Supporting Information for

Engineering Chiral Fe(salen)-Based Metal Organic Frameworks for Asymmetric Sulfide Oxidation

Zhiwei Yang,^{a,b} Chengfeng Zhu,^a Zijian Li,^a Yan Liu,^{*a} Guohua Liu^b and Yong Cui^{*a,c}

^aSchool of Chemistry and Chemical Technology and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China; ^bThe Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University; ^c Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China

Email: liuy@sjtu.edu.cn, yongcui@sjtu.edu.cn

Table of Content

- 1. Materials and general procedures
- 2. Synthetic procedures of 1 and 2
- 3. Experimental procedure for asymmetric sulfide oxidation
- 4. Table S1. Crystal data and structure refinement for 1 and 2
- 5. Tables S2-S3. Selected bond lengths [Å] and angles [°] for 1 and 2
- 6. Figures S1-S6. Additional X-ray crystallographic structure of 1 and 2
- 7. Figure S7. TGA curves of 1 and 2
- 8. Figure S8. PXRD patterns of 1 and 2
- 9. Figure S9. CD spectra of (R)/(S)-1 and (R)/(S)-2
- 10. Figure S10. ESI-MS
- 11. Figure S11. The BET plot and N_2 adsorption isotherm of 1 and 2
- 12. Figure S12. XPS of MOF 2
- 13. Table S4. Catalyzed asymmetric oxidation of isopropyl phenyl sulfide using various oxidants
- 14. Table S5-S6. Kinetic study of 2 and (FeL₂)⁺ in asymmetric catalysis
- 15. Table S7. Kinetic resolution of racemic sulfoxide
- 16. HPLC and ¹H NMR data for size-exclusion catalysis experiments
- 17. Table S8. Recycling study of 2 in catalysis

1. Materials and general procedures

All of the chemicals are commercial available, and used without further purification. Elemental analyses of C, H and N were performed with an EA1110 CHNS-0 CE elemental analyzer. The IR (KBr pellet) spectra were recorded (400-4000 cm⁻¹ region) on a Nicolet Magna 750 FT-IR spectrometer. The solid state CD spectra were recorded on a J-800 spectropolarimeter (Jasco, Japan). Thermogravimetric analyses (TGA) were carried out in a nitrogen atmosphere with a heating rate of 10 °C/min on a STA449C integration thermal analyzer. Powder X-ray diffraction (PXRD) data were collected on a DMAX2500 diffractometer using Cu K α radiation. The calculated PXRD patterns were produced using the SHELXTL-XPOW program and single crystal reflection data. ¹H and ¹³C NMR experiments were carried out on a MERCURYplus 400 spectrometer operating at resonance frequencies of 400 MHz. Electrospray ionization mass spectra (ESI-MS) were recorded on a Finnigan LCQ mass spectrometer using dichloromethane-methanol as mobile phase. An iCAP6300 inductively coupled plasma optical emission spectrometer (ICP-OES) was used to measure Fe, Zn and Cd concentrations. Analytical high performance liquid chromatography (HPLC) was performed on a YL-9100 HPLC with UV detection at 254 nm. Analytical CHIRALCEL OD-H and OD-H columns (4.6 mm \times 25 cm) from Daicel were used. The X-ray photoelectron spectroscopy (XPS) measurement was carried out with an AXIS Ultra DLD electron spectrometer.

X-ray Crystallography. Single-crystal XRD data for the compounds **1** and **2** were collected on a Bruker Apex II CCD-based X-ray diffractometer with Mo- or /Cu-K α radiation ($\lambda = 0.71073$ or 1.54178 Å) at 123K The empirical absorption correction was applied by using the SADABS program (G. M. Sheldrick, SADABS, program for empirical absorption correction of area detector data; University of Göttingen, Göttingen, Germany, 1996). The structure was solved using direct method, and refined by full-matrix least-squares on F² (G. M. Sheldrick, SHELXTL97, program for crystal structure refinement, University of Göttingen, Germany, 1997). Due to the relatively weak diffraction, only parts of the guest molecules could be found in difference Fourier maps and all the phenyl rings are constrained to ideal sixmembered rings. Contributions to scattering due to these highly disordered solvent molecules were removed using the data generate. Crystal data and details of the data collection are given in **Tables S1**, while the selected bond distances and angles are presented in **Tables S2-S3**.

