Supporting Information

Highly Effective Copper-Mediated gem-Difluoromethylenation of

Arylboronic Acids

Guobin Ma, Wen Wan,* Qingyang Hu, Haizhen Jiang, Jing Wang, Shizheng Zhu, Jian Hao*

Content:

1.	General Information	.3
2.	Optimization of the Reaction Condition	.4
3.	Preliminary Mechanistic Study	.4
4.	General Procedure for gem-Difluoromethylenation of Arylboronic Acids	.6
5.	Compounds Characterization	.6
6.	Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra	17

1. General Information

General Information : ¹H-, ¹³C- and ¹⁹F-NMR spectra were recorded in CDCl₃ on 500 spectrometers. Chemical shifts for ¹H NMR spectra are reported in ppm relative to residual CHCl₃ as internal reference (δ 7.26 ppm for ¹H) downfield from TMS, chemical shifts for ¹³C NMR spectra are reported in ppm relative to internal chloroform (δ 77.10 ppm for ¹³C), and chemical shifts for ¹⁹F NMR spectra are reported in ppm downfield from internal fluorotrichloromethane (CFCl₃). Coupling constants (*J*) are given in Hertz (Hz). The terms m, s, d, t, q refer to multiplet, singlet, doublet, triplet, quartlet respectively; br refers to a broad signal. High resolution mass spectra (HRMS) and Mass spectra (MS) were recorded using an Electron impact (EI) or Electrospray ionization (ESI) techniques. Elemental analyses were carried out on an elemental analyzer. Infrared spectra (IR) were recorded on FT-IR spectrometer, absorbance frequencies are given at maximum of intensity in cm⁻¹. Melting points were obtained on a X-4 digital melting point apparatus without correction. Reactions were monitored by ¹⁹F NMR or TLC carried out on commercial silica gel plates (GF254) using UV light as a visualizing agent. Flash column chromatograph was carried out using 300-400 mesh silica gel at medium pressure.

All reagents were used as received from commercial sources, unless specified otherwise, or prepared as described in the literature. NMP was distilled under reduced pressure from CaH_2 and stored with 4 Å molecular sieves.

2. Optimization of the Reaction Condition

1a	→B(OH) ₂ +		F ₂ Br <u>additive</u> NMP RT, 16h 3a	F
Entry ^a	[Cu]	Additive	1a:2:[Cu]: Additive	$\text{Yield}(\%)^a$
1	Cu	bipy	1:3:3:1	31
2	Cu	phen	1:3:3:1	47
3	Cu	Ph ₃ P	1:3:3:1	0
4	Cu	DPPP	1:3:3:1	0
5	Cu	DPPF	1:3:3:1	0
6	Cu	KOAc	1:3:3:1	0
7	Cu	Na ₂ CO ₃	1:3:3:1	0
8	Cu	CsCO ₃	1:3:3:1	0
9	Cu	t-BuOK	1:3:3:1	3

Table S1. gem-Difluoromethylenation of Phenylboronic Acids with Additives

^aYields determined by ¹⁹F NMR analysis with PhCF₃ as the internal standard

3. Preliminary mechanistic study

Table S2. Effects of Additives on gem-Difluoromethylenation of Phenylboronic acid

	1a 2 Properturbative for the second	Cu additive NMP, RT, 4h
Entry	Additive	Yield $(\%)^a$
1	ambient light	86
2	dark	81
3	50mol% 1,4-dinitrobenzene	78
4	50mol% hydroquinone	81
5 100mol% TEMPO		trace

^a Yields determined by ¹⁹F NMR spectroscopy with PhCF₃ as internal standard.

Control reactions to probe for the possible mechanism.

A 10 mL Schlenk tube was charged with copper (96 mg, 1.5 mmol), 2 (1.5 mmol, 3 equiv) and solvent (NMP, 3 mL). After stirred at room temperature for 12 h, the resulting mixture was analyzed by 19F NMR and GC-MS, respectively (Scheme 1). The new signals were not detected

by ¹⁹FNMR, and the reactant **2** was recovery almost completely.

