([M+H]⁺) = 635.3844, found 635.3846. Mp 246-248 °C.

Z-(R)-Aib*-Aib₄-OH

Z-(*R*)-Aib^{*}-Aib₄-O^tBu (870 mg, 1.37 mmol) was dissolved in CH₂Cl₂ (8 mL) and the solution cooled to 0 °C. Trifluoroacetic acid (5 mL) was added dropwise and the resulting solution was allowed to warm to room temperature and stirred for 16 h. The solvents were removed *in vacuo* and Et₂O (3 x 10 mL) was added to help co-evaporate any traces of trifluoroacetic acid. The crude reaction product was purified by recrystallisation in MeCN to give Z-(*R*)-Aib^{*}-Aib₄-OH (595 mg, 75%) as a white solid. ¹H-NMR (400 MHz, CD₃OD) δ_{H} 8.02 (1H, br s, NH), 7.75 (1H, br s, NH), 7.72 (1H, br s, NH), 7.65 (1H, br s, NH), 7.29-7.41 (5H, m, ArCH x5), 5.13 (2H, s, CH₂O), 4.62 (1H, br s, NH), 1.50 (6H, s, CH₃ x2), 1.46 (6H, s, CH₃ x2), 1.40 (3H, d, ¹*J*=128.5, CH₃*), 1.40 (3H, d, ³*J*=4.5, *CH₃-C-CH₃), 1.35 (6H, s, CH₃ x2), 1.32 (6H, s, CH₃ x2). ¹³C-NMR (126 MHz, CD₃OD) δ_{C} 178.5 (CO), 177.2 (CO), 177.0 (CO), 177.0 (CO), 176.9 (CO), 158.1 (CO), 138.9 (ArC), 129.7 (ArCH), 129.2 (ArCH), 128.8 (ArCH), 67.8 (CH₂), 58.0 (^aC), 57.9 (^aC), 57.8 (d, *J_C*=37.5, ^a*C*-*CH₃), 57.7 (^aC), 57.2 (^aC), 25.8 (CH₃), 25.7 (CH₃), 25.5 (CH₃), 25.3 (*CH₃). IR (neat) $\nu_{max}/cm^{-1} = 3299$, 2983. 2467, 1745, 1695, 1647, 1531. HRMS (ES⁺, MeOH) Calc. for C₂₇¹³CH₄₄N₅O₈ ([M+H]⁺) = 279.3218, found 579.3215. Mp 264-268 °C.

Z-(R)-Aib*-Aib₄-PheO^tBu 3-PheO^tBu

Z-(R)-Aib*-Aib₄-PheO^tBu was prepared according to general procedure A (0.17 mmol scale). The pure peptide (126 mg, 93%) was isolated as a white solid by column chromatography (2-5% MeOH in CH_2Cl_2). ¹H-NMR (400 MHz, CD_3OD) δ_H 7.91 (1H, br s, NH), 7.85 (1H, br s, NH), 7.83 (1H, br s, NH), 7.73 (1H, br s, NH), 7.30 (10H, m, ArCH x10), 5.17 (1H, d, J=12.5, H^A of AB system, CH₂OCO), 5.10 (1H, d, J=12.5, H^B of AB system, CH₂OCO), 4.44 (1H, q, J=7.5, αCH), 3.15 (1H, dd, J=14.0, 7.5, CH₂, H^A of ABX system, CH₂Ph), 3.09 (1H, dd, J=14.0, 7.5, H^B of ABX system, CH₂Ph), 1.49 (3H, s, CH₃), 1.47 (3H, s, CH₃), 1.44 (3H, s, CH₃), 1.43 (3H, s, CH₃), 1.43 (3H, s, CH₃), 1.42 (2.3H, d, ³J=4.0, CH₃ major), 1.42 (0.7H, d, ¹J=129.0, *CH₃ minor), 1.40 (0.7H, d, ³J=4.0, CH₃ minor), 1.40 (2.3H, d, ¹J=129.0, *CH₃ major), 1.38 (3H, s, CH₃), 1.35 (3H, s, CH₃), 1.35 (9H, s, C(CH₃)₃) 1.30 (3H, s, CH₃). ¹³C-NMR (126 MHz, CDCl₃) δ_c 177.6 (CO), 177.6 (CO), 177.3 (CO), 176.9 (CO), 176.9 (CO), 172.4 (CO), 158.1 (CO), 139.0 (ArC), 138.9 (ArC), 130.7 (ArCH), 129.8 (ArCH), 129.4 (ArCH), 129.2 (ArCH), 128.8 (ArCH), 127.7 (ArCH), 82.6 (CMe₃), 67.8 (CH₂OCO), 58.2 (^αC), 58.1 (^αC), 57.9 (^αC), 57.8 (d, J_C = 39.0, ^αC-*CH₃), 57.7 (°C), 56.9 (°CH), 38.6 (CH₂Ph), 28.3 (C(CH₃)₃), 26.1 (CH₃), 25.9 (CH₃), 25.8 (*CH₃ major and CH₃ x2), 25.6 (CH₃), 25.6 (CH₃), 25.0 (CH₃), 25.0 (*CH₃ minor and CH₃). IR (neat) ν_{max}/cm^{-1} = 3310, 2983, 2934, 1703, 1660, 1530. HRMS (ES⁺, MeOH) Calc. for $C_{40}^{13}CH_{60}N_6NaO_9$ ([M+Na]⁺) = 804.4348, found 804.4340. Mp 96-100 °C. $[\alpha]_D^{20} = -6.8$ (*c* 1, CH₂Cl₂).

Z-(R)-Aib*-Aib₄-PheNH^tBu 3-PheNH^tBu

Z-(R)-Aib*-Aib₄-PheNH'Bu was prepared according to general procedure A (0.052 mmol scale). The pure peptide (33 mg, 82%) was isolated as a white solid by column chromatography (1-2% MeOH in CH_2Cl_2). ¹H-NMR (500 MHz, CD_3OD) δ_H 8.06 (1H, br s, NH), 7.91 (1H, br s, NH), 7.75 (1H, br s, NH), 7.73 (1H, br s, NH), 7.71 (1H, br d, J=8.0, NH), 7.36 (7H, m, ArCH x7), 7.27 (1H, br s, NH), 7.18 (3H, m, ArCH x3), 5.21 (1H, d, J=12.5, CH₂-OCO, H^A of AB system), 5.06 (1H, d, J=12.5, CH₂-OCO, H^B of AB system), 4.38 (1H, ddd, J=11.5, 8.5, 3.0, ^aCH), 3.41 (1H, dd, J=14.5, 3.0, CH₂-Ph, H^A of ABX system), 2.92 (1H, dd, J=14.0, 11.5, CH₂-Ph, H^B of ABX system), 1.46 (6H, s, CH₃ x2), 1.44 (0.7H, d, J=4.5, CH₃ minor), 1.44 (2.3H, d, J=128.5, *CH₃ major), 1.40 (12H, m, CH₃ and C(CH₃)₃), 1.39 (0.7H, d, J=129.0, *CH₃ minor), 1.39 (2.3H, m, CH₃ major), 1.39 (3H, s, CH₃), 1.37 (3H, s, CH₃), 1.37 (3H, s, CH₃), 1.27 (3H, s, CH₃), 1.17 (3H, s, CH₃). ¹³C-NMR (126 MHz, CD₃OD) δ_c 177.9 (CO), 177.7 (CO), 177.3 (CO), 177.3 (CO), 176.9 (CO), 173.2 (CO), 158.0 (CO), 139.8 (ArC), 138.8 (ArC), 130.2 (ArCH), 129.6 (ArCH), 129.3 (ArCH), 129.1 (ArCH), 128.6 (ArCH), 127.5 (ArCH), 67.7 (CH₂OCO), 58.0 (^aC), 57.9 (^aC), 57.9 (^aC), 57.6 (°C), 57.6 (d, J_c=39.0, °C-*CH₃), 57.5 (°C), 52.6 (CMe₃), 38.1 (CH₂Ph), 29.0 (C(CH₃)₃), 27.4 (CH₃), 27.2 (CH₃), 26.9 (CH₃), 26.8 (CH₃), 26.6 (CH₃), 26.1 (*CH₃ minor), 24.4 (*CH₃ major and CH₃), 24.2 (CH₃), 23.7 (CH₃). IR (neat) v_{max}/cm^{-1} = 3308, 2925, 1656, 1533, 1454. HRMS (ES⁺, MeOH) Calc. for $C_{40}^{13}CH_{62}N_7O_8$ ([M+H]⁺) 781.4688, found 781.4673. Mp 120-122 °C. $[\alpha]_D^{20} =$ 7.2 (*c* 0.5, CH₂Cl₂).