2. Synthesis of the ligands and MOFs

The chiral ligands H_2L_1 and H_2L_2 were synthesized according to the published procedures (*J. Am. Chem. Soc.* **2008**, *130*, 4582; *CrystEngComm.* **2010**, *12*, 2424). **2.1 Synthesis of** FeL₁(OAc)

A solution of Fe(OAc)₂·4H₂O(246mg, 1mmol) in anhydrous MeOH (5mL) was added dropwise to H₂L₁ (588 mg, 1 mmol) in anhydrous MeOH (50 mL) at 60 °C. The reaction mixture immediately turned red and stirred at 60 °C for 6 h, after which the solvent was evaporated under vacuum. The red powder was collected, washed with Et₂O, and then dried under reduced pressure to obtain pure FeL₁(OAc) (87.7%). ESI-MS m/z: 642.25 (Calcd m/z 642.27). Elemental analysis for FeL₁(OAc): Anal (%). Calcd for C₄₀H₄₅FeN₄O₄: C, 68.47; H, 6.46; N, 7.98. Found: C, 67.73; H, 6.39; N, 7.90. IR (KBr pellet, ν /cm⁻¹): 3431 (s), 2941 (s), 2864 (m), 1618 (s), 1592 (s), 1553 (m), 1510 (m), 1438 (s), 1386 (m), 1350 (m), 1298 (w), 1277 (m), 1240 (m), 1171 (m), 1111 (s), 1026 (w), 896 (w), 820 (s), 776 (w), 621 (w), 585 (w), 567 (w), 551 (w), 496 (w), 484 (w).

2.2 Synthesis of FeL₂(OAc)

A solution of Fe(OAc)₂·4H₂O(246mg, 1mmol) in anhydrous MeOH (5mL) was added dropwise to H₂L₂ (588 mg, 1 mmol) in anhydrous MeOH (50 mL) at 60 °C. The reaction mixture immediately turned red and stirred at 60 °C for 6 h, after which the solvent was evaporated under vacuum. The red powder was collected, washed with Et₂O, and then dried under reduced pressure to obtain pure FeL₂(OAc) (83.2%). ESI-MS m/z: 642.19 (Calcd m/z 642.27). Elemental analysis for FeL₂(OAc): Anal (%). Calcd for C₄₀H₄₅FeN₄O₄: C, 68.47; H, 6.46; N, 7.98. Found: C, 68.01; H, 6.41; N, 7.87. IR (KBr pellet, ν/cm^{-1}): 3416 (s), 2943 (s), 2864 (m), 1615 (s), 1543 (s), 1435 (m), 1397 (m), 1387 (m), 1349 (w), 1316 (m), 1273 (s), 1170 (m), 1118 (s), 1028 (m), 895 (w), 817 (m), 784 (w), 711 (w), 656 (w), 619 (w), 588 (w), 569 (w), 497 (w).

2.3 Synthesis of 1.

A mixture of $Zn(OAc)_2 \cdot 2H_2O$ (1.76 mg, 0.008 mmol), FeL₁(OAc) (5.46 mg, 0.008mmol), biphenyl-4,4'-dicarboxylic acid (H₂BPDC, 1.936 mg, 0.008 mmol), DMA (1 mL) and MeOH (0.1 ml) in a capped vial was heated at 100 °C for 10 hours . Red block-like crystals of **1** were filtered, washed with DMA (N,N-Dimethylacetamide) and MeOH, respectively, and dried at room temperature. Yield: 4.63mg (90.1%). Elemental Analysis for $1/[Zn_2 (FeL_1)_2O(BPDC)_{1.5}] \cdot 4DMA \cdot 6H_2O$: Anal (%). Calcd for $C_{113}H_{145}Fe_2N_{12}O_{22}Zn_2$: C, 59.90; H, 6.45; N, 7.42. Found: C, 60.33; H, 6.40; N, 7.38. FTIR (KBr, cm⁻¹): 3423 (s), 2936 (s), 2862 (m), 1597 (s), 1551 (s), 1511 (m), 1435 (s), 1384 (s), 1350 (s), 1322 (s), 1301 (m), 1278 (m), 1262

(m), 1225 (m), 1195 (w), 1170 (m), 1085 (w), 1071 (w), 1024 (w), 959 (w), 897 (w), 856(w), 833 (w), 819 (w), 789 (w), 771 (s), 701 (w), 682 (w), 649 (m), 628 (w), 585 (w), 567 (w), 549 (w), 519 (w), 478 (w).