Scheme 1

A 10 mL Schlenk tube was charged with copper (96 mg, 1.5 mmol), Phenylboronic acid (0.5 mmol, 1 equiv) and solvent (NMP, 3 mL). The mixture was stirred under air at room temperature for 12 h. The solution was poured into water and filtered through a pad of Celite, washed with ether. The combined filtrates were washed with brine (10 mL×3), and the organic phase was dried over Na_2SO_4 . After filtration and evaporation of the solvent, the crude mixture was purified by flash silica gel column chromatography to afford the 1,1'-biphenyl product as a white soild in 76% yield (Scheme 2).

PhB(OH)₂ + Cu
$$\xrightarrow{\text{air}}$$
 Ph-Ph
NMT, RT, 12h 76%

Scheme 2

Phenyl lithium (1.5 M in ether, 0.5mL, 0.75mmol, 1.0 equiv) were added dropwise to the mixture of cuprous bromide (113mg, 0.8mmol, 1.05 equiv) in Et₂O at -10°C. After standing under -10°C to -5°C for 30 min, the upper phase was removed carefully using a syringe. The remaining ether was removed by evaporation under vacuum to give a solid of phenylcopper mixed with cuprous bromide (CuBr) and lithium bromide (LiBr). The mixture was used directly without further purification. To the solid obtained from previous step was added a solution of 2-(bromodifluoromethyl)benzoxazole **2** (555mg, 2.25 mmol) in NMP at -10°C. The mixture was allowed to warm to room temperature and stirred under N₂ for 5 h. (Trifluoromethyl) benzene (329 mg, 2.25 mmol) was added as an internal standard. The desired product **3** was observed in 23% yield based on **2** added as determined by ¹⁹F NMR spectrum. ¹⁹F NMR spectroscopic analysis of the crude reaction mixture did not show the presence of transmetallation active species (ArCF₂Cu) (Scheme 3).

Scheme 3

4. Typical procedure for the gem-Difluoromethylenation of arylboronic acids

A 10 mL Schlenk tube was charged with copper (96 mg, 1.5 mmol, 1.5 equiv) and aryl boronic acid (0.5 mmol, 1.0 equiv), 2 (1.5 mmol, 3 equiv) and solvent (NMP, 3 mL). The mixture was stirred at room temperature. After the completion of the reaction, the solution was poured into cold water and filtered through a pad of Celite, washed with ether. The combined filtrates were washed with brine (10 mL×3), and the organic phase was dried over Na₂SO₄. After filtration and evaporation of the solvent, the crude mixture was purified by flash silica gel column chromatography to afford the desired products **3a-3z**.

5. Compounds Characterization

2-(difluoro(phenyl)methyl)benzo[d]oxazole (3a):

White solid (petroleum ether/EtOAc = 40/1, 104.4 mg, 85% yield), mp: $35-37^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃): δ 7.82 (d, *J* = 7.5 Hz, 1H), 7.74 (d, *J* = 7.0 Hz, 2H), 7.58 (d, *J* = 7.5 Hz, 1H), 7.54-7.48 (m, 3H), 7.46 - 7.38 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 158.5 (t, *J* = 37.1Hz),

150.8, 140.1, 133.6 (t, J = 25.7 Hz), 131.2, 128.8, 126.8 125.7 (t, J = 5.5 Hz), 125.3, 121.4, 114.5 (t, J = 243.7 Hz), 111.4; ¹⁹F NMR (470 MHz, CDCl₃): δ -95.28 (s); IR (KBr, cm⁻¹): $v_{max} = 3067$, 1616, 1573, 1451, 1261, 914, 774, 748; LC-MS (ESI): m/z 246 [M+1]⁺; HRMS (ESI-TOF) calcd for [M+H]⁺C₁₄H₁₀F₂NO⁺: 246.0725, found: 246.0729.

