Fluoro-glycosyl acridinones are ultra-sensitive active site titrating agents for retaining β-glycosidases

Tianmeng Duo, ${ }^{\text {a }}$ Ethan D. Goddard-Borger ${ }^{\mathrm{a}, \mathrm{b}}$ and Stephen G. Withers ${ }^{\mathrm{a} *}$
${ }^{\text {a }}$ The Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T $1 Z 1$.
${ }^{\text {b }}$ Current address: The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Vic, Australia 3052
* To whom correspondence should be addressed.

Contents

Materials and methods 2
Synthesis and characterization 2
General procedure for the synthesis of glycosyl bromides 2
General procedure for Koenigs-Knorr reactions 2
General procedure for deacetylation 3
Synthetic chemistry experimental information 3
$\begin{array}{ll}\text { Kinetic analysis } & 10\end{array}$
$\begin{array}{ll}\text { General procedure for indirect inactivation assays } & 10\end{array}$
General procedure for direct inactivation assays 11
General procedure for direct inactivation assays by stopped flow 11
pK_{a} Determinations 11
$\begin{array}{ll}\text { Extinction coefficient determinations } & 11\end{array}$
Active site titrations of Abg by fluorimetry 12
References 13
NMR spectra 14

Materials and methods

All fine chemicals were obtained from commercial suppliers (Sigma-Aldrich ${ }^{\circledR}$ and Fisher Scientific ${ }^{\circledR}$). Methanol was distilled over Mg and MeCN was distilled over CaH_{2}. Deionized water was prepared using a Millipore-Directed QTM 5 Ultrapure Water System. TLC was performed on Merck pre-coated 0.2 mm aluminum-backed sheets of Silica Gel $60 \mathrm{~F}_{254}$. TLC plates were stained in 10% sulfuric acid in EtOH or 10% ammonium molybdate in $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, followed by development by heating. Flash column chromatography was performed using 230-400 mesh Silicycle ${ }^{\circledR}$ silica gel. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were acquired on a 300 or 400 MHz Bruker ${ }^{\circledR}$ spectrometer. Mass spectra were obtained using a Waters ${ }^{\circledR}$ ZQ Mass Detector equipped with ESCI ion source. LacZ was obtained from Sigma-Aldrich ${ }^{\circledR}$ and human GCase was obtained from Genzyme ${ }^{\circledR}$ as the recombinant drug Cerezyme ${ }^{\circledR}$. T. reesei EG-I cellulase was a generous gift from the Iogen ${ }^{\circledR}$ corporation. Abg, Bhx and Cex were expressed in-house according to established procedures. ${ }^{1-3}$

Synthesis and characterization

General procedure for the synthesis of glycosyl bromides
The per- O-acetylated 2-deoxy-2-fluoro-sugar ${ }^{4}$ was dissolved in DCM ($1 \mathrm{ml} / \mathrm{mmol}$ sugar) under argon and cooled in an ice bath. Hydrogen bromide in $\operatorname{AcOH}(33 \% \mathrm{w} / \mathrm{w}, 0.5 \mathrm{ml} / \mathrm{mmol}$ sugar $)$ was added drop-wise and the solution was stirred at r.t. Upon completion of the reaction (as determined by TLC), the mixture was diluted with DCM and washed with sat. NaHCO_{3} until the aqueous layer was basic, followed by brine. The organic layer was dried with anhydrous MgSO_{4}, filtered and the solvent evaporated under reduced pressure. These products were used immediately in further syntheses.

General procedure for Koenigs-Knorr reactions

Glycosyl bromide in dry $\operatorname{MeCN}(2.0 \mathrm{ml} / \mathrm{mmol}$ glycosyl bromide) was added to a well-stirred suspension of DDAO (1.0 mol eqv.), 2,6-lutidine (2.0 mol eqv.), $\mathrm{Ag}_{2} \mathrm{O}$ (2.0 mol eqv.) and CaSO_{4} (300 $\mathrm{mg} / \mathrm{mmol}$ glycosyl bromide) in $\mathrm{MeCN}(10 \mathrm{ml} / \mathrm{mmol}$ glycosyl bromide) under argon. The reaction was protected from light and stirred at r.t. overnight. The reaction was filtered through diatomaceous earth, washed with sat. NaHCO_{3} and brine, dried with anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The products were purified by flash chromatography and/or recrystallized to homogeneity.

General procedure for deacetylation

The per- O-acetylated glycoside was dissolved in dry MeOH ($1-2 \mathrm{ml} \mathrm{MeOH}$ per 10 mg sugar) and cooled to $0^{\circ} \mathrm{C}$. Sodium methoxide in $\mathrm{MeOH}(380 \mathrm{mM})$ was added drop-wise to give a final concentration of 20 mM . The reaction was stirred at r.t. Upon completion (as determined by TLC), the reaction was neutralized with acid resin (Amberlite ${ }^{\circledR} \mathrm{IR}-120, \mathrm{H}^{+}$), filtered and concentrated under reduced pressure. Purification was carried out by flash chromatography on silica gel or recrystallization (MeOH) to homogeneity.

Synthetic chemistry experimental information

9H-(1,3-Dichloro-9,9-dimethylacridin-7-on-2-yl) 3,4,6-tri- O-acetyl-2-deoxy-2-fluoro- β-Dglucopyranoside (8)