2.4 Synthesis of 2.

A mixture of Cd(OAc)₂·3H₂O (1.8036 mg, 0.008 mmol), FeL₂(OAc) (5.46mg, 0.008 mmol), H₂BPDC (1.936 mg, 0.008 mmol), DMA (1 mL) and MeOH (1ml) in a capped vial was heated at 80 °C for 16 hours. Red block-like crystals of 2 were filtered, washed with DMA and MeOH, respectively, and dried at room temperature. Yield: 4.35 (84.6%). Elemental for mg Analysis $2/[Cd_2(FeL_2)_2]$ O(BPDC)₂]·6DMA·8H₂O: Anal (%). Calcd for C₁₂₈H₁₇₀Cd₂Fe₂N₁₄O₂₇: C, 57.51; H, 6.41; N, 7.34. Found: C, 57.40; H, 6.31; N, 7.28. FTIR (KBr, cm⁻¹): 3418 (s), 2939 (s), 2862 (m), 1615 (s), 1580 (s), 1533 (s), 1424 (m), 1386 (s), 1347 (s), 1319 (s), 1274 (s), 1258 (m), 1194 (w), 1167 (m), 1105 (w), 1027 (w), 1002 (w), 974 (w), 897 (w), 856 (m), 813 (m), 773 (m), 704 (m), 680 (w), 655 (m), 586 (w), 567 (w), 549 (w), 478 (w).

3. Experimental procedure for asymmetric sulfide oxidation

3.1 Typical catalytic process

The catalyst (R,R)-1 or (S,S)-1 (1.5 μ mol, 0.015 equiv) and sulfide (0.1 mmol) were combined in CH₂Cl₂ (1 mL) and stirred for 20 min at 25 °C, followed by adding an 2.0 eq oxidant (MesIO, 0.2 mmol, 52.4 mg) in one portion. Stirring was continued at -20°C for indicated time. The ee of resulted sulfoxides was determined by HPLC using Chiralcel OD-H and Chiralcel AD-H columns, and conversion was determined by ¹H NMR. The catalyst (R,R)-2 or (S,S)-2 (1.5 μ mol, 0.015 equiv) and catalyst (R,R)-FeL₁(OAc) or (R,R)-FeL₂(OAc) (3.0 μ mol, 0.03 equiv) took the same procedure to catalyze the reaction.

3.2 Kinetic data collection

The catalytic reaction was carried out according to the above procedure, and a proper portion of reaction mixture was taken out at proper time interval and dried under N_2 flow. The ee value was determined by HPLC using Chiralcel OD-H, and conversion was determined by ¹H NMR.

Identification code	1	2
Empirical formula	$C_{97}H_{97}Zn_2N_8O_{12}Fe_2$	$C_{104}H_{100}Cd_2N_8O_{13}Fe_2$
Formula weight	1809.27	2006.41
Temperature (K)	123(2) K	123(2) K
Wavelength (Å)	0.71073	1.54178
Crystal system	Monoclinic	Orthorhombic
Space group	C2	F222
Unit cell dimensions	<i>a</i> =14.400(3) Å	<i>a</i> = 19.2468(5) Å
	b = 37.700(8) Å	b = 54.9054(13) Å
	c = 27.200(5)Å	c = 64.1439(16) Å
	$\alpha = \gamma = 90^{\circ}$	$\alpha = \beta = \gamma = 90^{\circ}$
	$\beta = 100.00 (3)^{\circ}$	
Volume (Å ³), Z	14542(5), 4	67784(3), 16
Density (calculated) (mg/m ³)	0.826	0.880
Absorption coefficient (mm ⁻¹)	0.562	3.629
F(000)	3772	16512
θ range for data collection (°)	0.760 to 24.39	1.609 to 67.893
Limiting indices	$-16 \le h \le 16, -32 \le k \le 43,$	$-21 \le h \le 23, -61 \le k \le 63,$
	-30≤1≤30	-64≤ l≤ 74
Reflections collected	23666	83697
Independent reflections	14901 [R(int) = 0.050]	28626 [R(int) = 0.0401]
Completeness to theta	24.39/82.6 %	67.679/94.4%
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	14901/234/803	28626/10/1085
Goodness-of-fit on F ²	1.067	1.064
Final R indices [I>2sigma(I)]	$R_1 = 0.0721, wR_2 = 0.1819$	$R_1 = 0.0773, wR_2 = 0.2475$
R indices (all data)	$R_1 = 0.0953, wR_2 = 0.1945$	$R_1 = 0.0891, wR_2 = 0.2613$
Absolute structure parameter	0.22(2)	0.076(5)
Largest diff. peak and hole (e.Å-	0.528 and -0.289	1.514 and -1.150