2-(difluoro(phenanthren-9-yl)methyl)benzo[d]oxazole (3b):

White solid (petroleum ether/EtOAc = 40/1, 125.4 mg, 73% yield); mp: 120-122°C; ¹H NMR (500 MHz, CDCl₃): δ 8.71 (d, *J* = 8.1Hz, 1H), 8.64 (d, *J* = 8.3 Hz, 1H), 8.39 (s, 1H), 8.27 (d, *J* = 8.1 Hz, 1H), 8.00 (d, *J* = 7.8 Hz, 1H), 7.87-7.83 (m, 1H), 7.72 (t, *J* = 7.6 Hz, 1H), 7.66-7.61 (m, 2H), 7.60-7.53 (m, 2H), 7.41-7.36 (m, 2H); ¹³C NMR

(125 MHz, CDCl₃): δ 158.7 (t, J = 35.7 Hz), 150.7, 140.1, 131.7, 131.0, 129.9, 129.8, 128.7, 127.5, 127.4, 127.3, 127.22, 127.20, 127.0, 126.8, 125.3, 125.1, 123.3, 122.6, 121.4, 115.1 (t, J = 243 Hz), 111.4; ¹⁹F NMR (470 MHz, CDCl₃): -92.35 (s); IR (KBr, cm⁻¹): v_{max} = 3064, 3044, 1616, 1531, 1453, 1239, 1137, 1053, 896, 749; MS (EI): m/z 345 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺ C₂₂H₁₄F₂NO⁺: 346.1038, found: 346.1045.

2-(difluoro(naphthalen-2-yl)methyl)benzo[d]oxazole (3c):

White solid (petroleum ether/EtOAc = 40/1, 122.5 mg, 83% yield); mp: 64-66 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.30 (s, 1H,), 7.99-7.90 (m, 2H,), 7.90-7.80 (m, 3H), 7.64-7.51 (m, 3H), 7.45-7.35 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 158.5 (t, *J* = 36.8 Hz), 150.7, 140.1, 134.3,

132.4, 130.7 (t, J = 26.5 Hz), 128.9, 128.8, 127.8, 127.0, 126.8, 125.9 (t, J = 6.8 Hz), 125.2, 122.1 (t, J = 4.8 Hz), 121.3, 114.7 (t, J = 245.0 Hz), 111.3; ¹⁹F NMR (470 MHz, CDCl₃): δ -94.73 (s). IR (KBr, cm⁻¹): $v_{max} =$ 3061, 1616, 1573, 1450, 1277, 1104, 1077, 1009, 828, 748; MS (EI): m/z 295 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺ C₁₈H₁₂F₂NO⁺: 296.0881,

found: 296.0887.

2-([1,1'-biphenyl]-4-yldifluoromethyl)benzo[d]oxazole (3d):

White solid (petroleum ether/EtOAc = 20/1, 99.1 mg, 62% yield); mp: 70-72°C; ¹H NMR (500 MHz, CDCl₃): δ 7.87-7.83 (m, 3H), 7.73 (d, J = 7.0 Hz, 2H), 7.63 (d, J = 7.5 Hz, 3H), 7.49-7.39 (m, 5H); ¹³C NMR (125 MHz, CDCl₃): δ 158.5 (t, J = 36.8 Hz), 150.8, 144.1, 140.1, 139.9, 132.4 (t, J = 25.5 Hz), 129.0, 128.1, 127.5, 127.3, 126.8, 126.2 (t, J =

5.5 Hz), 125.4, 121.5, 114.6(t, J = 243.2 Hz), 111.4; ¹⁹F NMR (470 MHz, CDCl₃): δ -94.80 (s); IR (KBr, cm⁻¹): $v_{\text{max}} = 3075$, 1611, 1489, 1452, 1257, 1082, 978, 839, 753, 692; MS (EI): m/z 321 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺C₂₀H₁₄F₂NO⁺: 322.1038, found: 322.1041.