1,3,4,6-Tetra- O-acetyl-2-deoxy-2-fluoro-D-glucose ${ }^{5}$ ($448 \mathrm{mg}, 1.20 \mathrm{mmol}$), was treated according to the general procedure for the synthesis of glycosyl bromides. The product was coupled to DDAO according to the general procedure for Koenigs-Knorr reactions. The crude product was purified by iterative flash chromatography ($\mathrm{Me}_{2} \mathrm{CO}$ /hexanes, 1:9-3:17 then hexanes/DCM/EtOAc, 2:2:1). This material was recrystallized ($\mathrm{Me}_{2} \mathrm{CO} /$ hexanes) to give glucoside $\mathbf{8}$ as yellow needles ($230 \mathrm{mg}, 32 \%$). HRMS mass calculated for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{FNNaO}_{9}$: 620.0866; found: $620.0880[\mathrm{M}+\mathrm{Na}]^{+} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3(\mathrm{Ar})}\right) 1.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3(\mathrm{Ar})}\right) 2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 2.04(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 3.72$ (ddd, $\left.1 \mathrm{H}, J_{H 5-H 4} 10.0 J_{H 5-H 6} 4.7 J_{H 5-H 6^{\prime}} 2.6 \mathrm{~Hz}, \mathrm{H} 5\right) 4.11(\mathrm{dd}, 1$ H, $\left.J_{H 6 \sigma^{\prime}-H 6} 12.2 J_{H \sigma^{\prime}-H 5} 2.6 \mathrm{~Hz}, \mathrm{H}^{\prime}\right) 4.20\left(\mathrm{dd}, 1 \mathrm{H}, J_{H 6-H 6^{\prime}} 12.2 J_{H 6-H 5} 4.7 \mathrm{~Hz}, \mathrm{H} 6\right) 4.74$ (ddd, $1 \mathrm{H}, J_{H 2-F}$ $\left.50.7 J_{H 2-H 3} 9.0 J_{H 2-H 1} 7.6 \mathrm{~Hz}, \mathrm{H} 2\right) 5.17\left(\mathrm{dd}, 1 \mathrm{H}, J_{H 4-H 3} 9.7 J_{H 4-H 5} 10.0 \mathrm{~Hz}, \mathrm{H} 4\right) 5.38$ (dd, $1 \mathrm{H}, J_{H I-H 2} 7.6$, $\left.J_{H I-F 2} 2.4 \mathrm{~Hz}, \mathrm{H} 1\right) 5.42$ (ddd, $\left.1 \mathrm{H}, J_{H 3-F 2} 14.6 J_{H 3-H 2} 9.0 J_{H 3-H 4} 9.7 \mathrm{~Hz}, \mathrm{H} 3\right) 6.67\left(\mathrm{~d}, 1 \mathrm{H}, J_{H 8(A r)-H 6(A r)} 1.8\right.$ $\left.\mathrm{Hz}, \mathrm{H} 8_{(\mathrm{Ar})}\right) 6.67\left(\mathrm{dd}, 1 \mathrm{H}, J_{H 6(A r)-H 5(A r)} 10.2 J_{H 6(A r)-H 8(A r)} 1.8 \mathrm{~Hz}, \mathrm{H6}_{(\mathrm{Ar})}\right) 7.36\left(\mathrm{~d}, 1 \mathrm{H}, J_{H 5(A r)-H 6(A r)} 10.2 \mathrm{~Hz}\right.$, $\left.\mathrm{H} 5_{(\mathrm{Ar})}\right) 7.75\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4_{(\mathrm{Ar})}\right)^{\mathbf{1 9}} \mathbf{F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}-199.25$ (ddd, $J_{F 2-H 2} 50.7 J_{F 2-H 3} 14.6$ $\left.J_{F 2-\mathrm{HI}} 2.4 \mathrm{~Hz}, \mathrm{~F} 2\right){ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 20.86\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 20.93\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 20.97$ $\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 29.10\left(\mathrm{CH}_{3(\mathrm{Ar})}\right), 29.16\left(\mathrm{CH}_{3(\mathrm{Ar})}\right), 38.41\left(\mathrm{C} 9_{(\mathrm{Ar})}\right), 61.72(\mathrm{C} 6), 68.33\left(\mathrm{~d}, J_{C 4-F 2} 6.9 \mathrm{~Hz}, \mathrm{C} 4\right)$ 72.56 (C5), 72.86 (d, $J_{C 3-F 2} 19.9 \mathrm{~Hz}, \mathrm{C} 3$), 90.04 (d, $J_{C 2-F 2} 194.7 \mathrm{~Hz}, \mathrm{C} 2$), 100.69 (d, $J_{C l-F 2} 23.0 \mathrm{~Hz}, \mathrm{C} 1$),
128.54, $129.19\left(\mathrm{C}_{(\mathrm{Ar})}\right)$, $130.48\left(\mathrm{C6}_{(\mathrm{Ar})}\right), 132.67\left(\mathrm{C} 4_{(\mathrm{Ar})}\right), 132.91,133.59,141.05,141.20\left(\mathrm{C}_{(\mathrm{Ar})}\right)$, $148.55,149.81\left(\mathrm{C} 2_{(\mathrm{Ar})}\right), 153.50,169.77\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 170.31\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 170.62\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 187.54$ ($\left.\mathrm{C}=\mathrm{O}_{(\mathrm{Ar})}\right)$.

9H-(1,3-Dichloro-9,9-dimethylacridin-7-on-2-yl) 2-deoxy-2-fluoro- β-D-glucopyranoside (DDAO-2FGlc) (1)

Compound $8(53 \mathrm{mg}, 0.089 \mathrm{mmol})$ was treated according to the general procedure for deacetylation. The crude product was purified by flash chromatography (EtOAc/hexanes, 3:2-4:1) to give polyol 1 as a yellow powder ($38 \mathrm{mg}, 91 \%$). HRMS mass calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{FNNaO}_{6}: 494.0549$; found: $494.0562[\mathrm{M}+\mathrm{Na}]^{+} .{ }^{1} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta \mathrm{ppm} 1.83\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) 3.34(\mathrm{~m}, \mathrm{H} 5) 3.44(\mathrm{t}, 1$ $\left.\mathrm{H}, J_{H 4-H 3}=J_{H 4-H 5} 9.3 \mathrm{~Hz}, \mathrm{H}, \mathrm{H} 4\right) 3.65\left(\mathrm{dd}, 1 \mathrm{H}, J_{H 6-H 6} 12.0 J_{H 6-H 5} 5.8 \mathrm{~Hz}, \mathrm{H} 6\right) 3.70$ (ddd, $1 \mathrm{H}, J_{H 3-F 2} 16.0$ $J_{H 3-H 2} 8.9 J_{H 3-H 4} 9.3 \mathrm{~Hz}, \mathrm{H} 3$) $3.80\left(\mathrm{dd}, 1 \mathrm{H}, J_{H 6^{\prime}-\mathrm{H} 6} 12.0 J_{H 6{ }^{\prime}-H 5} 2.0 \mathrm{~Hz}, \mathrm{H} 6^{\prime}\right) 4.40$ (ddd, $1 \mathrm{H}, J_{H 2-F 2} 51.4$ $\left.J_{H 2-H 3} 8.9 J_{H 2-H 1} 7.8 \mathrm{~Hz}, \mathrm{H} 2\right) 5.41\left(\mathrm{dd}, 1 \mathrm{H}, J_{H 1-H 2} 7.8 J_{H 1-F 2} 2.1 \mathrm{~Hz}, \mathrm{H} 1\right) 6.67\left(\mathrm{dd}, 1 \mathrm{H}, J_{H 6(A r)-H 5(A r)} 9.9\right.$ $\left.J_{H 6(A r)-H 8(A r)} 1.8 \mathrm{~Hz}, \mathrm{H6}_{(\mathrm{Ar})}\right) 6.79\left(\mathrm{~d}, 1 \mathrm{H}, J_{H 8(A r)-H 6(A r)} 1.8 \mathrm{~Hz}, \mathrm{H} 8_{(\mathrm{Ar})}\right) 7.43\left(\mathrm{~d}, 1 \mathrm{H}, J_{H 5(A r)-H 6(A r)} 9.9 \mathrm{~Hz}\right.$, $\left.\mathrm{H} 5_{(\mathrm{Ar})}\right) 7.77\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4_{(\mathrm{Ar})}\right){ }^{19} \mathbf{F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta \mathrm{ppm}-200.52\left(\mathrm{ddd}, J_{F 2-\mathrm{H} 2} 51.4 J_{F 2-H 3} 16.0\right.$ $\left.J_{F 2-H I} 2.1 \mathrm{~Hz}, 93 \mathrm{~F}\right){ }^{13} \mathbf{C}$ NMR (101 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta \mathrm{ppm} 29.09\left(\mathrm{CH}_{3(\mathrm{Ar})}\right) 29.20\left(\mathrm{CH}_{3(\mathrm{Ar})}\right) 39.60\left(\mathrm{C} 9_{(\mathrm{Ar})}\right)$ 62.52 (C6) 71.19 (d, $J_{C 4-F 2} 7.7 \mathrm{~Hz}, \mathrm{C} 4$) 76.35 (d, $J_{C 3-F 2} 17.6 \mathrm{~Hz}, \mathrm{C} 3$) 78.94 (C5) 94.25 (d, $J_{C 2-F 2} 187.8$ $\mathrm{Hz}, \mathrm{C} 2) 102.39\left(\mathrm{~d}, J_{C l-F 2} 26.1 \mathrm{~Hz}, \mathrm{C} 1\right) 129.68,129.99\left(\mathrm{C} 8_{(\mathrm{Ar})}\right) 131.60,133.30\left(\mathrm{C}_{(\mathrm{Ar})}\right) 133.63\left(\mathrm{C} 4_{(\mathrm{Ar})}\right)$ 134.97, 141.86, $142.48\left(\mathrm{C}_{(\mathrm{Ar})}\right) 150.46,151.74\left(\mathrm{C} 2_{(\mathrm{Ar})}\right) 154.43,189.14\left(\mathrm{C}=\mathrm{O}_{(\mathrm{Ar})}\right)$.