Z-(R)-Aib*-Aib₄-PheNHTs 3-PheNHTs

Z-(*R*)-Aib^{*}-Aib₄-PheNHTs was prepared according to general procedure A (0.052 mmol scale), except DMF (1 mL) was added to solubilise the amine. The pure peptide (35 mg, 77%) was isolated as a white solid by column chromatography (0.25-5% MeOH in CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 10.56 (1H, br s, NHTs), 8.01 (2H, d, *J*=8.5, ArCH x2), 7.78 (2H, br m, NH x2), 7.72 (1H, br s, NH), 7.49 (1H, br s, NH), 7.35 (5H, m, ArCH x5), 7.30 (2H, d, *J*=8.5, ArCH x2), 7.09 – 7.24 (5H, m, ArCH x5), 6.64 (1H, br s, NH), 5.82 (1H, br s, NH), 5.20 (1H, d, *J*=12.5, CH₂O, H^A of AB system), 5.03 (1H, d, *J*=12.5, CH₂O, H^B of AB system), 4.56 (1H, m, ^{\arcold{a}}CH), 3.44 (1H, d, *J*=14.0, CH₂), 2.97 (1H, dd, *J*=13.5, 13.5, CH₂), 2.42 (3H, s, CH₃-Ar), 1.63 (3H, s, CH₃), 1.52 (3H, s, CH₃), 1.49 (0.8H, d, *J*= 3.5, CH₃ minor), 1.49 (2.2H, d, *J*=129.0, *CH₃ major), 1.46 (3H, s, CH₃), 1.43 (2.2H, d, *J*=4.0, CH₃ major), 1.43 (0.8H, d, *J*=130.0, *CH₃ minor), 1.41 (3H, s, CH₃), 1.39 (3H, s, CH₃), 1.36 (3H, s, CH₃), 1.20 (3H, s, CH₃), 1.19 (3H, s, CH₃). ¹³C-NMR (126 MHz, CDCl₃) $\delta_{\rm c}$ 176.5 (CO), 175.6 (CO), 175.3 (CO), 174.4 (CO), 174.1 (CO), 171.6 (CO), 156.0 (CO), 144.2 (ArC), 137.9 (ArC), 136.5 (ArC), 129.3 (ArCH), 129.1 (ArCH), 128.7 (ArCH), 128.6 (ArCH), 128.5 (ArC), 128.1 (ArCH), 127.9 (ArCH), 127.9 (ArCH), 126.3 (ArCH), 67.3 (CH₂O), 56.9 (^{\arcall{a}}C), 56.5 (d, *J_c*=38.0, ^{\arcall{a}}C+CH₃), 56.4 (^{\arcall{a}}C), 55.6 (^{\arcall{a}}CH), 36.4 (CH₂), 26.4 (*CH₃ minor), 25.9 – 26.9 (CH₃ x4), 23.6 (*CH₃ major), 22.8 – 24.3 (CH₃ x4), 21.6 (CH₃-Ar). IR (neat) ν_{max}/cm^{-1} = 3299,

2985, 1701, 1651, 1526. HRMS (ES⁺, MeOH) Calc. for $C_{43}^{13}CH_{59}N_7O_{10}SNa$ ([M+Na]⁺) 901.3975, found 901.3981. Mp 135-137 $[\alpha]_D^{20} = 20.0$ (*c* 1, CH₂Cl₂).

Z-(R)-Aib*-Aib₄-ValO^tBu 3-ValO^tBu

Z-(*R*)-Aib^{*}-Aib₄-ValO⁴Bu was prepared according to general procedure A (0.104 mmol scale). The pure peptide (69 mg, 91%) was isolated as a white solid by column chromatography (2-5% MeOH in CH₂Cl₂). ¹H-NMR (500 MHz, CD₃OD) $\delta_{\rm H}$ 7.85 (1H, br s, NH), 7.79 (1H, b s, NH), 7.58 (1H, br s, NH), 7.34 (5H, m, ArCH x5), 5.18 (1H, d, *J*=12.5, CH₂, H^A of AB system), 5.09 (1H, d, *J*=13.0, CH₂, H^B of AB system), 4.03 (1H, d, *J*=7.0, ^αCH), 2.23 (1H, dq, *J*=7.0, 7.0, *CH*(CH₃)₂), 1.50 (3H, s, CH₃), 1.49 (3H, s, CH₃), 1.45 (12H, s, CH₃ and C(CH₃)₃), 1.45 (3H, s, CH₃), 1.42 (2.3H, d, *J*=4.5, CH₃ major), 1.42 (0.7H, d, *J*=129.0, *CH₃ minor), 1.40 (3H, s, CH₃), 1.40 (0.7H, m, CH₃ minor), 1.40 (2.3H, d, *J*=129.0, *CH₃ major), 1.36 (6H, s, CH₃ x2), 1.28 (3H, s, CH₃), 1.04 (3H, d, *J*=7.0, *CH*₃-CH), 1.00 (3H, d, *J*=6.5, *CH*₃-CH). ¹³C-NMR (126 MHz, CD₃OD) $\delta_{\rm c}$ 177.7 (CO), 177.3 (CO), 177.2 (CO), 176.9 (CO), 176.7 (CO), 172.4 (CO), 158.1 (CO), 138.9 (ArC), 129.7 (ArCH), 129.2 (ArCH), 128.8 (ArCH), 82.4 (CMe₃), 67.8 (CH₂), 61.3 (^αCH), 58.1 (^αC), 58.0 (^αC), 57.9 (^αC), 57.8 (d, *J_c*=36.5, ^α*C*-*CH₃), 57.7 (^αC), 31.4 (CH), 28.5 (C(CH₃)₃), 27.4 (CH₃), 26.4 (CH₃), 26.2 (CH₃), 25.9 (*CH₃ major and CH₃), 25.4 (*CH₃ minor and CH₃), 24.8 (CH₃), 24.4 (CH₃), 19.8 (CH₃-CH), 19.5 (CH₃-CH). IR (neat) ν_{max}/cm^{-1} = 3309, 2982, 2935, 2476, 1702, 1650, 1527, 1469, 1455, 1417. HRMS (ES⁺, MeOH) Calc. for C₃₆¹³CH₆₀N₆O₉Na ([M+Na]⁺) 756.4353, found 756.4327. Mp 200-204 °C. [^α]²⁰²⁰ = -22.4 (*c* 1, CH₂Cl₂).

Z-(R)-Aib*-Aib₄-ValNH^tBu 3-ValNH^tBu

Z-(*R*)-Aib^{*}-Aib₄-ValNH^tBu was prepared according to general procedure A (0.052 mmol scale). The pure peptide (31 mg, 81%) was isolated as a white solid by column chromatography (2-5% MeOH in CH₂Cl₂). ¹H-NMR (500 MHz, CD₃OD) δ_{H} 8.07 (1H, br s, NH), 7.9 (1H, br s, NH), 7.82 (1H, br s, NH), 7.75 (1H, br s, NH), 7.55 (1H, br s, NH), 7.28 – 7.42 (5H, m, ArCH x5), 7.09 (1H, br s, NH), 5.21 (1H, d, *J*=13.0, CH₂, H^A of AB system), 5.06 (1H, d, *J*=13.0, CH₂, H^B of AB system), 3.99 (1H, d, *J*=6.0, ^αCH), 2.33(1H, dq, *J*=6.5, 6.5 CH(CH₃)₂), 1.49 (3H, s, CH₃), 1.48 (3H, s, CH₃), 1.46 (3H, s, CH₃), 1.45 (3H, s, CH₃), 1.43 (2.2H, d, *J*=128.5, *CH₃ major), 1.43 (0. 8H, m, CH₃ minor), 1.40 (2.2H, m, CH₃ major), 1.40 (0.8H, d, *J*=128.5, *CH₃ minor), 1.39 (3H, s, CH₃), 1.37 (12H, s, CH₃ and (C(CH₃)₃), 1.36 (3H, s, CH₃), 1.26 (3H, s, CH₃), 1.04 (3H, d, *J*=7.0, CH₃-CH), 0.98 (3H, d, *J*=7.0, CH₃-CH). ¹³C-NMR (126 MHz, CD₃OD) δ_{c} 178.1 (CO), 177.4 (CO), 177.3 (CO), 177.2 (CO), 177.0 (CO), 173.5 (CO), 158.1 (CO), 138.9 (ArC), 129.8 (ArCH), 129.2 (ArCH), 128.7 (ArCH), 67.8 (CH₂), 62.0 (^αCH), 58.1 (^αC), 57.9 (^αC), 57.9 (^αC), 57.9 (^αC), 57.9 (^αC), 57.8 (^αC), 57.7 (d, *J*=36.5, ^αC-*CH₃), 52.6 (CMe₃), 31.0 (CH), 29.2 (C(CH₃)₃), 24.2 (CH₃), 23.8 (CH₃), 19.9 (CH₃-CH), 18.5 (CH₃-CH). IR (neat) ν_{max}/cm^{-1} = 3309, 2981, 2474, 1699, 1646, 1526, 1471, 1417.

HRMS (ES⁺, MeOH) Calc. for $C_{36}^{13}CH_{62}N_7O_8$ ([M+H]⁺) 733.4688, found 733.4680. Mp 96-98 °C. $[\alpha]_D^{20}$ = 18.8 (*c* 1, CH₂Cl₂).