4. Table S1. Crystal data and structure refinement for 1 and 2

Zn(1)-O(7)	1.901(8)
Zn(1)-O(10)	1.965(7)
Zn(1)-N(4)	2.017(4)
Zn(1)-N(3)#1	2.03(2)
Zn(1)-O(9)	2.413(7)
Zn(2)-O(12)	1.952(6)
Zn(2)-O(13)	2.037(10)
Zn(2)-N(8)	2.047(4)
Zn(2)-N(7)#2	2.057(11)
Fe(1)-O(3)	1.746(2)
Fe(1)-O(1)	1.944(7)
Fe(1)-O(2)	1.951(7)
Fe(1)-N(2)	2.104(7)
Fe(1)-N(1)	2.131(8)
Fe(2)-O(6)	1.7773(18)
Fe(2)-O(5)	1.874(8)
Fe(2)-O(4)	1.900(7)
Fe(2)-N(6)	2.034(9)
Fe(2)-N(5)	2.072(7)
O(7)-Zn(1)-O(10)	101.8(3)
O(7)-Zn(1)-N(4)	114.8(3)
O(10)-Zn(1)-N(4)	99.6(3)
O(7)-Zn(1)-N(3)#1	105.0(17)
O(10)-Zn(1)-N(3)#1	132(2)
N(4)-Zn(1)-N(3)#1	104.5(15)
O(7)-Zn(1)-O(9)	94.9(3)
O(10)-Zn(1)-O(9)	54.6(3)
N(4)-Zn(1)-O(9)	145.2(3)
N(3)#1-Zn(1)-O(9)	83.5(19)
O(7)-Zn(1)-C(91)	102.6(3)
O(10)-Zn(1)-C(91)	26.4(3)
N(4)-Zn(1)-C(91)	121.3(3)
N(3)#1-Zn(1)-C(91)	108(2)
O(9)-Zn(1)-C(91)	28.5(2)
O(12)-Zn(2)-O(13)	104.2(4)
O(12)-Zn(2)-N(8)	111.0(2)
O(13)-Zn(2)-N(8)	111.1(5)
O(12)-Zn(2)-N(7)#2	120(2)
O(13)-Zn(2)-N(7)#2	104(2)
N(8)-Zn(2)-N(7)#2	106(2)
O(3)-Fe(1)-O(1)	112.9(4)

5. Table S2. Selected bond lengths [Å] and angles [°] for 1

O(3)-Fe(1)-O(2)	103.5(3)
O(1)-Fe(1)-O(2)	92.2(3)
O(3)-Fe(1)-N(2)	106.6(3)
O(1)-Fe(1)-N(2)	90.0(3)
O(2)-Fe(1)-N(2)	146.3(4)
O(3)-Fe(1)-N(1)	95.2(4)
O(1)-Fe(1)-N(1)	151.1(3)
O(2)-Fe(1)-N(1)	87.2(3)
N(2)-Fe(1)-N(1)	75.3(3)
O(6)-Fe(2)-O(5)	110.9(2)
O(6)-Fe(2)-O(4)	101.5(4)
O(5)-Fe(2)-O(4)	93.6(3)
O(6)-Fe(2)-N(6)	99.6(4)
O(5)-Fe(2)-N(6)	86.3(4)
O(4)-Fe(2)-N(6)	157.4(3)
O(6)-Fe(2)-N(5)	111.6(3)
O(5)-Fe(2)-N(5)	136.6(3)
O(4)-Fe(2)-N(5)	86.2(3)
N(6)-Fe(2)-N(5)	78.6(3)
Fe(1)#3-O(3)-Fe(1)	165.2(7)
Fe(2)#4-O(6)-Fe(2)	175.3(7)

Symmetry transformations used to generate equivalent atoms: #1 -x+3/2,y+1/2,-z #2 -x-1/2,y+1/2,-z+1 #3 -x+1,y,-z #4 -x-1,y,-z+1 #5 -x+3/2,y-1/2,-z #6 -x-1/2,y-1/2,-z+1 #7 -x+2,y,-z+1

Table S3. Selected bond lengths [Å] and angle [°] for 2

_

2.297(8)
2.304(7)
2.320(8)
2.323(7)
2.357(10)
2.391(6)
2.603(7)
2.303(14)
2.304(11)
2.308(10)
2.317(8)
2.319(8)
2.409(9)
2.612(8)
1.775(3)
1.902(10)