9H-(1,3-Dichloro-9,9-dimethylacridin-7-on-2-yl) 3,4,6-tri- O-acetyl-2-deoxy-2-fluoro- β-Dgalactopyranoside (11)

1,3,4,6-Tetra- O-acetyl-2-deoxy-2-fluoro-D-galactose ${ }^{6}(430 \mathrm{mg}, 1.23 \mathrm{mmol})$, was treated according to the general procedure for the synthesis of glycosyl bromides. The product was coupled to DDAO according to the general procedure for Koenigs-Knorr reactions. The crude product was purified by flash chromatography (EtOAc/hexanes, 3:7-1:1). This material was recrystallized
$\left(\mathrm{Me}_{2} \mathrm{CO} / \mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $)$ to give galactoside 11 as yellow needles ($130 \mathrm{mg}, 18 \%$). HRMS mass calculated for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{FNNaO}_{9} 620.0866$; found $620.0859[\mathrm{M}+\mathrm{Na}]^{+}$. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm $1.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3(\mathrm{Ar})}\right) 1.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3(\mathrm{Ar})}\right) 1.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 2.21(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 3.94\left(\mathrm{td}, 1 \mathrm{H}, J_{H 5-H 6}=J_{H 5-H 6} \cdot 7.0 J_{H 5-H 4} 2.7 \mathrm{~Hz}, \mathrm{H} 5\right) 4.12\left(\mathrm{~m}, 2 \mathrm{H}, J_{H 6-H 6}=J_{H 6{ }^{\prime}-H 6} 10.9\right.$, H6 H6') 4.93 (ddd, $\left.1 \mathrm{H}, J_{H 2-F 2} 51.4 J_{H 2-H 3} 9.7 J_{H 2-H 1} 7.5 \mathrm{~Hz}, \mathrm{H} 2\right) 5.22$ (ddd, $1 \mathrm{H}, J_{H 3-F 2} 13.1 J_{H 3-H 2} 9.7 J_{H 3-H 4}$ $3.5 \mathrm{~Hz}, \mathrm{H} 3) 5.36$ (dd, $\left.1 \mathrm{H}, J_{H I-H 2} 7.5 J_{H 1-F 2} 3.2 \mathrm{~Hz}, \mathrm{H} 1\right) 5.46\left(\mathrm{dd}, 1 \mathrm{H}, J_{H 4-H 3} 3.5 J_{H 4-H 5} 2.7 \mathrm{~Hz}, \mathrm{H} 4\right) 6.69$ (d, $\left.1 \mathrm{H}, J_{H 8(A r)-H 6(A r)} 1.8 \mathrm{~Hz}, \mathrm{H} 8(\mathrm{Ar})\right) 6.69\left(\mathrm{dd}, 1 \mathrm{H}, J_{H 6(A r)-H 5(A r)} 9.9 J_{H 6(A r)-H 8(A r)} 1.8 \mathrm{~Hz}, \mathrm{H6}_{(\mathrm{Ar})}\right) 7.38(\mathrm{~d}, 1$ $\left.\mathrm{H}, J_{H 5(A r)-H 6(A r)} 9.9 \mathrm{~Hz}, \mathrm{H5}_{(\mathrm{Ar})}\right) 7.77\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4_{(\mathrm{Ar})}\right)^{19} \mathbf{F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}-206.63$ (ddd, $\left.J_{F 2-H 2} 51.4 J_{F 2-H 3} 13.1 J_{F 2-H 1} 3.2 \mathrm{~Hz}, 1 \mathrm{~F}\right){ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 20.57\left(3 \mathrm{C}, 3 \times \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$ $28.79\left(\mathrm{CH}_{3(\mathrm{Ar})}\right) 28.86\left(\mathrm{CH}_{3(\mathrm{Ar})}\right) 38.09\left(\mathrm{C} 9_{(\mathrm{Ar})}\right) 60.58(\mathrm{C} 6) 67.27\left(\mathrm{~d}, J_{C 4-F 2} 8.4 \mathrm{~Hz}, \mathrm{C} 4\right) 70.80\left(\mathrm{~d}, J_{C 3-F 2}\right.$ $18.3 \mathrm{~Hz}, \mathrm{C} 3) 71.28$ (C5) 88.14 (d, $J_{C 2-F 2} 190.4 \mathrm{~Hz}, \mathrm{C} 2$) 100.94 (d, $J_{C l-F 2} 22.9 \mathrm{~Hz}, \mathrm{C} 1$) $128.31,128.88$ $\left(\mathrm{C}_{(\mathrm{Ar})}\right) 130.14,132.35\left(\mathrm{C} 5_{(\mathrm{Ar})}\right) 132.62\left(\mathrm{C}_{(\mathrm{Ar})}\right) 133.24,140.70,140.90\left(\mathrm{C} 4_{(\mathrm{Ar})}\right) 148.25,149.67\left(\mathrm{C} 2_{(\mathrm{Ar})}\right)$ 153.16, $169.91\left(C(\mathrm{O}) \mathrm{CH}_{3}\right) 170.02\left(C(\mathrm{O}) \mathrm{CH}_{3}\right) 170.22\left(C(\mathrm{O}) \mathrm{CH}_{3}\right) 187.26\left(\mathrm{C}=\mathrm{O}_{(\mathrm{Ar})}\right)$.