Z-(R)-Aib*-Aib₄-αMvO^tBu 3-αMvO^tBu

Z-(*R*)-Aib^{*}-Aib₄- α MvO^tBu was prepared according to general procedure B (0.052 mmol scale). The pure peptide (13 mg, 33%) was isolated as a white solid by column chromatography (0.5-5% MeOH in CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃) δ_{H} 7.44 (1H, br s, NH), 7.35 (6H, m, ArCH x5 and NH), 7.18 (1H, br s, NH), 6.37 (1H, br s, NH), 5.76 (1H, br s, NH), 5.73 (1H, br s, NH), 5.15 (1H, d, *J*=12.0, CH₂, H^A of AB system), 5.08 (1H, d, *J*=12.0, CH₂, H^B of AB system), 2.24 (1H, dq, *J*=6.5, 6.5, CH), 1.51 (3H, s, CH₃), 1.49 (3H, s, CH₃), 1.48 (3H, s, CH₃), 1.48 (0.7H, d, *J*=129.0, *CH₃ minor), 1.48 (2.3H, m, CH₃ major), 1.46 (3H, s, CH₃), 1.46 (2.3H, d, *J*=129.5, *CH₃ major), 1.46 (0.7H, m, CH₃ minor), 1.45 (12H, m, C(CH₃)₃ and CH₃), 1.43 (6H, s, CH₃ x2), 1.35 (3H, s, CH₃), 1.27 (3H, s, CH₃), 1.01 (3H, d, *J*=7.0, CH₃-CH), 0.98 (3H, d, *J*=7.0, CH₃-CH). ¹³C-NMR (101 MHz, CDCl₃) δ_{c} 174.5 (CO), 174.1 (CO), 174.0 (CO), 173.8 (CO), 173.7 (CO), 172.3 (CO), 155.9 (CO), 136.1 (ArC), 128.7 (ArCH), 128.6 (ArCH), 128.2 (ArCH), 79.9 (CMe₃), 67.4 (CH₂), 62.3 (^{\alpha}C), 57.2 (d, *J* = 37.0, ^{\alpha}C-*CH₃), 56.7 (^{\alpha}C), 56.6 (^{\alpha}C), 56.4 (^{\alpha}C), 34.8 (CH), 28.0 (C(CH₃)₃), 25.6 (*CH₃ major), 24.5 (*CH₃ minor), 24.2 - 25.9 (all other CH₃), 18.5 (CH₃), 17.9 (CH₃-CH). IR (neat) ν_{max}/cm^{-1} = 3319, 2981, 2934, 2481, 1703, 1651, 1523. HRMS (ES⁺, MeOH) Calc. for C₃₇¹³CH₆₃N₆O₉ ([M+H]⁺) = 748.4690, found 748.4701. Mp 125-127. [^{\alpha}]²⁰ = -16.8 (c 0.5, CH₂Cl₂).

Z-(R)-Aib*-Aib₄-αMvNH^tBu 3-αMvNH^tBu

Z-(*R*)-Aib^{*}-Aib₄-αMvNH^tBu was prepared according to general procedure B (0.052 mmol scale). The pure peptide (21 mg, 54%) was isolated as a white solid by column chromatography (1% MeOH in CH₂Cl₂). ¹H-NMR (500 MHz, CD₃OD) δ_H 7.82 (1H, br s, NH), 7.82 (1H, br s, NH), 7.30-7.41 (5H, m, ArCH x5), 7.28 (1H, br s, NH), 7.03 (1H, br s, NH), 5.20 (1H, d *J*=13.0, CH₂, H^A of AB system), 5.06 (1H, d *J*=13.0, CH₂, H^B of AB system), 2.09 (1H, dq, *J*=6.5, 6.5, CH), 1.45 (3H, s, CH₃), 1.43 (2.3H, d, ¹*J*=129.0, ^{*}CH₃ major), 1.43 (0.7H, m, CH₃ minor), 1.39 (0.7H, d, ¹*J*=128.5, ^{*}CH₃ minor), 1.39 (2.3H, m, CH₃ major), 1.42 (3H, s, CH₃), 1.38 (9H, m, CH₃ x3), 1.38 (9H, s, C(CH₃)₃), 1.35 (3H, s, CH₃), 1.26 (3H, s, CH₃), 1.03 (3H, d, *J*=6.5, CH₃-CH), 0.94 (3H, d, *J*=6.5, CH₃-CH). ¹³C-NMR (126 MHz, CD₃OD) δ_C 177.3 (CO), 177.1 (CO), 177.0 (CO), 176.8 (CO), 175.9 (CO), 158.1 (CO), 138.9 (ArC), 129.8 (ArCH), 129.2 (ArCH), 128.8 (ArCH), 67.8 (CH₂), 64.6 (CMe₃), 58.1 (^αC), 58.0 (^αC), 57.9 (^αC), 57.8 (^αC -*CH₃), 57.7 (^αC), 52.4 (^αC), 37.2 (CH), 29.2 (C(CH₃)₃), 27.8 (CH₃), 27.3 (CH₃), 27.0 (CH₃), 26.7 (CH₃), 26.2 (*CH₃ minor), 24.8 (CH₃), 24.5 (*CH₃ major), 24.2 (CH₃), 24.79, 1651, 1525, 1471, 1454, 1414, 1380, 1361.

HRMS (ES⁺, MeOH) Calc. for $C_{37}^{13}CH_{64}N_7O_8$ ([M+H]⁺) = 747.4850, found 747.4814. Mp 215-217 °C. $[\alpha]_D^{20} = 16.0$ (*c* 1, CH₂Cl₂).

Z-(R)-Aib*-Aib₄-(αMv)₂NH^tBu 3-(αMv)₂NH^tBu

Z-(R)-Aib*-Aib4-(α Mv)₂NHtBu was prepared according to general procedure B (0.052 mmol scale). The crude reaction product was dissolved in CH₂Cl₂ (20 mL) and washed with HCl (1 M, 2 x 5 mL). The organic phase was dried (MgSO₄), filtered and concentrated *in vacuo*. The pure peptide (26 mg, 58%) was isolated as a white solid by column chromatography (1% MeOH in CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃) δ_H 7.58 (1H, br s, NH), 7.50 (1H, br s, NH), 7.48 (1H, br s, NH), 7.36 (5H, m, ArCH x5), 7.20 (1H, br s, NH), 7.03 (1H, br s, NH), 6.85 (1H, br s, NH), 6.40 (1H, br s, NH), 5.59 (1H, br s, NH), 5.22 (1H, d, J=12.0, CH₂, H^A of AB system), 5.04 (1H, d, J=12.5, CH₂, H^B of AB system), 2.12 (1H, dq, J=7.0, 7.0, CH), 2.03 (1H, dq, J=7.0, 7.0, CH), 1.52 (0.7H, d, J=4.5, CH₃ minor), 1.52 (2.3H, d, J=129.0, *CH₃ major), 1.49 (3H, s, CH₃), 1.47 (3H, s, CH₃), 1.47 (6H, s, CH₃ x2), 1.46 (3H, s, CH₃), 1.45 (0.7H, d, J=129.5, * CH₃ minor), 1.45 (2.3H, m, CH₃ major), 1.45 (3H, s, CH₃), 1.43 (3H, s, CH₃), 1.40 (9H, s, C(CH₃)₃), 1.38 (3H, s, CH₃), 1.37 (3H, s, CH₃), 1.20 (3H, s, CH₃), 1.06 (3H, d, J=7.0, CH₃-CH), 1.02 (3H, d, J=7.0, CH₃-CH), 0.95 (3H, d, J=7.0, CH₃-CH), 0.93 (3H, d, J=7.0, CH₃-CH). ¹³C-NMR (126 MHz, CDCl₃) δ_c 175.1 (CO), 175.0 (CO), 174.8 (CO), 174.2 (CO), 174.1 (CO), 173.9 (CO), 172.7 (CO), 156.0 (CO), 136.1 (ArC), 128.7 (ArCH), 128.6 (ArCH), 128.1 (ArCH), 67.4 (CH₂) 63.2 (^aC), 62.8 (^aC), 57.2 (d, J_C=39.0, ^aC-*CH₃), 56.8 (°C), 56.6 (°C), 56.5 (°C), 56.3 (°C), 50.7 (CMe₃), 35.8 (CH), 35.6 (CH), 29.7 (CH₃), 28.6 (C(CH₃)₃), 27.4 (CH₃), 27.3 (CH₃), 26.9 (CH₃), 26.8 (*CH₃ minor), 26.7 (CH₃), 23.2 (*CH₃ major), 23.1 (CH₃), 22.9 (CH₃), 22.8 (CH₃), 18.0 (CH₃), 17.9 (CH₃), 17.3 (CH₃), 17.2 (CH₃), 16.6 (CH₃), 15.4 (CH₃). IR (neat) $v_{max}/cm^{-1} =$ 3314, 2983, 1699, 1660, 1531, 1456, 1411. HRMS (ES⁺, MeOH) Calc. for C₄₄¹³CH₇₅N₈O₉ ([M+H]⁺) 860.5685, found 860.5687. Mp 241-243 °C. $[\alpha]_D^{20} = 15.2$ (c 0.5, CH₂Cl₂).