Fe(1)-O(1)	1.941(10)
Fe(1)-N(2)	2.078(11)
Fe(1)-N(3)	2.115(10)
Fe(2)-O(6)	1.770(4)
Fe(2)-O(4)	1.912(10)
Fe(2)-O(5)	1.941(10)
Fe(2)-N(6)	2.108(10)
Fe(2)-N(7)	2.120(10)
N(1)-Cd(2)#7	2.303(11)
N(8)-Cd(2)#4	2.303(14)
O(3)-Fe(1)#8	1.775(3)
O(6)-Fe(2)#4	1.770(4)
O(7)-Cd(1)#3	2.603(7)
O(8)-Cd(1)#3	2.304(7)
O(10)-Cd(2)#6	2.319(8)
N(5)-Cd(1)-O(8)#3	94.4(3)
N(5)-Cd(1)-N(4)	174.5(3)
O(8)#3-Cd(1)-N(4)	88.6(3)
N(5)-Cd(1)-O(7)	87.2(3)
O(8)#3-Cd(1)-O(7)	127.6(3)
N(4)-Cd(1)-O(7)	87.4(3)
N(5)-Cd(1)-O(13)	93.1(4)
O(8)#3-Cd(1)-O(13)	81.1(3)
N(4)-Cd(1)-O(13)	91.9(4)
O(7)-Cd(1)-O(13)	151.2(3)
N(5)-Cd(1)-O(14)	91.3(3)
O(8)#3-Cd(1)-O(14)	136.5(3)
N(4)-Cd(1)-O(14)	89.6(3)
O(7)-Cd(1)-O(14)	95.7(2)
O(13)-Cd(1)-O(14)	55.5(3)
N(5)-Cd(1)-O(7)#3	83.4(3)
O(8)#3-Cd(1)-O(7)#3	52.3(2)
N(4)-Cd(1)-O(7)#3	94.9(3)
O(7)-Cd(1)-O(7)#3	76.0(2)
O(13)-Cd(1)-O(7)#3	132.6(3)
O(14)-Cd(1)-O(7)#3	170.4(2)
N(8)#4-Cd(2)-N(1)#5	172.5(5)
N(8)#4-Cd(2)-O(11)	92.2(6)
N(1)#5-Cd(2)-O(11)	94.7(5)
N(8)#4-Cd(2)-O(9)	89.9(4)
N(1)#5-Cd(2)-O(9)	94.3(3)
O(11)-Cd(2)-O(9)	79.2(3)
N(8)#4-Cd(2)-O(10)#6	85.3(4)

N(1)#5-Cd(2)-O(10)#6	87.2(3)
O(11)-Cd(2)-O(10)#6	152.1(3)
O(9)-Cd(2)-O(10)#6	128.5(3)
N(8)#4-Cd(2)-O(12)	91.3(5)
N(1)#5-Cd(2)-O(12)	90.1(4)
O(11)-Cd(2)-O(12)	56.0(3)
O(9)-Cd(2)-O(12)	135.2(3)
O(10)#6-Cd(2)-O(12)	96.2(3)
N(8)#4-Cd(2)-O(10)	92.8(4)
N(1)#5-Cd(2)-O(10)	84.8(3)
O(11)-Cd(2)-O(10)	131.8(3)
O(9)-Cd(2)-O(10)	52.9(3)
O(10)#6-Cd(2)-O(10)	76.1(3)
O(12)-Cd(2)-O(10)	170.9(3)
O(3)-Fe(1)-O(2)	114.6(6)
O(3)-Fe(1)-O(1)	107.9(5)
O(2)-Fe(1)-O(1)	91.2(4)
O(3)-Fe(1)-N(2)	105.1(6)
O(2)-Fe(1)-N(2)	139.0(6)
O(1)-Fe(1)-N(2)	86.1(4)
O(3)-Fe(1)-N(3)	101.2(4)
O(2)-Fe(1)-N(3)	85.7(4)
O(1)-Fe(1)-N(3)	149.2(6)
N(2)-Fe(1)-N(3)	76.7(4)
O(6)-Fe(2)-O(4)	111.1(5)
O(6)-Fe(2)-O(5)	107.1(6)
O(4)-Fe(2)- $O(5)$	90.9(4)
O(6)-Fe(2)-N(6)	100.6(6)
O(4)-Fe(2)-N(6)	86.5(4)
O(5)-Fe(2)-N(6)	151.2(6)
O(6)-Fe(2)-N(7)	112.9(4)
O(4)-Fe(2)-N(7)	135.1(6)
O(5)-Fe(2)-N(7)	84.3(4)
N(6)-Fe(2)-N(7)	77.6(4)
Fe(1)-O(3)-Fe(1)#8	174.2(9)
Fe(2)#4-O(6)-Fe(2)	157.3(8)
Cd(2)#6-O(10)-Cd(2)	103.7(3)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,z #2 -x+1/2,-y+1/2,z #3 -x+2,-y,z #4 -x+3/2,y,-z+3/2 #5 -x+3/2,y+1/2,-z+2 #6 -x+3/2,-y+1/2,z #7 -x+3/2,y-1/2,-z+2 #8 -x+2,y,-z+2