9H-(1,3-Dichloro-9,9-dimethylacridin-7-on-2-yl) 2-deoxy-2-fluoro- β-D-galactopyranoside (DDAO-2FGal) (2)

Compound 11 ($93 \mathrm{mg}, 0.15 \mathrm{mmol}$) was treated according to the general procedure for deacetylation. The crude product was purified by flash chromatography (EtOAc/hexanes, 4:1) to give polyol 2 as a yellow powder (61 mg , 84\%). HRMS mass calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{FNNaO}_{6}$: 494.0549; found: $494.0547[\mathrm{M}+\mathrm{Na}]^{+} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, 30 \% \mathrm{CDCl}_{3} 70 \% \mathrm{CD}_{3} \mathrm{OD}\right) \delta \mathrm{ppm} 1.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3(\mathrm{Ar})}\right) 1.82$ ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3(\mathrm{Ar})}\right) 3.55\left(\mathrm{~m}, 1 \mathrm{H}, J_{H 5-H 6} 6.7 J_{H 5-H 6^{\prime}} 5.9\right.$, H5) $3.69\left(\mathrm{dd}, 1 \mathrm{H}, J_{H 6^{\prime}-H 6} 11.1 J_{H 6^{\prime}-H 5} 5.9 \mathrm{~Hz}, \mathrm{H}^{\prime}\right)$ 3.77 (dd, $\left.1 \mathrm{H}, J_{H 6-H 6^{\prime}} 11.1 J_{H 6^{\prime}-H 5} 6.7 \mathrm{~Hz}, \mathrm{H} 6\right) 3.83$ (ddd, $1 \mathrm{H}, J_{H 3-F 2} 14.3 J_{H 3-H 2} 9.2 J_{H 3-H 4} 3.2 \mathrm{~Hz}, \mathrm{H} 3$) $3.98\left(\mathrm{~m}, 1 \mathrm{H}, J_{H 4-H 3} 3.2 \mathrm{~Hz}, \mathrm{H} 4\right) 4.77$ (ddd, $\left.1 \mathrm{H}, J_{H 2-F 2} 52.2 J_{H 2-H 3} 9.2 J_{H 2-H 1} 7.4 \mathrm{~Hz}, \mathrm{H} 2\right) 5.30(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{H l-H 2} 7.4 J_{H I-F 2} 3.0 \mathrm{~Hz}, \mathrm{H} 1\right) 6.67\left(\mathrm{dd}, 1 \mathrm{H}, J_{H 6(A r)-H 5(A r)} 9.7 J_{H 6(A r)-H 8(A r)} 1.9 \mathrm{~Hz}, \mathrm{H6}_{(\mathrm{Ar})}\right) 6.73(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{H 8(A r)-H 6(A r)} 1.9 \mathrm{~Hz}, \mathrm{H} 8_{(\mathrm{Ar})}\right) 7.41\left(\mathrm{~d}, 1 \mathrm{H}, J_{H 5(A r)-H 6(A r)} 9.7 \mathrm{~Hz}, \mathrm{H} 5_{(\mathrm{Ar})}\right) 7.74\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4_{(\mathrm{Ar})}\right){ }^{\mathbf{1 9}} \mathbf{F}$ NMR (282 $\mathrm{MHz}, 30 \% \mathrm{CDCl}_{3} 70 \% \mathrm{CD}_{3} \mathrm{OD}$) $\delta \mathrm{ppm}-207.88\left(\mathrm{ddd}, J_{F 2-H 2} 52.2 J_{F 2-H 3} 14.3 J_{F 2-\mathrm{Hl}} 3.0 \mathrm{~Hz}, \mathrm{~F} 2\right){ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.30 \% \mathrm{CDCl}_{3} 70 \% \mathrm{CD}_{3} \mathrm{OD}\right) \delta \mathrm{ppm} 29.13\left(\mathrm{CH}_{3(\mathrm{Ar})}\right) 29.19\left(\mathrm{CH}_{3(\mathrm{Ar})}\right) 39.14\left(\mathrm{C} 9_{(\mathrm{Ar})}\right) 61.30$ (C6) 70.00 (d, $\left.J_{C 4-F 2} 8.4 \mathrm{~Hz}, \mathrm{C} 4\right) 72.85\left(\mathrm{~d}, J_{C 3-F 2} 17.6 \mathrm{~Hz}, \mathrm{C} 3\right) 76.84$ (C5) 92.93 (d, $\left.J_{C 2-F 2} 179.4 \mathrm{~Hz}, \mathrm{C} 2\right)$
$102.58\left(\mathrm{~d}, J_{C l-F 2} 27.6 \mathrm{~Hz}, \mathrm{C} 1\right) 129.30\left(\mathrm{C} 8_{(\mathrm{Ar})}\right) 129.53,131.26$, $132.91\left(\mathrm{C}_{(\mathrm{Ar})}\right) 133.36\left(\mathrm{C} 4_{(\mathrm{Ar})}\right) 134.3$, $141.20,142.07\left(\mathrm{C}_{(\mathrm{Ar})}\right) 150.02,151.55\left(\mathrm{C} 2_{(\mathrm{Ar})}\right) 153.75,188.74\left(\mathrm{C}=\mathrm{O}_{(\mathrm{Ar})}\right)$.

9H-(1,3-Dichloro-9,9-dimethylacridin-7-on-2-yl) 3,4-di- O-acetyl-2-deoxy-2-fluoro- β-Dxylopyranoside (13)

1,3,4-Tri- O-acetyl-2-deoxy-2-fluoro-D-xylose ${ }^{7}(430 \mathrm{mg}, 1.61 \mathrm{mmol})$, was treated according to the general procedure for the synthesis of glycosyl bromides. The product was coupled to DDAO according to the general procedure for Koenigs-Knorr reactions. The crude product was purified by flash chromatography (EtOAc/hexanes, 3:7-1:1). This material was recrystallized (EtOAc/hexanes) to give xyloside 13 as a yellow powder ($211 \mathrm{mg}, 31 \%$). HRMS mass calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{FNNaO}_{7}$: 548.0655; found: $548.0654[\mathrm{M}+\mathrm{Na}]^{+} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.84\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) 2.13$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 3.62\left(\mathrm{dd}, 1 \mathrm{H}, J_{H 5 a x-H 5 e q} 12.56 J_{H 5 a x-H 4} 6.02 \mathrm{~Hz}, \mathrm{H} 5_{\mathrm{ax}}\right) 4.47$ (dd, $\left.1 \mathrm{H}, J_{H S e q-H 5 a x} 12.56 J_{H 5 e q-H 4 e q} 4.19 \mathrm{~Hz}, \mathrm{H} 5_{\mathrm{eq}}\right) 4.89$ (ddd, $1 \mathrm{H}, J_{H 2-F 2} 47.97 J_{H 2-H 3} 7.31 J_{H 2-H 1} 5.03 \mathrm{~Hz}$, H2) $5.07\left(\mathrm{td}, 1 \mathrm{H}, J_{H 4-H 3}=J_{H 4-H 5 a x} 6.28, J_{H 4-H 5 e q} 4.34 \mathrm{~Hz}, \mathrm{H} 4\right) 5.40\left(\mathrm{dt}, J_{H 3-F 2} 12.79 J_{H 3-H 2}=J_{H 3-H 4} 7.00 \mathrm{~Hz}\right.$, $1 \mathrm{H}) 5.55\left(\mathrm{dd}, 1 \mathrm{H}, J_{H I-F 2} 8.15 J_{H 1-H 2} 4.95 \mathrm{~Hz}, \mathrm{H} 1\right) 6.71\left(\mathrm{~d}, 1 \mathrm{H}, J_{H 8(A r)-H 6(A r)} 1.68 \mathrm{~Hz}, \mathrm{H} 8_{(\mathrm{Ar})}\right) 6.71(\mathrm{dd}, 1$ $\left.\mathrm{H}, J_{H 6(A r)-H 5(A r)} 10.51 J_{H 6(A r)-H 8(A r)} 1.83 \mathrm{~Hz}, \mathrm{H6}_{(\mathrm{Ar})}\right) 7.40\left(\mathrm{~d}, 1 \mathrm{H}, J_{H 5(A r)-H 6(A r)} 10.20 \mathrm{~Hz}, \mathrm{H} 5_{(\mathrm{Ar})}\right) 7.81(\mathrm{~s}, 1$ $\left.\mathrm{H}, \mathrm{H} 4_{(\mathrm{Ar})}\right)^{19} \mathbf{F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}-196.96\left(\mathrm{ddd}, J_{F 2-H 2} 48.43 J_{F 2-H 3} 13.82 J_{F 2-H 1} 7.54 \mathrm{~Hz}\right.$, F2) ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm $20.92\left(\mathrm{CH}_{3}(\mathrm{Ar}) 28.92\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 29.04\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 38.25\right.$ (C9 (Ar) $) 62.62$ (C5) $68.46\left(\mathrm{~d}, J_{C 4-F 2} 4.60 \mathrm{~Hz}, \mathrm{C} 4\right) 69.74$ (d, $\left.J_{C 3-F 2} 24.54 \mathrm{~Hz}, \mathrm{C} 3\right) 87.86$ (d, $J_{C 2-F 2} 183.26$ $\mathrm{Hz}, \mathrm{C} 2) 101.06\left(\mathrm{~d}, J_{\mathrm{Cl-F2}} 29.14 \mathrm{~Hz}, \mathrm{C} 1\right) 128.30,129.00\left(\mathrm{C}_{(\mathrm{Ar})}\right) 130.00$, $132.47\left(\mathrm{C}_{(\mathrm{Ar})}\right) 132.85\left(\mathrm{C}_{(\mathrm{Ar})}\right)$ $133.51,140.75,141.04\left(\mathrm{C}_{(\mathrm{Ar})}\right) 148.37,150.48\left(\mathrm{C} 2_{(\mathrm{Ar})}\right) 153.23,169.83\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 170.19\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$ $187.39\left(\mathrm{C}=\mathrm{O}_{(\mathrm{Ar})}\right)$.