Z-(R)-Aib*-Aib₄-TleO^tBu 3-TleO^tBu

Z-(*R*)-Aib^{*}-Aib₄-TleO^tBu was prepared according to general procedure A (0.052 mmol scale). The pure peptide (33 mg, 85%) was isolated as a white solid by column chromatography (2% MeOH in CH₂Cl₂). ¹H-NMR (400 MHz, CD₃OD) $\delta_{\rm H}$ 7.82 (1H, br s, NH), 7.80 (1H, br s, NH), 7.29-7.43 (6H, m, ArCH x5 and NH), 5.17 (1H, d, *J*=13.0, CH₂OCO, H^A of AB system), 5.10 (1H, d, *J*=13.0, CH₂OCO, H^B of AB system), 4.11 (1H, d, *J*=8.0, CH), 1.49 (6H, s, CH₃ x2), 1.46 (3H, s, CH₃), 1.46 (9H, s, C(CH₃)₃) 1.45 (0.7H, d, ¹*J*=128.5, *CH₃ minor), 1.45 (2.3H, d, ³*J*=4.5, CH₃ major), 1.45 (3H, s, CH₃), 1.42 (2.3H, d, ¹*J*=128.5, *CH₃ major), 1.42 (0.7H, d, ³*J*=4.5, CH₃ minor), 1.39 (3H, s, CH₃), 1.39 (3H, s, CH₃), 1.36 (3H, s, CH₃), 1.29 (3H, s, CH₃), 1.07 (9H, s, C(CH₃)₃). ¹³C-NMR (101 MHz, CD₃OD) $\delta_{\rm C}$ 177.6 (CO), 177.2 (CO), 177.0 (CO), 176.9 (CO), 176.8 (CO), 171.8 (CO), 158.0 (CO), 138.9 (ArC), 129.7 (ArCH), 129.2 (ArCH), 128.8

(ArCH), 82.5 (CMe₃), 67.8 (CH₂), 64.0 ($^{\alpha}$ CH), 58.2 ($^{\alpha}$ C), 58.1 ($^{\alpha}$ C), 58.0 ($^{\alpha}$ C), 57.8 (d, *J*=44.0, $^{\alpha}$ C- *CH₃), 57.7 ($^{\alpha}$ C), 35.1 (CMe₃), 28.6 (C(*C*H₃)₃), 27.6 (C(*C*H₃)₃), 27.1 (CH₃), 26.8 (CH₃), 26.2 (CH₃), 25.8 (*CH₃ major and CH₃ x2), 25.2 (CH₃), 24.9 (*CH₃ minor and CH₃), 24.6 (CH₃). IR (neat) ν_{max}/cm^{-1} =3305, 2981, 2477, 2360, 1700, 1650, 1522, 1472, 1415. HRMS (ES⁺, MeOH) Calc. for C₃₇¹³CH₆₂N₆O₉Na ([M+Na]⁺) 770.4510, found 770.4541. Mp 126-128 °C. $[\alpha]_{D}^{20}$ = -18.4 (*c* 1, CH₂Cl₂).

Z-(R)-Aib*-Aib₄-TleNH^tBu 3-TleNH^tBu

Z-(*R*)-Aib^{*}-Aib₄-TleNH^IBu was prepared according to general procedure A (0.055 mmol scale). The pure peptide (28 mg, 68%) was isolated as a white solid by column chromatography (2-5% MeOH in CH₂Cl₂). ¹H-NMR (500 MHz, CD₃OD) $\delta_{\rm H}$ 8.05 (1H, br s, NH), 7.88 (1H, br s, NH), 7.82 (1H, br s, NH), 7.75 (1H, br s, NH), 7.46 (1H, d, *J*=8.0, N*H*-CH), 7.34 (5H, m, ArCH x5), 7.09 (1H, br s, NH), 5.20 (1H, d, *J*=12.5, CH₂, H^A of AB system), 5.06 (1H, d, *J*=12.5, CH₂, H^B of AB system), 3.93 (1H, d, *J*=8.0, CH), 1.48 (6H, s, CH₃ x2), 1.45 (6H, s, CH₃ x2), 1.43 (0.7H, d, *J*=4.5, CH₃ minor), 1.43 (2.3H, d, *J*=128.5, *CH₃ major), 1.39 (2.3H, d, *J*=4.0, CH₃ major), 1.39 (0.7H, d, *J*=129.0, *CH₃ minor), 1.38 (3H, s, CH₃), 1.37 (3H, s, CH₃), 1.36 (12H, s, CH₃ and C(CH₃)₃), 1.10 (9H, s, C(CH₃)₃). ¹³C-NMR (101 MHz, CD₃OD) $\delta_{\rm C}$ 177.5 (CO), 177.4 (CO), 177.1 (CO), 177.0 (CO), 176.9 (CO), 172.5 (CO), 158.0 (CO), 138.7 (ArC), 129.6 (ArCH), 129.1 (ArCH), 128.6 (ArCH), 67.7 (CH₂), 65.1 (^{\alpha}CH), 58.1 (^{\alpha}C), 57.9 (^{\alpha}C), 57.6 (d, *J*=40.5, ^{\alpha}C-*CH₃), 26.7 (CH₃), 26.0 (*CH₃ minor), 25.2 (CH₃), 24.5 (*CH₃ major and CH₃), 24.2 (CH₃), 23.8 (CH₃). IR (neat) ν_{max}/cm^{-1} = 3305, 2983, 2477, 1703, 1644, 1528, 1454. HRMS (ES⁺, MeOH) Calc. for C₃₇¹³CH₆₃N₇O₈Na ([M+Na]⁺) 769.4664, found 769.4669. Mp 211-213. [^{\alpha}]²⁰

Z-(R)-Aib*-Aib₄-AlaO^tBu 3-AlaO^tBu

Z-(*R*)-Aib^{*}-Aib₄-AlaO⁶Bu was prepared according to general procedure A (0.052 mmol scale). The pure peptide (32 mg, 87%) was isolated as a white solid by column chromatography (2% MeOH in CH₂Cl₂). ¹H-NMR (500 MHz, CD₃OD) $\delta_{\rm H}$ 7.92 (1H, br s, NH), 7.76 (1H, br s, NH), 7.74 (1H, br s, NH), 7.71 (1H, br s, NH), 7.29-7.41 (5H, m, ArCH x5), 5.18 (1H, d, *J*=13.0, CH₂, H^A of AB system), 5.08 (1H, d, *J*=13.0, CH₂, H^B of AB system), 4.21 (1H, dt, *J*=7.0, 7.0, CH), 1.52 (3H, s, CH₃), 1.50 (3H, s, CH₃), 1.45 (3H, m, CH₃-CH), 1.44 (9H, s, C(CH₃)₃), 1.43 (H, s, CH₃ x2), 1.41 (0.66H, d, ¹*J*=128.5, *CH₃ minor), 1.41 (2.34H, d, ³*J*=4.5, CH₃ major), 1.40 (3H, s, CH₃), 1.39 (2.34H, d, ¹*J*=128.5, *CH₃ major), 1.39 (0.66H, d, ³*J*=4.5, CH₃ minor), 1.37 (3H, s, CH₃), 1.35 (3H, s, CH₃), 1.27 (3H, s, CH₃). ¹³C-NMR (126 MHz, CD₃OD) $\delta_{\rm c}$ 177.6 (CO), 177.3 (CO), 177.0 (CO), 176.9 (CO), 173.8 (CO), 158.1 (CO), 138.9 (ArC), 129.7 (ArCH), 129.2 (ArCH), 128.8 (ArCH), 82.3 (CMe₃), 58.1 (^{\alpha}C), 58.1 (^{\alpha}C), 57.9 (^{\alpha}C), 50.9 (^{\alpha}CH), 28.4 (C(CH₃)₃), 27.7 (CH₃), 27.0 (CH₃), 26.5 (CH₃), 26.3 (CH₃), 26.0 (*CH₃ major and CH₃), 24.7 (*CH₃ minor and CH₃), 24.4 (CH₃), 24.1 (CH₃, 17.3 (CH₃CH). IR (neat)

 $v_{\text{max}}/\text{cm}^{-1} = 3340, 3288, 2987, 2931, 1726, 1702, 1652, 1530.$ HRMS (ES⁺, MeOH) Calc. for $C_{34}^{13}\text{CH}_{56}\text{N}_6\text{O}_9\text{Na}$ ([M+Na]⁺) 728.4040, found 728.4013. Mp 225-229 °C. $[\alpha]_D^{20} = -36.4$ (*c* 1, CH₂Cl₂).

Z-(R)-Aib*-Aib₄-AlaNH^tBu 3-AlaNH^tBu

Z-(*R*)-Aib^{*}-Aib₄-AlaNH^tBu was prepared according to general procedure A (0.052 mmol scale). The pure peptide (33 mg, 90%) was isolated as a white solid by column chromatography (2% MeOH in CH₂Cl₂). ¹H-NMR (500 MHz, CD₃OD) δ_{H} 8.04 (1H, br s, NH), 7.98 (1H, br s, NH), 7.88 (1H, d, *J*=7.0, NH), 7.74 (2H, br s, NH x2), 7.29-7.40 (5H, m, ArCH x5), 7.09 (1H, br s, NH), 5.20 (1H, d, *J*=13.0, CH₂, H^A of AB system), 5.06 (1H, d, *J*=13.0, CH₂, H^B of AB system), 4.11 (1H, dt, *J*=7.0, 7.0, CH), 1.56 (3H, s, CH₃), 1.46 (6H, s, CH₃ x2), 1.42 (3H, d, *J*=7.0, CH₃), 1.42 (2.36H, d, ^{*1*}*J*=128.5, *CH₃ major), 1.42 (0.42H, m, CH₃ minor), 1.39 (0.64H, d, ^{*1*}*J*=128.5, *CH₃ minor), 1.39 (2.36H, m, CH₃ major), 1.37 (9H, s, C(CH₃)₃), 1.35-1.39 (9H, m, CH₃ x3), 1.26 3H, s, CH₃). ¹³C-NMR (126 MHz, CD₃OD) δ_{C} 177.7 (CO), 177.6 (CO), 177.3 (CO), 177.0 (CO), 175.0 (CO), 159.1 (CO), 138.9 (ArC), 129.8 (ArCH), 129.2 (ArCH), 128.8 (ArCH), 67.8 (CH₂), 58.1 (^{\alpha}C), 57.8 (^{\alpha}C), 57.8 (d, *J*=40.0, ^{\alpha}C-*CH₃), 57.7 (^{\alpha}C), 52.6 (CMe₃), 52.2 (^{\alpha}CH), 29.2 (C(*C*H₃)₃), 27.2 (CH₃), 27.0 (CH₃), 26.7 (CH₃), 26.3 (*CH₃ minor), 24.8 (CH₃), 24.5 (*CH₃ major), 24.0 (CH₃), 23.9 (CH₃), 23.8 (CH₃), 17.9 (CH₃-^{\alpha}CH). IR (neat) ν_{max}/cm^{-1} = 3305, 2982, 2475, 1650, 1526, 1454, 1416, 1382, 1361. HRMS (ES⁺, MeOH) Calc. for C₃₄¹³CH₅₅N₆O₉Na ([M+Na]⁺) 727.3994, found 727.3962. Mp 204-206 °C. [^{\alpha}]²⁰ = 28.4 (*c* 1, CH₂Cl₂).