6. Figures S1-S6. Additional X-ray crystallographic structures

6.1 Figure S1. Coordination environments of Zn ions and $[{\rm Fe}_2(L_1)_2(\mu_2\text{-}{\rm O})]$ units.

6.2 Figure S2. The structure of the $Fe_2(L_1)_2(\mu_2\text{-}O)$ unit in 1.

6.3 Figure S3. The structures of the $\mathrm{Fe}_2(L_2)_2(\mu_2\text{-}\mathrm{O})$ unit and Cd_2 dimer in 2.

6.4 Figure

S4. The 2D

structure formed by Cd-BPDC in 2.

6.5 Figure S5. The Cage formed by Cd₂, BPDC and $Fe_2(L_2)_2(\mu_2-O)$ in 2.

6.6 Figure S6. A view of the 3D structure of 2.

7. Figure S7. TGA curves of 1 and 2

8. Figure S8. PXRD patterns of 1 and 2

9. Figure S9. CD spectra of (*R*)/(*S*)-1 and (*R*)/(*S*)-2

10. Figure S10. ESI-MS of $FeL_1(OAc)$ (a) and $FeL_2(OAc)$ (b) (a)

11. Figure S11. The BET plot and N_2 adsorption isotherm of 1 (a) and 2 (b) (The apparent adsorption-desorption hysteresis in 1 was observed, probably as a consequence of the framework flexibility)

(a)

12. Figure S12. XPS of MOF 2

13. Table S4. Catalyzed asymmetric oxidation of isopropyl phenyl sulfide using various oxidants^a

Ĺ	∑ ^s ∖	Catal 1.0 equiv CH ₂ Cl ₂	. Oxidant , 253 K		+	,_0 ∕
Entry	Catalyst	Oxidant	Time (h)	Conv (%) ^b	Selec (%) ^c	ee (%) ^d
1	1	MesIO	11	89	100	53
2	2	MesIO	8	93.5	100	60
3	1	PhIO	10	87.3	85	46
4	2	PhIO	7	91.2	87	54
5	1	H ₂ O ₂	15	63.4	100	1
6	2	H ₂ O ₂	13	64.8	100	1

^aFor reaction details see Experimental section **3**, except the oxidant amount decreased to 1.0 equivalent. ^bdetermined by ¹H NMR. Conversion is calculated as ([sulfone]+[sulfoxide])/([sulfide]+[sulfoxide]+[sulfone])×100%. ^cSelectivity is calculated as ([sulfoxide]/([sulfoxide]+[sulfone])×100. ^ddetermined by HPLC.

14. Kinetic study of 2 and FeL₂(OAc) in asymmetric catalysis

C S.	$\begin{array}{c} & Cat. \\ \hline 2.0 \text{ equiv. } \\ CH_2Cl_2, \end{array}$	2 mesIO 253 K		
Entry	Time(h)	Conv.(%) ^a	Selec.(%) ^b	ee (%) ^c
1	2	58	100	52
2	4	64	100	55
3	6	77	100	57
4	8	94	100	60
5	11	100	85	67
6	14	100	65	74
7	18	100	45	86
8	22	100	32	91
9	26	100	29	93
10	30	100	27	96
11	32	100	26	95

14.1 Table S5. Kinetic study of 2

^{ab}Calculated from ¹HNMR. ^cee was determined by HPLC with Chiralcel OD-H column.

HPLC and ¹H NMR data:

Serial Number	Retention	Time	Area [mAbs*s]	Тур	Area %
	[min]			e	
1	18.9500		4323.7721	BB	22.1151
2	23.1000		15227.4828	BB	77.8849
The Total			19551.2548		

Reacting for 4h

>3.41
 >3.39
 >3.36
 >3.34
 >3.35
 >3.34

The Total

72.88 72.86 72.85 72.83 72.83 72.78

11299.1739

	[min]		e	
1	18.3500	613.0922	BB	19.9784
2	23.3667	2455.6851	BB	80.0216
The Total		3068.7772		
-3.39		-2.88 -2.86	-2.83 -2.81 -2.81	

Reacting for 8h

Serial Number	Retention	Time	Area [mAbs*s]	Тур	Area %
	[min]			e	
1	19.3167		1914.9674	BB	16.2596
2	23.7333		9862.5014	BB	83.7404
The Total			11777.4687		