9H-(1,3-Dichloro-9,9-dimethylacridin-7-on-2-yl) 2-deoxy-2-fluoro- β-D-xylopyranoside (DDAO-2FXyl) (3)

Compound 13 ($88 \mathrm{mg}, 0.17 \mathrm{mmol}$) was treated according to the general procedure for deacetylation. The crude product was purified by flash chromatography (EtOAc/hexanes, 4:1) to give polyol $\mathbf{3}$ as a yellow powder ($78 \mathrm{mg}, 99 \%$). HRMS mass calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{FNO}_{5}$: 476.0235; found: 476.0237 $[\mathrm{M}+\mathrm{Cl}]^{-} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3(\mathrm{Ar})}\right) 1.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3(\mathrm{Ar})}\right) 2.48$ (br. s., 1 $\mathrm{H}, \mathrm{OH}) 2.75$ (br. s., $1 \mathrm{H}, \mathrm{OH}$) 3.43 (dd, $1 \mathrm{H}, J_{H 5 a x-H 5 e q} 11.9 J_{H 5 a x-H 4} 7.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ax}}$) 3.88 (td, $1 \mathrm{H}, J_{H 4-H 3}=$ $\left.J_{H 4-H 5 a x} 7.5 J_{H 4-H S e q} 4.6 \mathrm{~Hz}, \mathrm{H} 4\right) 3.94\left(\mathrm{dt}, 1 \mathrm{H}, J_{H 3-F 2} 13.5 J_{H 3-H 2}=J_{H 3-H 4} 7.5 \mathrm{~Hz}, \mathrm{H} 3\right) 4.28$ (dd, $1 \mathrm{H}, J_{H S e q-}$ ${ }_{H 5 a x} 11.9 J_{H 5 e q-H 4} 4.6 \mathrm{~Hz}, \mathrm{H} 5_{\mathrm{eq}}$) 4.71 (ddd, $\left.1 \mathrm{H}, J_{H 2-F 2} 49.6 J_{H 2-H 3} 7.5 J_{H 2-H 1} 6.1 \mathrm{~Hz}, \mathrm{H} 2\right) 5.42(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{H l-H 2} 6.1 J_{H I-F 2} 4.6 \mathrm{~Hz}, \mathrm{H} 1\right) 6.68\left(\mathrm{~d}, 1 \mathrm{H}, J_{H 8(A r)-H 0(A r)} 1.7 \mathrm{~Hz}, \mathrm{H}_{(\mathrm{Ar})}\right) 6.69\left(\mathrm{dd}, 1 \mathrm{H}, J_{H 6(A r)-H 5(A r)} 9.9\right.$ $\left.J_{H 6(A r)-H 8(A r)} 1.7 \mathrm{~Hz}, \mathrm{H6}_{(\mathrm{Ar})}\right) 7.37\left(\mathrm{~d}, 1 \mathrm{H}, J_{H 5(A r)-H 6(A r)} 9.9 \mathrm{~Hz}, \mathrm{H} 5_{(\mathrm{Ar})}\right) 7.78\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4_{(\mathrm{Ar})}\right)^{19}$ F NMR (282 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}-200.66\left(\mathrm{ddd}, J_{F 2-H 2} 49.6 J_{F 2-H 3} 13.5 J_{F 2-H 1} 4.6 \mathrm{~Hz}, 1 \mathrm{~F}\right){ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 28.93\left(\mathrm{CH}_{3}(\mathrm{Ar}) 29.04\left(\mathrm{CH}_{3}(\mathrm{Ar})\right) 38.26\left(\mathrm{C} 9_{(\mathrm{Ar})}\right) 65.22(\mathrm{C} 5) 69.12\left(\mathrm{~d}, J_{C 4-\mathrm{F} 2} 5.3 \mathrm{~Hz}, \mathrm{C} 4\right)\right.$ 73.69 (d, $\left.J_{C 3-F 2} 19.1 \mathrm{~Hz}, \mathrm{C} 3\right) 91.05$ (d, $J_{C 2-F 2} 186.3 \mathrm{~Hz}, \mathrm{C} 2$) 101.32 (d, $J_{C l-F 2} 26.0 \mathrm{~Hz}, \mathrm{C} 1$) 128.28, $129.00\left(\mathrm{C} 8_{(\mathrm{Ar})}\right) 130.09,132.46\left(\mathrm{C} 4_{(\mathrm{Ar})}\right) 132.84,133.46,140.75,141.07\left(\mathrm{C} 5_{(\mathrm{Ar})}\right) 148.42,150.32\left(\mathrm{C} 2_{(\mathrm{Ar})}\right)$, 153.20, $187.44\left(\mathrm{C}=\mathrm{O}_{(\mathrm{Ar})}\right)$.
$1,3,6,2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$-Hepta-O-acetyl-2-deoxy-2-fluoro- α-cellobiose (15)