Z-(R)-Aib*-Aib₄-AlaOH 3-AlaOH

3-AlaO^tBu (17 mg) was dissolved in CH₂Cl₂ (1 mL) and the solution cooled to 0 °C. Trifluoroacetic acid (200 µL) was added dropwise and the resulting solution was allowed to warm to room temperature and stirred for 45 min. The solvents were removed *in vacuo* and the crude reaction product was purified by column chromatography (2-10% MeOH in CH₂Cl₂) to give 3-AlaOH (15 mg, >99%) as a white solid. ¹H-NMR (500 MHz, CD₃OD) δ_{H} 8.02 (1H, br s, NH), 7.91 (1H, br s,NH), 7.77 (1H, br s, NH), 7.70 (1H, br s, NH), 7.34 (5H, m, ArCH x5), 5.18 (1H, d, *J*=13.0, CH₂, H^A of AB system), 5.08 (1H, d, *J*=13.0, CH₂, H^B of AB system), 4.34 (1H, q, *J*=7.5, $^{\alpha}$ CH), 1.50 (3H, s, CH₃), 1.49 (3H, s, CH₃), 1.47 (3H, d, *J*=7.5, CH₃-CH), 1.45 (3H, s, CH₃), 1.44 (3H, s, CH₃), 1.43 (2.4H, d, *J*=4.5, CH₃ major), 1.43 (0.6H, d, *J*=129.0, *CH₃ minor), 1.39 (0.6H, m, CH₃ minor), 1.39 (2.4H, d, *J*=129.0, *CH₃ major), 1.39 (3H, s, CH₃), 1.28 (3H, s, CH₃). ¹³C-NMR (126 MHz, CD₃OD) δ_{c} 177.6 (CO), 177.4 (CO), 177.2 (CO), 177.1 (CO), 176.9 (CO), 176.3 (CO), 158.0 (CO), 138.7 (ArC), 129.6 (ArCH), 129.1 (ArCH), 128.6 (ArCH), 67.6 (CH2), 58.1 ($^{\alpha}$ C), 58.0 ($^{\alpha}$ C), 57.9 ($^{\alpha}$ C), 57.8 (d, *J*=37.0, $^{\alpha}$ C-*CH₃), 57.7 ($^{\alpha}$ C), 50.0 ($^{\alpha}$ CH), 27.2 (CH₃), 26.3 (CH₃), 25.9 (*CH₃ major and CH₃ x2), 25.3 (CH₃), 24.7 (*CH₃ minor and CH₃), 24.4 (CH₃), 24.2 (CH₃), 17.5 (CH₃-CH). IR (neat) v_{max}/cm^{-1} = 3304, 2985, 2939, 1751, 1653,

1524, 1455. HRMS (ES⁺, MeOH) Calc. for $C_{38}{}^{13}CH_{53}N_7O_7Na$ ([M+Na]⁺) =, 635.3916 found 635.3932. Mp 227-229 °C. = $\left[\alpha\right]_D^{20}$ –44.0 (*c* 0.5, MeOH).

Z-(R)-Aib*-Aib₄-AlaNHMe 3-AlaNHMe

3-AlaOH (13 mg, 0.02 mmol) and 1-Hydroxybenzotriazole hydrate (5 mg, 0.026 mmol) were dissolved in CH₂Cl₂ (2 mL) and N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide (4 mg, 0.022 mmol) was added and the reaction was stirred until it was homogenous. MeNH₂ (4 mg, 0.05 mmol) and N,N-diisopropylethylamine (16 μ l, 0.09 mmol) were added and the reaction mixture stirred for 24 h. The reaction was diluted with CH_2Cl_2 (10 mL) and the organic phase was washed with $KHSO_4$ (5%, 2 x 3 mL), NaHCO₃ (2 3 mL), brine (3 mL), dried (Na₂SO₄), filtered and concentrated in vacuo. The crude reaction product was purified by column chromatography (1-5% MeOH in CH₂Cl₂) to give 3-AlaNHMe (10 mg, 75%) as a white solid. ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.68 (1H, br s, NH), 7.61 (1H, br d, J=8.0, NH-CH), 7.57 (1H, br s, NH), 7.46 (1H, br s, NH), 7.42 (1H, q, J=4.5, NH-CH₃), 7.27 (5H, m, ArCH x5), 6.75 (1H, br s, NH), 6.15 (1H, br s, NH), 5.14 (1H, d, J=12.5, CH₂O, H^A of AB system), 4.96 (1H, d, J=12.5, CH₂O, H^B of AB system), 4.38 (1H, dq, J=7.5, 7.5, ^αCH), 2.69 (3H, d, J=4.5, CH₃-NH), 1.49 (3H, s, CH₃), 1.43 (3H, s, CH₃), 1.42 (2.4H, d, J=129.0, *CH₃ major), 1.42 (0.6H, m, CH₃ minor), 1.42 (3H, s, CH₃), 1.40 (3H, s, CH₃), 1.40 (3H, d, J=4.5, CH₃-NH), 1.37 (3H, s, CH₃), 1.36 (0.6H, d, J=129.5, *CH₃ minor), 1.36 (2.4H, m, CH₃ major), 1.34 (3H, s, CH₃), 1.31 (3H, s, CH₃), 1.14 (3H, s, CH₃). ¹³C-NMR (126 MHz, CDCl₃) $\delta_{\rm C}$ 176.4 (CO), 175.8 (CO), 175.2 (CO), 174.6 (CO), 174.5 (CO), 174.1 (CO), 156.1 (CO), 136.3 (ArC), 128.6 (ArCH), 128.4 (ArCH), 127.9 (ArCH), 67.2 (°C), 57.0 (d, J=39.5, °C-*CH₃), 57.0 (°C), 56.7 (°C), 56.6 (°C), 56.4 (°C), 49.6 (°CH), 27.5 (CH₃), 26.9 (CH₃), 26.8 (CH₃), 26.6 (*CH₃ minor), 26.5 (CH₃), 26.2 (CH₃-NH), 25.9 (CH₃), 25.1 (CH₃), 23.2 (*CH₃ major), 22.7 (CH₃), 22.7 (CH₃), 17.3 (CH₃-CH). IR (neat) $v_{\text{max}}/\text{cm}^{-1}$ = 3298, 2984, 2936, 2472, 1698, 1647, 1528, 1414. HRMS (ES⁺, MeOH) Calc. for $C_{31}^{13}CH_{51}N_7O_8Na$ ([M+Na]⁺) 685.3730, found 685.3713. Mp 230-232°C. $[\alpha]_D^{20}$ = 38.4 (*c* 0.5, CH₂Cl₂).

Z-(R)-Aib*-Aib₄-AbuNH^tBu 3-AbuNH^tBu

Z-(*R*)-Aib^{*}-Aib₄-AbuNH^tBu was prepared according to general procedure A (0.026 mmol scale). The pure peptide (17 mg, 91%) was isolated as a white solid by column chromatography (1-5% MeOH in CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.67 (1H, br s, NH), 7.59 (1H, d, *J*=7.5, N*H*-CH), 7.53 (1H, br s, NH), 7.49 (1H, br s, NH), 7.33 (5H, m, ArCH x5), 6.89 (1H, br s, NH), 6.74 (1H, br s, NH), 6.29 (1H, br s, NH), 5.21 (1H, d, *J*=12.5, CH₂O, H^A of AB system), 5.04 (1H, d, *J*=12.5, CH₂O, H^B of AB system), 4.13 (1H, ddd, *J*= 11.0, 8.0, 3.5, CH), 2.13 (1H, m, CH₂), 1.79 (1H, m, CH₂), 1.58 (3H, s, CH₃), 1.51 (3H, s,

CH₃), 1.51 (2.3H, d, *J*=129.0, *CH₃ major), 1.51 (0.7H, m, CH₃ minor), 1.49 (6H, s, CH₃ x2), 1.44 (0.7H, d, *J*=129.0, *CH₃ minor), 1.44 (2.3H, m, CH₃ major), 1.44 (3H, s, CH₃), 1.39 (12H, s, CH₃ and C(CH₃)₃), 1.38 (3H, s, CH₃), 1.21 (3H, s, CH₃), 0.94 (3H, t, *J*=7.5, *CH*₃-CH). ¹³C-NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 175.7 (CO), 175.5 (CO), 175.4 (CO), 174.6 (CO), 174.2 (CO), 172.5 (CO), 156.1 (CO), 136.4 (ArC), 128.6 (ArCH), 128.4 (ArCH), 127.9 (ArCH), 67.1 (CH₂O), 57.1 (d, *J*=39.4, ^αC-*CH₃), 57.0 (^αC), 56.7 (^αC), 56.6 (^αC), 56.4 (^αCH), 51.0 (CMe₃), 28.8 (CH₃), 27.8 (CH₃), 27.0 (CH₃), 26.9 (CH₃), 26.6 (*CH₃ minor and CH₃ x2), 24.6 (CH₂), 23.3 (*CH₃ major and CH₃ x2), 22.8 (CH₃), 11.28 (*C*H₃-CH). IR (neat) $\nu_{\rm max}/{\rm cm^{-1}}$ = 3315, 2980, 2935, 2473, 1703, 1644, 1525. HRMS (ES⁺, MeOH) Calc. for C₃₅¹³CH₆₀N₇O₈ ([M+H]⁺) 719.4537, found 719.4538. Mp 164-167. [^α]²⁰_D = 20.0 (*c* 1, CH₂Cl₂).