~3.24 ~3.23 ~3.23 ~3.21 ~3.19 ~3.16 ~3.16 ~3.16 ~3.16

The Total

3141.5809

/2.88 /2.86 /2.85 /2.81 /2.83 /2.81 /2.81

Reacting for 14h

Serial Number	Retention Time	Area [mAbs*s]	Тур	Area %
	[min]		e	
1	18.9667	668.5103	BB	6.7582
2	23.4000	9223.3762	BB	93.2418
The Total		9891.8865		
	>3.24 >3.24 >3.23 >3.23 >3.21 >3.19 >3.16	-2.88 -2.86 -2.85	-2.83 -2.81 -2.80 -2.78	

Reacting for 18h

5186.4818

5434.2612

BB

95.4404

23.4000

The Total

1	19.1000	35.9035	FF	2.1173
2	23.4167	1659.8542	BB	97.8827
The Total		1695.7578		

>325 >325 >321 -319 -316 >316 >316 >314 Reacting for 30h

Time[min]

Serial Number	Retention	Time	Area [mAbs*s]	Тур	Area %
	[min]			e	
1	19.5833		29.8477	FF	2.6407
2	23.8333		1100.4374	BB	97.3593
The Total			1130.2850		

>325 >323 >321 -321 -318 >316 >316 >316

```
/2.88
/2.87
/2.85
/2.85
/2.83
/2.80
/2.78
```


14.2 Table S6. Kinetic study of FeL₂(OAc)

S S	$\begin{array}{c} Cat. \ FeL_{2}\\\hline 2.0 \ equiv.\\ CH_{2}Cl_{2}, \end{array}$	2(OAc) mesIO 253 K		
Entry	Time(h)	Conv.(%) ^a	Selec.(%) ^b	ee (%) ^c
1	1	53.5	100	55
2	2	78	100	60
3	3	100	94.6	64
4	4	100	81.4	71
5	5	100	70.8	77
6	6	100	59.2	84
7	7	100	49	89
8	8	100	41.5	93
9	9	100	33	95
10	10	100	27	96

^{ab} Calculated from ¹H NMR. ^cee was determined by HPLC with Chiralcel OD-H column

Serial Number	Retention	Time	Area [mAbs*s]	Тур	Area %
	[min]			e	
1	18.4000		1360.5001	BB	22.4163
2	22.9000		4708.7521	BB	77.5837
The Total			6069.2521		

\3.42 \3.41 \3.41 \3.39 \3.34 \3.34 \3.35 \3.34 \3.35

Serial Number	Retention	Time	Area [mAbs*s]	Тур	Area %
	[min]			e	
1	17.6167		7034.7682	FF	19.9188
2	21.5167		28282.5318	BB	80.0812
The Total			35317.3000		

ン3.41 -3.39 -3.37 -3.36 ン3.34

Serial Number	Retention T	ìme	Area [mAbs*s]	Тур	Area %
	[min]			e	
1	18.1000		2806.7356	BB	14.4434
2	22.1000		16625.9105	BB	85.5566
The Total			19432.6461		

Serial Number	Retention Tim	e Area [mAbs*s]	Тур	Area %
	[min]		e	
1	17.7000	1137.0347	FF	11.3834
2	21.7333	8851.5141	FF	88.6166

The Total		9988.5487		
	23.23 2.11 2.12 2.18 2.18 2.16	22.85 2.85 2.85 2.81 2.81	-2.79 -2.78	

Serial Number	Retention Time	Area [mAbs*s]	Тур	Area %
	[min]		e	
1	17.8500	746.4852	FF	7.9621
2	21.8333	8629.0286	BB	92.0379
The Total		9375.5138		

3.243.233.213.233.243.163.163.163.163.16 2, 2, 2, 85 2, 2, 81 2, 79 2, 78

Reacting for 6h

NVVV 8 -97 3.4 3.2 2.7 3.3 2.9 3.1 3.0 2.8 ррт

Serial Number	Retention	Time	Area [mAbs*s]	Тур	Area %
	[min]			e	
1	17.7167		719.9301	BB	5.5368
2	21.7833		12282.7359	BB	94.4632
The Total			13002.6660		

>3.24 -3.21 -3.19 -3.16 -3.16 -3.16 -3.16 -3.16

-2.88 -2.88 -2.83 -2.83 -2.83 -2.83 -2.83 -2.79

2	22.9500	6177.2560	BB	96.4821
The Total		6402.4904		
	-3.25 -3.23 -3.21 -3.21 -3.21 -3.16 -3.16 -3.14		-2.80	