Per-O-acetyl cellobial ${ }^{8} 14(6.7 \mathrm{~g}, 12 \mathrm{mmol})$ and Selectfluor ${ }^{\circledR}(6.0 \mathrm{~g}, 18 \mathrm{mmol}, 1.5$ eqv.) were dissolved in $\mathrm{MeNO}_{2}(100 \mathrm{ml})$ and water $(20 \mathrm{ml})$. The reaction was warmed to ambient temperature and stirred for 72 h . The mixture was diluted with EtOAc and washed with sat. NaHCO_{3} followed by brine. The organic layer was dried with anhydrous MgSO_{4}, filtered and the solvent evaporated under reduced pressure. The mixture $(4 \mathrm{~g})$ was dissolved in pyridine $(25 \mathrm{ml})$ and $\mathrm{Ac}_{2} \mathrm{O}(120 \mathrm{ml})$ and stirred at r.t. overnight. The mixture was evaporated under reduced pressure, diluted with EtOAc and washed with 1 N HCl , water, sat. NaHCO_{3} then brine. The organic layer was dried with anhydrous MgSO_{4}, filtered and the solvent evaporated under reduced pressure. Iterative recrystallization $\left(\mathrm{CHCl}_{3} / \mathrm{Et}_{2} \mathrm{O}\right)$ gave the
fluorosugar 15 ($250 \mathrm{mg}, 12 \%$ yield). ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectral data were commensurate with those previously reported. ${ }^{9}$

9H-(1,3-Dichloro-9,9-dimethylacridin-7-on-2-yl) 3,6, ${ }^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$ '-hexa- O-acetyl-2-deoxy-2-fluoro- β cellobioside (16)

Per-O-acetyl-2-deoxy-2-fluoro-cellobiose $15(100 \mathrm{mg}, 0.16 \mathrm{mmol})$, was treated according to the general procedure for the synthesis of glycosyl bromides. The product was coupled to DDAO according to the general procedure for Koenigs-Knorr reactions. The crude product was purified by flash chromatography ($\mathrm{EtOAc} / \mathrm{DCM} / \mathrm{MePh}, 1: 2: 2$) to give cellobioside 16 as a yellow powder (12 mg , 8\%). HRMS: mass calculated for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{FNNaO}_{17}$: 908.1712; found: 908.1707, $[\mathrm{M}+\mathrm{Na}]^{+} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3(\mathrm{Ar})}\right) 1.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3(\mathrm{Ar})}\right) 1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 2.00(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 2.14(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$) 3.61 (ddd, $J_{H 5-H 4} 9.7 J_{H 5-H 6 a} 4.8 J_{H 5-H 6 b} 2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$) 3.69 (ddd, $J_{H 5^{\prime}-H 4^{\prime}} 9.9 J_{H 55^{\prime}-H 6^{\prime} a} 4.2$ $\left.J_{H 55^{\prime}-H 6^{\prime} b} 2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5^{\prime}\right) 3.88$ (dd, $\left.J_{H 4-H 3} 9.0 J_{H 4-H 5} 9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4\right) 4.07$ (dd, $J_{H 6 a-H 6 b} 12.1 J_{H 6 a-H 5} 4.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{a}) 4.08$ (d, $J_{H 6 \sigma^{\prime} b-H \sigma^{\prime} a} 12.4 J_{H 6^{\prime} b-H 5^{\prime}} 2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6^{\prime} \mathrm{b}$) 4.39 (dd, $J_{H 6^{\prime} a-H \sigma^{\prime} b} 12.4 J_{H \sigma^{\prime} a-H 5^{\prime}} 4.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}{ }^{\prime}$ 'a) 4.51 (dd, $\left.J_{H 6 b-H 6 a} 12.1 J_{H 6 b-H 5} 2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{~b}\right) 4.55$ (d, $\left.J_{H l^{\prime}-H 2^{\prime}}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1^{\prime}\right) 4.66$ (ddd, $\left.J_{H 2-F 2} 50.2 J_{H 2-H 3} 9.0 J_{H 2-H 1} 7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2\right) 4.94$ (dd, $J_{H 2^{\prime}-H 3^{\prime}} 9.2 J_{H 2^{\prime}-H 1^{\prime}} 7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}{ }^{\prime}$) 5.09 (dd, $\left.J_{H 4^{\prime}-H 3^{\prime}} 9.2 J_{H 4^{\prime}-H 5^{\prime}} 9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4^{\prime}\right) 5.16\left(\mathrm{t}, J_{H 3^{\prime}-\mathrm{H}^{\prime}}{ }^{\prime}=J_{H 3^{\prime}-\mathrm{H} 4^{\prime}} 9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3^{\prime}\right) 5.35\left(\mathrm{dd}, J_{H I-H 2} 7.4 J_{H I-}\right.$ $\left.{ }_{F 2} 2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1\right) 5.40\left(\mathrm{dt}, J_{H 3-F 2} 14.7 J_{H 3-H 2}=J_{H 3-H 4} 9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3\right) 6.68\left(\mathrm{~d}, J_{H 8(A r)-H 6(A r)} 1.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H8 $\left.{ }_{(\mathrm{Ar})}\right) 6.68\left(\mathrm{dd}, J_{H 6(A r)-H 5(A r)} 10.0 J_{H 6(A r)-H 8(A r)} 1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6_{(\mathrm{Ar})}\right) 7.36\left(\mathrm{~d}, J_{H 5(A r)-H 6(A r)} 10.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{H} 5_{(\mathrm{Ar})}\right) 7.75\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4_{(\mathrm{Ar})}\right){ }^{19} \mathbf{F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}-198.87\left(\mathrm{ddd}, J_{F 2-H 2} 50.2 J_{F 2-H 3} 14.7\right.$ $\left.J_{F 2-\mathrm{Hl}} 2.2 \mathrm{~Hz}, \mathrm{~F} 2\right)^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 20.47\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 20.51\left(2 \times \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 20.58$ $\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 20.65\left(\mathrm{C}(\mathrm{O}) C_{3}\right) 20.72\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 28.77\left(\mathrm{CH}_{3(\mathrm{Ar})}\right) 28.82\left(\mathrm{CH}_{3(\mathrm{Ar})}\right) 38.05\left(\mathrm{C}_{(\mathrm{Ar})}\right) 60.88(\mathrm{C} 6)$ 61.58 (C6') 67.73 (C4') 71.53 (C2') 72.05 (C5') 71.99 (d, $J_{C 3-F 2} 19.1 \mathrm{~Hz}, \mathrm{C} 3$) 72.79 (C3') 73.18 (C5) 75.84 (d, $\left.J_{C 4-F 2} 6.8 \mathrm{~Hz}, \mathrm{C} 4\right) 89.86$ (d, $J_{C 2-F 2} 193.5 \mathrm{~Hz}, \mathrm{C} 2$) 100.27 (d, $J_{C l-F 2} 23.7 \mathrm{~Hz}, \mathrm{C} 1$) 100.71 (C1’) $128.85\left(\mathrm{Cb}_{(\mathrm{Ar})}\right) 129.01,130.07\left(\mathrm{C} 8_{(\mathrm{Ar})}\right) 132.34\left(\mathrm{C} 4_{(\mathrm{Ar})}\right) 132.56,133.25,140.69\left(\mathrm{C}_{(\mathrm{Ar})}\right) 140.88,148.22$, $149.47\left(\mathrm{C} 2_{(\mathrm{Ar})}\right) 153.15,168.85\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 169.25\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 169.49\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 169.87\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$ $170.22\left(C(\mathrm{O}) \mathrm{CH}_{3}\right) 170.46\left(C(\mathrm{O}) \mathrm{CH}_{3}\right) 187.24\left(\mathrm{C}=\mathrm{O}_{(\mathrm{Ar})}\right)$.