Z-(R)-Aib*-Aib₄-AlaN(CH₂)₄ 3-AlaN(CH₂)₄

Z-(*R*)-Aib^{*}-Aib₄-AlaN(CH₂)₄ was prepared according to general procedure A (0.026 mmol scale). The pure peptide (14 mg, 77%) was isolated as a white solid by column chromatography (1-5% MeOH in CH₂Cl₂). ¹H-NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.55 (1H, br s, NH), 7.52 (1H, br s, NH), 7.43 (1H, br s, NH), 7.41 (1H, br s, NH), 7.33 (5H, m, ArCH x5), 6.70 (1H, br m, NH), 5.99 (1H, br m, NH), 5.13 (1H, d, *J*=12.5, H^A of AB system, CH₂O), 5.08 (1H, d, *J*=12.5, H^B of AB system, CH₂O), 4.61 (1H, m, ^{α}CH), 3.74 (1H, m, CH₂N), 3.43 (3H, m, CH₂N), 1.91 (2H, m, CH₂), 1.79 (2H, m, CH₂), 1.54 (3H, s, CH₃), 1.53 (3H, s, CH₃), 1.48 (3H, s, CH₃), 1.45 (3H, s, CH₃), 1.43 (3H, s, CH₃), 1.41 (3H, s, CH₃), 1.37 (3H, d, *J*=7.0, *CH*₃-CH), 1.32 (3H, s, CH₃), 1.29 (3H, s, CH₃). ¹³C-NMR (126 MHz, CDCl₃) $\delta_{\rm c}$ 175.1 (CO), 174.9 (CO), 174.6 (CO), 174.31 (CO), 173.9 (CO), 170.90 (CO), 156.0 (CO), 136.3 (ArC), 128.7 (ArCH), 128.5 (ArCH), 128.0 (ArCH), 67.2 (CH₂OBn), 57.1 (d, *J* 37.0, ^{α}C-^{*}CH₃), 56.8 (^{α}C x2), 56.7 (^{α}C), 56.4 (^{α}C), 47.6 (^{α}CH), 46.1 (CH₂N), 29.7 (CH₃), 26.2 (CH₂), 25.2 (*CH₃ major), 24.8 (*CH₃ minor), 24.3-25.9 (CH₃ x7), 24.0 (CH₂), 17.0 (*C*H₃-^{α}CH). IR (neat) ν_{max}/cm^{-1} = 3506, 2983, 2936, 1703, 1652, 1528. HRMS (ES⁺, MeOH) Calc. for C₃₄¹³CH₅₅N₇O₈Na ([M+Na]⁺) 725.4043, found 725.4030. Mp 197-199. [^{α}]²⁰

Z-(R)-Aib*-Aib₄-Ser(O^tBu)NH^tBu 3-Ser(O^tBu)NH^tBu

Z-(*R*)-Aib^{*}-Aib₄-Ser(O^tBu)NH^tBu was prepared according to general procedure A (0.026 mmol scale). The pure peptide (20 mg, 99%) was isolated as a white solid by column chromatography (1-5% MeOH in CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.61 (1H, br s, NH), 7.58 (1H, br s, NH), 7.46 (1H, br s, NH), 7.34 (6H, m, ArCH x5 and NH), 7.01 (1H, br s, NH), 6.75 (1H, br s, NH), 6.27 (1H, br s, NH), 5.17 (1H, d, *J*=12.5, CH₂OCO, H^A of AB system), 5.07 (1H, d, *J*=12.5, CH₂OCO, H^B of AB system), 4.45 (1H, m, CH), 3.70 (2H, m, CH₂OCMe₃), 1.55 (3H, s, CH₃), 1.50 (6H, s, CH₃), 1.49 (3H, s, CH₃), 1.48 (2.3H, d, *J*=129.0, *CH₃ major), 1.48 (0.7H, m, CH₃ minor), 1.45 (2.3H, d, *J*=4.0, CH₃ major), 1.45 (0.7H, d, *J*=129.5, *CH₃ minor), 1.42 (3H, s, CH₃), 1.40 (3H, s, CH₃), 1.38 (12H, s, CH₃ and C(CH₃)₃), 1.25 (3H, s, CH₃), 1.13 (9H, s, C(CH₃)₃). ¹³C-NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 175.5 (CO), 175.4 (CO), 174.8 (CO), 174.5

(CO), 174.2 (CO), 170.2 (CO), 156.1 (CO), 136.4 (ArC), 128.6 (ArCH), 128.4 (ArCH), 128.0 (ArCH), 72.8 (OCMe₃), 67.1 (CH₂OCO), 61.8 (CH₂OCMe₃), 57.0 (d, *J*=38.5, $^{\alpha}$ C-*CH₃), 56.8 ($^{\alpha}$ C), 56.7 ($^{\alpha}$ C), 56.7 ($^{\alpha}$ C), 56.4 ($^{\alpha}$ C), 55.5 ($^{\alpha}$ CH), 51.2 (NHCMe₃), 28.7 (C(*C*H₃)₃), 27.5 (C(*C*H₃)₃), 27.4 (CH₃), 25.9 (*CH₃ minor and CH₃ x3), 24.0 (*CH₃ major and CH₃ x3), 23.3 (CH₃). IR (neat) ν_{max}/cm^{-1} = 3308, 2976, 2934, 1478, 1703, 1648, 1527. HRMS (ES⁺, MeOH) Calc. for C₃₈¹³CH₆₆N₇O₉ ([M+H]⁺) 777.4956, found 777.4957. Mp 121-123. $[^{\alpha}]_{D}^{20}$ = 21.2 (*c* 1, CH₂Cl₂).

Z-(R)-Aib*-Aib₄-ProNH^tBu 3-ProNH^tBu

Z-(*R*)-Aib^{*}-Aib₄-ProNH^tBu was prepared according to general procedure A (0.031 mmol scale). The pure peptide (18 mg, 79%) was isolated as a white solid by column chromatography (1-5% MeOH in CH₂Cl₂). ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.59 (1H, br s, NH), 7.53 (1H, br s, NH), 7.34 (6H, m, ArCH x5 and NH), 7.13 (1H, br s, NH), 6.85 (1H, br s, NH), 6.66 (1H, br s, NH), 5.14 (1H, d, *J* 12.5, CH₂O, H^A of AB system), 5.08 (1H, d, *J*=12.5, CH₂O, H^B of AB system), 4.50 (1H, m, CH), 3.69 (2H, m, CH₂N), 1.82 – 2.05 (2H, m, CH₂), 1.63 – 1.92 (2H, m, CH₂), 1.56 (3H, s, CH₃), 1.50 (3H, s, CH₃), 1.49 (6H, s, CH₃ x2), 1.47 (2.3H, d, *J*=129.0, *CH₃ major), 1.46 (0.7H, m, CH₃ minor), 1.46 (2.3H, d, *J*=4.0, CH₃ major), 1.46 (0.7H, m, *CH₃ minor), 1.41 (9H, m, CH₃ x3), 1.37 (9H, s, C(CH₃)₃), 1.29 (3H, s, CH₃). ¹³C-NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 175.2 (CO), 174.8 (CO), 174.7 (CO), 174.2 (CO), 172.9 (CO), 172.4 (CO), 156.1 (CO), 136.5 (ArC), 128.6 (ArCH), 128.3 (ArCH), 127.8 (ArCH), 67.0 (CH₂O), 62.8 (^αCH), 57.0 (d, *J*=39.0, ^αC-*CH₃), 57.0 (^αC), 56.8 (^αC), 56.6 (^αC), 56.4 (^αC), 51.0 (CMe₃), 48.1 (CH₂N), 29.1 (CH₂), 28.8 (C(CH₃)₃), 26.8 (CH₂), 25.9 (CH₃), 25.6 (*CH₃ minor and CH₃ x3), 24.2 (*CH₃ major and CH₃ x4). IR (neat) ν_{max}/cm^{-1} = 3305, 2983, 2936, 1703, 1645, 1529. HRMS (ES⁺, MeOH) Calc. for C₃₆¹³CH₅₉N₇O₈Na ([M+Na]⁺) = 753.4356, found 753.4344. Mp 87-89. [^a]²⁰

Z-ValNH^tBu

Z-ValNH^tBu was prepared according to general procedure C (1 mmol scale). The pure product (251 mg, 82%) was isolated as a white solid.¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.34 (5H, m, ArCH x5), 5.57 (1H, br s, NH), 5.37 (1H, br d, *J*=8.0, N*H*-CH), 5.11 (2H, s, CH₂O), 3.81 (1H, dd, *J*=8.5, 7.0, CH), 2.06 (1H, ddq, *J*=7.0, 7.0, 7.0), 1.35 (9H, s, C(CH₃)₃), 0.96 (3H, d, *J*=7.0, CH₃), 0.92 (3H, d, *J*=7.0, CH₃). ¹³C-NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 170.2 (CO), 156.4 (CO), 136.3 (ArC), 128.5 (ArCH), 128.2 (ArCH), 128.0 (ArCH), 66.9 (CH₂O), 60.9 (CH-NH), 51.5 (CMe₃), 31.4 (CH), 28.7 (C(CH₃)₃), 19.2 (CH₃), 17.9 (CH₃). IR (neat) $v_{\rm max}/{\rm cm}^{-1}$ = 3333, 3231, 2963, 1698, 1651. HRMS (ES⁺, MeOH) Calc. for C₁₅H₂₇N₂O₃ ([M+H]⁺) = 307.2022, found 307.2009. Mp 108-111 °C. $[\alpha]_D^{20}$ –8.8 (*c* 0.5, CHCl₃).