Serial Number	Retention Time	Area [mAbs*s]	Тур	Area %
	[min]		e	
1	17.8500	208.9886	FF	2.5851
2	21.9500	7875.2191	BB	97.4149
The Total		8084.2077		
		-2.87 -2.86 -2.85	~2.81 ~2.79 ~2.78	

Reacting for 9h

>3.25 >3.21 -3.21 -3.18 -3.16 >3.16

The Total

2.2.88 2.2.85 2.78 2.78

8052.9152

15. Table S7. Kinetic resolution of racemic sulfoxide

Cat 1.0 equiv. Oxidant CH ₂ Cl ₂ , 253 K				•0 	
Entry	Catalyst	Oxidant	Solvent	Time(h)	ee(%) ^b
1	2	MesIO	CH_2Cl_2	23	60
2	2	MesIO	CH ₃ CN	30	31
3	2	MesIO	Toluene	30	8
4	2	PhIO	CH_2Cl_2	26	39
5	FeL ₂ (OAc)	MesIO	CH_2Cl_2	8	60

aCalculated from 1H NMR. bee was determined by HPLC with Chiralcel OD-H column

16. HPLC and ¹H NMR data for size-exclusion catalysis experiments

$\begin{array}{c} & \text{Catalyst} \\ \hline \\ \hline \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \hline \\$							
Entry	Catalyst	R	Conv.	Selec. (%) ^b	ee (%) ^c		
1	2	benzyl	60	98	36		
2	FeL ₂ (OAc)	benzyl	100	47	54		
3	2	naphthalene-2-ylmethyl	28	95	9		
4	FeL ₂ (OAc)	naphthalene-2-ylmethyl	95	81	21		
5	2	R ₀	n.d				
6	FeL ₂ (OAc)	R ₀	77	94	11		

^{ab}Calculated from ¹HNMR. ^cee was determined by HPLC with Chiralcel OD-H column.

1	11.4000	2546.1412	BB	22.5668
2	12.9667	8736.5341	BB	77.4332
The Total		11282.6753		
	-4.38	-4.18 -4.15	-4.07	

Catalyzed by FeL₂(OAc)

Serial Number	Retention	Гime	Area [mAbs*s]	Тур	Area %
	[min]			e	
1	11.8333		8465.3229	BB	31.7509
2	13.4333		18196.3171	BB	68.2491
The Total			26661.6400		

-4.38 -4.22 -4.18 -4.15 -4.16

Catalyzed by 2

Serial Number	Retention 7	Гime	Area [mAbs*s]	Тур	Area %
	[min]			e	
1	21.6500		1687.8589	BB	39.3128
2	24.6500		2605.5457	BB	60.6872
The Total			4293.4047		

-4.55 -4.38 -4.34 -4.31 -4.26

Catalyzed by FeL₂(OAc)

Serial Number	Retention 7	Гime	Area [1	mAbs*s]	Тур	Area %
	[min]				e	
1	21.4167		4602.6	508	BB	45.3768
2	24.3167		5540.5	198	BB	54.6232
The Total			10143.	1706		
4.55			-4.38	-4.34 -4.31	-4.26	-4.23

Catalyzed by 2

	[min]			e	
1	13.6500		10725.6951	FF	55.6065
2	19.2000		8562.8577	FF	44.3935
The Total			19288.5528		
	-4.35	>4.19 -4.17 -4.16	-4.00 -3.96		

Catalyzed by FeL₂(OAc)

17. Table S8. Recycling study of 2 in catalysis

С		
Conv (%)	Selec (%)	ee (%)

1st run	100	64.9	74
2nd run	100	65.4	73.7
3rd run	100	65.2	73.9

HPLC and ¹H NMR data

Serial Number	Retention	Time	Area [mAbs*s]	Тур	Area %
	[min]			e	
1	19.1167		1851.4549	FF	13.0226
2	23.1167		12365.8202	FF	86.9774
The Total			14217.2751		

1st run

Serial Number	Retention Time	Area [mAbs*s]	Тур	Area %
	[min]		e	
1	19.0833	1412.9475	BB	13.1261
2	23.1500	9351.4621	FF	86.8739
The Total		10764.4096		
	~3.24 ~3.23 ~3.21 ~3.29 ~3.18 ~3.16 ~3.16	~2.88 ~2.86	-2.85 -2.83 -2.81 -2.81 -2.80 -2.78	,

2nd run

Serial Number	Retention	Time	Area [mAbs*s]	Тур	Area %
	[min]			e	
1	18.2000		577.4867	BB	13.0627
2	22.2000		3843.4007	FF	86.9373