9H-(1,3-Dichloro-9,9-dimethylacridin-7-on-2-yl) 2-deoxy-2-fluoro- β-D-cellobioside
(DDAO-2FCel) (4)

Compound 16 ($40 \mathrm{mg}, 0.46 \mathrm{mmol}$) was treated according to the general procedure for deacetylation. The crude product was recrystallized (MeOH) to give polyol 4 as a yellow powder $(15 \mathrm{mg}, 53 \%)$. HRMS: mass calculated for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{FNNaO}_{11}: 656.1078$; found: $656.1072[\mathrm{M}+\mathrm{Na}]^{+} .{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta \mathrm{ppm} 1.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3(\mathrm{Ar})}\right) 1.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3(\mathrm{Ar})}\right) 3.37-3.94$ (m, $11 \mathrm{H}, \mathrm{H} 3-\mathrm{H} 6$ and H2'-H6') 4.47 (d, $\left.J_{H l^{\prime}-H 2}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1^{\prime}\right) 4.48$ (ddd, $\left.J_{H 2-F 2} 51.3 J_{H 2-H 3} 8.8 J_{H 2-H 1} 7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2\right) 5.45$ (dd, $\left.J_{H 1-H 2} 7.6 J_{H I-F 2} 2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1\right) 6.69\left(\mathrm{dd}, J_{H 6(A r)-H 5(A r)} 9.7 J_{H 6(A r)-H 8(A r)} 1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{(\mathrm{Ar})}\right) 6.81(\mathrm{~d}$, $\left.J_{H 8(A r)-H 0(A r)} 1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 8_{(\mathrm{Ar})}\right) 7.45\left(\mathrm{~d}, J_{H 5(A r)-H 6(A r)} 9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5_{(\mathrm{Ar})}\right) 7.80\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4_{(\mathrm{Ar})}\right)^{19} \mathbf{F}$ NMR ($282 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta \mathrm{ppm}-198.74$ (ddd, $J_{F 2-H 2} 51.3 J_{F 2-H 3} 13.19 J_{F 2-H 1} 2.2 \mathrm{~Hz}, \mathrm{~F} 2$) ${ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta \mathrm{ppm} 29.08\left(\mathrm{CH}_{3(\mathrm{Ar})}\right) 29.19\left(\mathrm{CH}_{3(\mathrm{Ar})}\right) 39.60\left(\mathrm{C} 9_{(\mathrm{Ar})}\right) 55.04,61.69,62.61,71.55,74.85$ (d, $\left.J_{C 4-F 2} 17.5 \mathrm{~Hz}, \mathrm{C} 4\right) 75.03,77.38,78.14\left(\mathrm{~d}, J_{C 3-F 2} 30.5 \mathrm{~Hz}, \mathrm{C} 3\right) 79.96,93.86\left(\mathrm{~d}, J_{C 2-F 2} 188.9 \mathrm{~Hz}, \mathrm{C} 2\right)$ 102.33 (d, $\left.J_{C l-F 2} 22.9 \mathrm{~Hz}, \mathrm{C} 1\right) 104.66$ (Cl ') 129.65, $130.00\left(\mathrm{C} 8_{(\mathrm{Ar})}\right) 131.59$, $133.31\left(\mathrm{C}_{(\mathrm{Ar})}\right) 133.63$ $\left(\mathrm{C} 4_{(\mathrm{Ar})}\right) 134.98$, 141.92, $142.48\left(\mathrm{C}_{(\mathrm{Ar})}\right) 150.42$, 151.70, $154.49,189.12\left(\mathrm{C}=\mathrm{O}_{(\mathrm{Ar})}\right)$.

Kinetic analyses

Enzyme kinetic experiments were performed as described below using the conditions outlined in Table S1. Extinction coefficients for all aglycones, except those for DDAO, were obtained from Kempton and Withers. ${ }^{10}$ All experiments were performed in buffer with DMSO content (v / v) not exceeding 5%.

Table S1: Reaction conditions used in enzymatic assays.

enzyme	substrate for indirect inactivation assays*	buffer	pH	T (${ }^{\circ} \mathrm{C}$)
Abg	β GlcPNP	$50 \mathrm{mM} \mathrm{NaP}{ }_{i}$	6.8	37
GCase	β GlcDNP	50 mM citrate	5	30
LacZ	β GalONP	$50 \mathrm{mM} \mathrm{NaP} \mathrm{P}_{\mathrm{i}}, 1 \mathrm{mM} \mathrm{MgCl}{ }_{2}$	6.8	37
Bhx	β XylPNP	$50 \mathrm{mM} \mathrm{NaP}{ }_{\mathrm{i}}$	6.8	37
EG-I	--	50 mM citrate	5	30
Cex	--	$50 \mathrm{mM} \mathrm{NaP}{ }_{\mathrm{i}}$	6.8	37

* β GlcPNP $=4$-nitrophenyl β-D-glucopyranoside, $\beta \mathrm{GlcDNP}=2,4$-dinitrophenyl β-D-glucopyranoside, $\beta \mathrm{GalONP}=2$-nitrophenyl β-D-galactopyranoside, $\beta \mathrm{XylPNP}=4$-nitrophenyl β-D-xylopyranoside

General procedure for indirect inactivation assays
Varying concentrations of the inactivator compound were incubated with enzyme in the buffer and at the temperature listed in Table S1. At appropriate time-points, aliquots of this enzyme-inactivator reaction mixture were removed and diluted into a cuvette containing the appropriate substrate at a high concentration ($7-15 \times K_{\mathrm{m}}$) that had been pre-incubated under the same buffer and temperature conditions (Table S1), such that the final volume was 200μ l. The residual intial rate of substrate hydrolysis for each time-point was determined by monitoring the change in absorbance of the sample at an appropriate wavelength with respect to time. Each time point was plotted against its rate and the data set then fit to a pseudo-first order decay equation to obtain the rate constant of inactivation (k_{obs}) at that inactivator concentration. The resulting k_{obs} values were plotted against the corresponding inactivator concentration and fit to Equations 1 or 2 to obtain the kinetic parameters k_{i} and K_{i}.

$$
\text { Equation 1: } \quad k_{o b s}=\frac{k_{i}[I-\mathrm{X}]}{K_{i}+[I-\mathrm{X}]}
$$

For reactions at inactivator concentrations well below the K_{i} value, a $k_{\mathrm{i}} / K_{\mathrm{i}}$ was obtained by fit to:

Equation 2: $\quad k_{o b s}=\frac{k_{i}[I-X]}{K_{i}}$

General procedure for direct inactivation assays
Varying concentrations of the inactivator were pre-incubated in the buffer and at the temperature listed in Table S1. The inactivation reaction was initiated by the addition of enzyme. DDAO release was monitored continuously by observing the solutions' absorbance at 600 nm . The inactivation parameters (k_{i} and K_{i}) were obtained either by fitting the initial rates of inactivation, or the observed rate constants of inactivation (k_{obs}), to a Michaelis-Menten type equation (Equation 1). For the latter, the k_{obs} values were obtained by fitting the derivative of the absorbance vs. time plots to an exponential decay curve using GraFit 7.0.