Z-PheNH^tBu

Z-PheNH^tBu was prepared according to general procedure C (2 mmol scale). The pure product (517 mg, 71%) was isolated as a white solid. ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.31 (10H, m, ArCH x 10) 5.47 (1H, br s, NH) 5.11 (2H, m, CH₂O) 4.21 (1H, br s, NH) 3.17 (1H, m, CH₂CH) 2.90 (1H, m, CH₂CH) 1.18 (9H, s, C(CH₃)₃). ¹³C-NMR (126 MHz, CDCl₃) $\delta_{\rm C}$ 169.4 (CO) 155.8 (CO) 136.8 (ArC) 136.3 (ArC) 129.4 (ArCH) 128.7 (ArCH) 128.5 (ArCH) 128.2 (ArCH) 128.0 (ArCH) 127.0 (ArCH) 66.9 (CH₂O) 56.9 (CMe₃) 51.3 (CH) 39.4 (CH₂CH) 28.4 (C(CH₃)₃). IR (neat) $\nu_{\rm max}/\rm{cm}^{-1}$ = 3341, 3274, 3062, 2966, 1703, 1688, 1651. HRMS (ES⁺, CHCl₃) Calc. for C₂₁H₂₇N₂O₃ ([M+H]⁺) = 355.2010, found 355.2010. Mp 96-98 °C. $[\alpha]_D^{20} - 11.3$ (*c* 1, CHCl₃).

Z-Phe-NHTs

p-Toluenesulfonyl isocyanate (0.17 mL, 1.1 mmol) was added dropwise to Z-Phe-OH (299 mg, 1 mmol) in THF (10 mL). The reaction mixture was stirred for 1 h, then diluted with CHCl₃ (20 mL) and washed with HCl (1 M, 10 mL). The aqueous phase was extracted with CHCl₃ (2 x 10 mL). The organic phases were combined, washed with brine (10 mL), dried (Na₂SO₄), filtered and concentrated *in vacuo*. The crude reaction product was purified by column chromatography (1:1 PE:EtOAc) to give Z-Phe-NHTs (201 mg, 44%) as a white solid. ¹H-NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.89 (2H, d, *J*=7.5, ArCH x2), 7.36 (7H, m, ArCH x7), 7.30 (1H, br s, NH) 7.20 (3H, m, ArCH x3), 6.98 (2H, d, *J*=7.5, ArCH x2), 5.20 (1H, d, *J*=7.5, NH), 5.08 (2H, m, CH₂OCO), 4.47 (1H, m, ^αCH), 3.02 (1H, dd, *J*=14.0, 6.0, CH₂Ph, H^A of ABX system), 2.97 (1H, dd, *J*=14.0, 7.0, CH₂Ph, H^B of ABX system), 2.46 (3H, s, CH₃). ¹³C-NMR (126MHz, CDCl₃) $\delta_{\rm c}$ 169.1 (CO), 156.3 (CO), 145.2 (ArC), 135.6 (ArC), 135.3 (ArC), 134.9 (ArC), 129.5 (ArCH), 129.2 (ArCH), 128.8 (ArCH), 128.6 (ArCH), 128.5 (ArCH), 128.4 (ArCH), 128.1 (ArCH), 127.4 (ArCH), 67.7 (CH₂), 56.1 (^αCH), 37.5 (CH₂), 21.7 (CH₃). IR (neat) $\nu_{max}/cm^{-1} = 3148$, 1685, 1518, 1453, 1345, 1289, 1172. HRMS (ES⁺, CH₂Cl₂) Calc. for C₂₄H₂₄N₂O₅S ([M+Na]⁺) = 475.1298, found 475.1302. Mp 53-57 °C. [^α]^D_D = -29.0 (*c* 1, CH₂Cl₂).

Z-(αMv)₂NH^tBu

Z- α MvOH (105 mg, 0.4 mmol) was dissolved in CH₂Cl₂ (5 mL) and the solution cooled to 0 °C. *N*-(3-Dimethylaminopropyl)-*N*'-ethylcarbodiimide (85 μ L, 0.48 mmol) was added and the reaction was

allowed to warm to room temperature and stirred for 4 h. The solvent was removed in vacuo and EtOAc (20 mL) was added. The organic phase was washed with KHSO₄ (2 x 5 mL), brine (5 mL), dried (MgSO₄), filtered and concentrated in vacuo. The crude azlactone was then place under high vacuum (<0.1 mbar) before being dissolved in MeCN (8 mL). H- α MvNH^tBu (prepared by the quantitative hydrogenolysis of Z- α MvNH^tBu) (62 mg, 0.33 mmol) was added and the reaction stirred at reflux for 5 d. After removing the solvent in vacuo, the crude reaction product was purified by column chromatography (1% MeOH in CH₂Cl₂) to give Z-(α Mv)₂NH^tBu (82 mg, 57%) as a white solid. ¹H-NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 7.34 (5H, m, ArCH x5), 6.84 (1H, br s, NH), 6.34 (1H, br s, NH), 5.20 (1H, d, J=12.0, CH₂, H^A of AB system), 5.07 (1H, br s, NH), 5.01 (1H, d, J=12.0, CH₂, H^B of AB system), 1.97 (1H, spt, J=7.0, CH), 1.95 (1H, spt, J=7.0, CH), 1.48 (3H, s, CH₃), 1.45 (3H, s, CH₃), 1.38 (9H, s, C(CH₃)₃), 0.97 (3H, d, J=7.0, CH₃-CH), 0.96 (3H, d, J=7.0, CH₃-CH), 0.83 (3H, d, J=7.0, CH₃-CH), 0.77 (3H, d, J=7.0, CH₃-CH). ¹³C-NMR (75 MHz, CDCl₃) δ_c 171.8 (CO), 171.1 (CO), 155.5 (CO), 135.9 (ArC), 128.6 (ArCH), 128.5 (ArCH), 128.5 (ArCH), 67.2 (CH₂), 63.6 (^aCH), 63.1 (^aCH), 51.0 (CMe₃), 35.8 (CH), 35.4 (CH), 28.6 (C(CH₃)₃), 18.6 (CH₃), 18.5 (CH₃), 17.2 (CH₃-CH), 17.1 (CH₃-CH), 17.1 (CH₃-CH), 16.8 (CH₃-CH). IR (neat) v_{max} /cm⁻¹ =3440, 3359, 3283, 2967, 1711, 1665, 1526, 1499, 1455. HRMS (ES⁺, CH₂Cl₂) Calc. for $C_{24}H_{39}N_{3}O_{4}Na$ ([M+Na]⁺), 456.2833, 456.2818. Mp 95-99 °C. $[\alpha]_{D}^{20} = -5.2$ (*c* 0.5, CH₂Cl₂).

Z-TleNH^tBu

Z-TleNH^tBu was prepared according to general procedure C (0.61 mmol scale). The pure product (181 mg, 93%) was isolated as a white solid. ¹H-NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.34 (5H, m, ArCH), 5.54 (1H, d, *J*=9.0, NH), 5.38 (1H, br s, NH), 5.13 (1H, d, *J*=12.5, CH₂, H^A of AB system), 5.09 (1H, d, *J*=12.5, CH₂, H^B of AB system), 3.74 (1H, d, *J*=9.5, ^{α}CH), 1.35 (9H, s, C(CH₃)₃), 0.99 (9H, s, C(CH₃)₃). ¹³C-NMR (126 MHz, CDCl₃) $\delta_{\rm C}$ 169.5 (CO), 156.4 (CO), 136.3 (ArC), 128.5 (ArCH), 128.1 (ArCH), 128.0 (ArCH), 66.9 (*C*H₂OCO), 63.3 (^{α}C), 51.7 (CMe₃), 34.8 (CMe₃), 28.7 (C(*C*H₃)), 26.6 (C(*C*H₃)). IR (neat) $\nu_{\rm max}/\rm cm^{-1}$ = 3341, 3276, 3065, 2961, 1702, 1653, 1537. HRMS (ES⁺, CH₂Cl₂) Calc. for C₁₈H₂₉N₂O₃ ([M+H]⁺) = 321.2173, found 321.2186. Mp 96-98 °C. [α]²⁰_D = 12.8 (*c* 1, CH₂Cl₂).

Z-AlaNH^tBu

Z-AlaNH^tBu was prepared according to general procedure C (10 mmol scale). The pure product (2.61 g, 94%) was isolated as a white solid. ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.33 (5H, m, ArCH), 5.80 (1H, br s, NH), 5.36 (1H, br s, NH), 5.12 (2H, s, CH₂), 4.11 (1H, m, ^{α}CH), 1.35 (3H, d, *J*=7.0, CH₃), 1.33 (9H, s, C(CH₃)₃). ¹³C-NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 171.3 (CO), 155.9 (CO), 136.3 (ArC), 128.5 (ArCH), 128.2 (ArCH), 128.0 (ArCH), 66.9 (CH₂), 51.3 (CMe₃), 50.9 (^{α}CH), 28.6 (C(CH₃)₃), 18.7 (CH₃). IR (neat) *v*_{max}/cm⁻¹ = 3354, 3293, 2971, 1707, 1656, 1523, 1498, 1454. HRMS (ES⁺, CH₂Cl₂) Calc. for C₁₅H₂₂N₂O₃Na ([M+Na]⁺) = 301.1523, found 301.1514. Mp 48-50 °C. $[\alpha]_D^{20} = -16$ (*c* 1, CH₂Cl₂).

Z-AbuNH^tBu

Z-AbuNH^tBu was prepared according to general procedure C (2 mmol scale). The pure product (536 mg, 92%) was isolated as a white solid. ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.33 (5H, m, ArCH x5), 5.80 (1H, br s, NH), 5.46 (1H, br d, *J*=6.5, N*H*-CH), 5.10 (2H, s, CH₂O), 3.98 (1H, ddd, *J*=6.5, 6.5, 6.5, CH), 1.83 (1H, m, CH₂), 1.63 (1H, m, CH₂), 1.34 (9H, s, C(CH₃)₃), 0.93 (3H, t, *J*=7.5, CH₃). ¹³C-NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 170.6 (CO), 156.1 (CO), 136.3 (ArC), 128.5 (ArCH), 128.1 (ArCH), 128.0 (ArCH), 66.8 (CH₂O), 56.5 (CH), 51.4 (CMe₃), 28.7 (C(CH₃)₃), 26.1 (CH₂), 9.7 (CH₃). IR (neat) $\nu_{\rm max}/\rm cm^{-1}$ = 3292, 2968, 1695, 1654, 1543. HRMS (ES⁺, MeOH) Calc. for C₁₆H₂₅N₂O₃ ([M+H]⁺) = 293.1865, found 293.1863. Mp 81-83 °C. $\left[\alpha\right]_{D}^{20}$ = 6.0 (*c* 1, CH₂Cl₂).

Z-Ser(O^tBu)NH^tBu

Z-Ser(O^tBu)NH^tBu was prepared according to general procedure C (1 mmol scale). The pure product (318 mg, 91%) was isolated as a colourless oil. ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.34 (5H, m, ArCH x5), 6.52 (1H, br s, NH), 5.75 (1H, br s, NH), 5.15 (1H, d, *J*=12.0, CH₂OBn), 5.09 (1H, d, *J*=12.5, CH₂OBn), 4.08 (1H, br s, CH), 3.77 (1H, br s, CH₂), 3.30 (1H, br dd, *J*=8.5, 8.5, CH₂), 1.34 (9H, s, C(CH₃)₃), 1.20 (9H, s, C(CH₃)₃). ¹³C-NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 169.1 (CO), 156.0 (CO), 136.3 (ArC), 128.5 (ArCH), 128.1 (ArCH), 128.1 (ArCH), 74.1 (OCMe₃), 66.9 (CH₂OBn), 62.0 (CH₂), 54.4 (CH), 51.2 (NCMe₃), 28.7 (C(CH₃)₃), 27.4 (C(CH₃)₃). IR (neat) $\nu_{\rm max}/{\rm cm^{-1}}$ = 3325, 2971, 1720, 1661, 1498, 1454. HRMS (ES⁺, MeOH) Calc. for C₁₉H₃₀N₂O₄Na ([M+Na]⁺) = 373.2103, found 373.2094. [*a*]²⁰_D = 16.4 (*c* 1, CH₂Cl₂).

Z-ProNH^tBu

Z-ProNH^tBu was prepared according to general procedure C (1 mmol scale). The pure product (289 mg, 95%) was isolated as a white solid. ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.26 (5H, m, ArCH x5), 6.48 (1H, br s, NH), 5.57 (1H, br s, NH), 5.05 (2H, br m, CH₂O), 4.14 (1H, br s, CH), 3.39 (2H, br m, CH₂N), 1.75 – 2.30 (4H, br m, CH₂ x2), 1.19 (9H, br m, C(CH₃)₃). ¹³C-NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 128.5 (ArCH), 128.1 (ArCH), 127.9 (ArCH), 67.2 (CH₂O), 61.3 (CH), 51.0 (CMe₃), 47.1 (CH₂N), 31.0 (CH₂), 28.6 (C(CH₃)₃), 24.5 (CH₂). ArC and CO (x2) signals not observed due to exchange broadening resulting from amide *cis/trans* isomerisation. IR (neat) v_{max}/cm^{-1} = 3306, 2974, 2866, 1701, 1656, 1556. HRMS (ES⁺, MeOH) Calc. for C₁₇H₂₄N₂O₃Na ([M+Na]⁺) = 327.1685, found 327.1688. Mp 95-98 °C. $[\alpha]_D^{20}$ = -68.4 (*c* 1, CH₂Cl₂).

¹H-NMR of Cbz-(*R*)-Aib*-OH

7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4

¹³C-NMR of Cbz-(*R*)-Aib*-OH

¹H-NMR of Cbz-(*R*)-Aib*-Aib₄-O^tBu

7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2

¹³C-NMR of Cbz-(*R*)-Aib*-Aib₄-O^tBu

¹³C-NMR of Z-(*R*)-Aib*-Aib₄-OH

¹³C-NMR of Z-(*R*)-Aib*-Aib₄-PheO^tBu

¹³C-NMR of Z-(*R*)-Aib*-Aib₄-PheNH^tBu

¹H-NMR of Z-(*R*)-Aib*-Aib₄-PheNHTs

¹³C-NMR of Z-(*R*)-Aib*-Aib₄-PheNHTs

¹³C-NMR of Z-(*R*)-Aib*-Aib₄-ValO^tBu

¹³C-NMR of Z-(*R*)-Aib*-Aib₄-ValNH^tBu

¹³C-NMR of Z-(*R*)-Aib*-Aib₄-αMvO^tBu

¹³C-NMR of Z-(*R*)-Aib*-Aib₄-αMvNH^tBu

¹H-NMR of Z-(*R*)-Aib*-Aib₄-(αMv)₂NH^tBu

¹³C-NMR of Z-(*R*)-Aib*-Aib₄-(α Mv)₂NH^tBu

¹³C-NMR of Z-(*R*)-Aib*-Aib₄-TleO^tBu

¹³C-NMR of Z-(*R*)-Aib*-Aib₄-TleNH^tBu

7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2

¹³C-NMR of Z-(*R*)-Aib*-Aib₄-AlaO^tBu

¹³C-NMR of Z-(*R*)-Aib*-Aib₄-AlaNH^tBu

¹³C-NMR of Z-(*R*)-Aib*-Aib₄-AlaOH

¹H-NMR of Z-(*R*)-Aib*-Aib₄-AlaNHMe

¹³C-NMR of Z-(*R*)-Aib*-Aib₄-AlaNHMe

¹³C-NMR of Z-(*R*)-Aib*-Aib₄-AbuNH^tBu

¹H-NMR of Z-(*R*)-Aib*-Aib₄-AlaN(CH₂)₄

¹³C-NMR of Z-(*R*)-Aib*-Aib₄-AlaN(CH₂)₄

¹³C-NMR of Z-(*R*)-Aib*-Aib₄-Ser(O^tBu)NH^tBu

¹³C-NMR of Z-(*R*)-Aib*-Aib₄-ProNH^tBu

¹³C-NMR of Z-ValNH^tBu

7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2

¹³C-NMR of Z-PheNH^tBu

¹H-NMR of Z-Phe-NHTs

8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2

¹³C-NMR of Z-Phe-NHTs

¹³C-NMR of Z-(α Mv)₂NH^tBu

¹³C-NMR of Z-TleNH^tBu

^{7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2}

¹³C-NMR of Z-AlaNH^tBu

¹³C-NMR of Z-AbuNH^tBu

¹H-NMR of Z-Ser(O^tBu)NH^tBu

¹³C-NMR of Z-Ser(O^tBu)NH^tBu

^{7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0}

¹³C-NMR of Z-ProNH^tBu

Variable Temperature NMR Example (-70 to 40 °C) of Z-Aib*-Aib₄-AlaNH^tBu in MeOD (zoomed in to CH_3 region)

X-ray Crystallographic Analysis of 3-AlaO^tBu

Metrical parameters for the structure of **3**-AlaO^tBu are available free of charge from the Cambridge Crystallographic Data Centre (reference number CCDC 994389).

References

- 1. R. A. Brown, T. Marcelli, M. De Poli, J. Solà, and J. Clayden, *Angew. Chemie Int. Ed.* 2012, **51**, 1395–9.
- 2. S. P. Fletcher, J. Solà, D. Holt, R. A. Brown, and J. Clayden, *Beilstein J. Org. Chem.* 2011, **7**, 1304–9.
- 3. T. S. Cooper, P. Laurent, C. J. Moody, and A. K. Takle, *Org. Biomol. Chem.* 2004, **2**, 265–76.
- 4. C. Toniolo, M. Crisma, G. M. Bonora, B. Klajc, F. Lelj, P. Grimaldi, A. Rosa, S. Polinelli, E. M. Meijer, H. E. Schoemaker, and J. Kamphuis, *Int. J. Pept. Protein Res.* 2009, **38**, 242–252.
- 5. R. M. Lanigan, P. Starkov, and T. D. Sheppard, J. Org. Chem. 2013, 78, 4512–23.
- 6. A. B. Smith, L. Kürti, A. H. Davulcu, and Y. S. Cho, *Org. Process Res. Dev.* 2007, **11**, 19–24.