General procedure for direct inactivation assays by stopped flow

Experiments were performed on an Applied Photophysics SX20 stopped flow machine coupled with a water bath. Two syringes were filled with $800 \mu \mathrm{l}$ of $0.64 \mu \mathrm{M}$ Abg or inactivator $\mathbf{1}(2.58 \mu \mathrm{M}$ to $137 \mu \mathrm{M})$ and incubated at $37^{\circ} \mathrm{C}$ for 5 minutes. DDAO release was monitored by absorbance at 600 nm , and the resulting curves were averaged and fit with the accompanying software (Pro-Data SX Viewer) using an equation for a single exponential to obtain the observed rate constant of inactivation (k_{obs}). Inactivation kinetic parameters k_{i} and K_{i} were obtained by fitting a plot of k_{obs} vs. inactivator concentration to Equation 1.

$\mathbf{p K} \mathbf{a}_{\mathrm{a}}$ Determinations

$\mathrm{p} K_{\mathrm{a}}$ determinations for DDAO were performed in buffer containing 50 mM citrate, 50 mM sodium phosphate and 50 mM Tris. Buffer pH was adjusted using NaOH or HCl . Solutions ($1000 \mu \mathrm{l}$) of DDAO $(2 \mu \mathrm{M})$ were incubated at $37^{\circ} \mathrm{C}$ for 5 min . The fluorescence response at 600 V was recorded and plotted as a function of pH . This data set was fit to a pH titration curve using GraFit 5.0.

Extinction coefficient determinations

DDAO (11-15 mg) was dissolved in DMSO (1.0 ml), diluted 100-fold into DMSO, then further diluted 20 -fold into 50 mM sodium phosphate buffer (pH 6.8) to give a final concentration of $17-24 \mu \mathrm{M}$ DDAO. Further dilutions into buffer were made (10, 20, 50 and 100 -fold) and, after equilibration at $37^{\circ} \mathrm{C}$ for 5 min , their absorbance at 600 nm were measured. These values were plotted as a function of DDAO concentration to give a good linear correlation ($\mathrm{R}^{2}>0.97$ in all cases). The final extinction coefficient value was determined using Beer's law and is an average of seven independent replicates.

Active site titrations of Abg

Solutions of Abg in sodium phosphate buffer at pH 6.8 were equilibrated at $37^{\circ} \mathrm{C}$ for 5 min . A baseline absorbance (600 nm) or fluorescence $\left(\lambda_{\mathrm{ex}}=600 \mathrm{~nm}, \lambda_{\mathrm{em}}=656 \mathrm{~nm}\right.$) was measured. Absorbance at 700 nm was also measured as an internal control. Active site titrant DDAO-2FGlc 1 was added to a final concentration of $70 \mu \mathrm{M}$. The change in absorbance or fluorescence response was monitored. The final change in absorbance was calculated as follows:

$$
\left(A_{600}-A_{700}\right)_{\text {final }}-\left(A_{600}-A_{700}\right)_{\text {initial }}
$$

The change in DDAO concentration was then calculated by Beer's Law ($A=\varepsilon b c$) where $\varepsilon=32100 \mathrm{M}^{-}$ ${ }^{1} \mathrm{~cm}^{-1}, b=1 \mathrm{~cm}$.

DDAO release by fluorescence was quantified using an appropriate calibration curve for DDAO in this buffer system.

Figure S1: Absorbance spectra of protonated (pH 2) and deprotonated (pH 12) DDAO and a fluorescence emission spectrum ($\lambda_{\text {ex }}=600 \mathrm{~nm}$).

References

[1] C. Mayer, D. L. Zechel, S. P. Reid, R. A. J. Warren and S. G. Withers, FEBS Lett. 2000, 466, 40.
[2] E. D. Goddard-Borger, B. Fiege, E. M. Kwan and S. G. Withers, ChemBioChem, 2011, 12, 1703.
[3] A. M. MacLeod, T. Lindhorst, S. G. Withers and R. A. J. Warren, Biochemistry, 1994, 33, 6371.
[4] M. D. Burkart, Z. Zhang, S.-C. Hung and C.-H. Wong, J. Am. Chem. Soc. 1997, 119, 11743.
[5] C. Bucher and R. Gilmour, Angew. Chem. Int. Ed. 2010, 49, 8724.
[6] E. Durantie, C. Bucher and R. Gilmour, Chem. Eur. J. 2012, $18,8208$.
[7] L. Ziser, I. Setyawati and S. G. Withers, Carbohydr. Res. 1995, 274, 137.
[8] T. Kanda, C. F. Brewer, G. Okada and E. J. Hehre, Biochemistry, 1986, 25, 1159.
[9] J. D. McCarter, M. J. Adam, C. Braun, M. Namchuk, D. Tull and S. G. Withers, Carbohydr. Res., 1993, $249,77$.
[10] J. B. Kempton and S. G. Withers, Biochemistry, 1992, 31, 9961.

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/
DDAO-2FGlc

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/
DDAO-2FGlc

Acquisition Time (sec)	0.6521	Comment	13 C	Date File Name	14 Dec 2010 09:27:28		
Date Stamp	14 Dec 2010 09:27:28				C:IUsers	alDesktopl101213	15C_000
Frequency (MHz)	100.63	Nucleus	13C	Number of Transients	8192	Origin	spect
Original Points Count	16384	Owner	psm	Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	912.30	SW(cyclical) (Hz)	25125.63	Solvent	CHLOR	M-d	
Spectrum Offset (Hz)	10218.5752	Sweep Width (Hz)	25124.86	Temperature (degree C)	24.160		

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/
DDAO-2FGal
JOB NO: 1 H spectrum ref. to CDCl 3 at 7.27 ppm

Acquisition Time (sec)	2.1998	Comment	JOB NO: 1 H spectrum ref. to CDCl 3 at 7.27 ppm			Date	24 Aug 2011 00:12:48
Date Stamp	24 Aug 2011 00:12:48			File Name	C:IUsersiTanyal	DocumentsINMRI1108232	FGal_002001r
Frequency (MHz)	400.13	Nucleus	1H	Number of Transients	15	Origin	av400
Original Points Count	10977	Owner	root	Points Count	32768	Pulse Sequence	zg30
Receiver Gain	812.70	SW(cyclical) (Hz)	4990.02	Solvent	METHANOL-d4	Spectrum Offset (Hz)	2395.7190
Sweep Width (Hz)	4989.87	Temperature (degree C)	25.060				

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/
DDAO-2FGal
13C

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/
DDAO-2FXyl

Acquisition Time (sec)	2.1998	Comment	JOB NO: 1 H spectrum ref. to CDCl 3 at 7.27 ppm			Date	29 Jun
Date Stamp	29 Jun 2011 04:30:56			File Name	C:IUSE	AIDOCUMENTSIN	0282FX
Frequency (MHz)	400.13	Nucleus	1H	Number of Transients	256	Origin	av400
Original Points Count	10977	Owner	root	Points Count	32768	Pulse Sequence	zg30
Receiver Gain	812.70	SW(cyclical) (Hz)	4990.02	Solvent	CHLOR		
Spectrum Offset (Hz)	2395.7190	Sweep Width (Hz)	4989.87	Temperature (degree C)	25.160		

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/
DDAO-2FXyI

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/ DDAO-2FCel

JOB NO: 1 H spectrum ref. to CDCl 3 at 7.27 ppm

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/
DDAO-2FCel