2-(difluoro(4-methoxyphenyl)methyl)benzo[d]oxazole (3e):

White solid (petroleum ether/EtOAc = 20/1, 104.8 mg, 76% yield); mp: 75-76°C; ¹H NMR (500 MHz, CDCl₃): δ 7.81 (d, *J* = 7.9 Hz, 1H), 7.66 (d, *J* = 8.9 Hz, 2H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.43-7.36 (m, 2H), 6.99 (d, *J* = 8.9 Hz, 2H), 3.82 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 161.7, 158.8 (t, *J* = 37.7 Hz), 150.8, 140.1, 127.3 (t, *J* =5.5 Hz),

126.7, 125.7 (t, J = 26.3 Hz), 125.2, 121.4, 114.7 (t, J = 245.0 Hz), 114.1, 111.3, 55.3; ¹⁹F NMR (470 MHz, CDCl₃): δ -93.49 (s); IR (KBr, cm⁻¹): $v_{max} = 3074$, 2948 1615, 1519, 1492, 1454, 1255, 1081, 980, 921, 753; MS (EI): m/z 275 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺ C₁₅H₁₂F₂NO₂⁺: 276.0831, found: 276.0835.

2-(difluoro(3-methoxyphenyl)methyl)benzo[d]oxazole (3f):

White solid (petroleum ether/EtOAc = 20/1, 87.2 mg, 63% yield); mp: 42-43 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.81 (d, *J* = 8.1 Hz, 1H), 7.41 (d, *J* = 7.8 Hz, 1H), 7.40-7.37 (m, 3H), 7.32 (d, *J* = 7.9 Hz, 1H), 7.28 (s, 1H), 7.04 (d, *J* = 7.8 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 159.7, 158.4 (t, *J* = 36.8 Hz), 150.7, 140.0, 134.8 (t, *J* = 26.7 Hz), 130.0,

126.7, 125.2, 121.3, 117.8 (t, J = 36.8 Hz), 116.8, 114.3 (t, J = 245.0 Hz), 111.3, 111.1 (t, J = 6.4 Hz), 55.3; ¹⁹F NMR (470 MHz, CDCl₃): δ -95.26 (s); IR (KBr, cm⁻¹): $v_{max} = 3071$, 2962, 1607, 1492, 1453, 1274, 1089, 1008, 836, 749, 696; MS (EI): m/z 275 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺ C₁₅H₁₂F₂NO₂⁺: 276.0831, found: 276.0834.

2-(difluoro(2-methoxyphenyl)methyl)benzo[d]oxazole (3g):

White solid (petroleum ether/EtOAc = 20/1, 121.5 mg, 88% yield); mp: 116-117 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.81 (d, *J* = 7.8 Hz, 2H), 7.60 (d, J = 8.0 Hz, 1H), 7.52 (t, J = 8.0 Hz, 1H), 7.46 - 7.36 (m, 2H), 7.13 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 8.3 Hz, 1H), 3.61 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 159.4 (t, J = 34.9 Hz), 157.5 (t, J = 4.9 Hz), 150.5, 140.5, 133.0, 126.8 (t, J = 7.3 Hz),

126.4, 125.1, 121.9 (t, *J* = 24.6 Hz), 121.3, 120.6, 113.4 (t, *J* = 241.7 Hz), 112.0, 111.3, 56.0; ¹⁹F NMR (470 MHz, CDCl₃): δ -95.13 (s); IR (KBr, cm⁻¹): $\nu_{max} = 3084, 2974, 1604, 1491, 1443, 1298,$ 1092, 973, 914, 753, 674; MS (EI): *m/z* 275 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺ $C_{15}H_{12}F_2NO_2^+$: 276.0831, found: 276.0838.

2-((4-(benzyloxy)phenyl)difluoromethyl)benzo[d]oxazole (3h):

White solid (petroleum ether/EtOAc = 20/1, 131.2 mg, 75% yield); mp: 81-83°C; ¹H NMR (500 MHz, CDCl₃): δ 7.83 (d, J = 7.7 Hz, 1H), 7.67 (d, J = 8.6 Hz, 2H), 7.59 (d, J = 8.2 Hz, 1H), 7.45-7.40 (m, 6H), 7.35 (t, J = 7.0 Hz, 1H), 7.08 (d, J = 8.6 Hz, 2H), 5.11 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 160.8, 158.7 (t, J = 35.7 Hz), 150.7,

140.1, 136.3, 128.7, 128.2, 127.5, 127.4 (t, *J* = 5.5 Hz), 126.7, 125.9 (t, *J* = 26.5 Hz), 125.2, 121.4, 115.0, 114.6 (t, J = 243.3 Hz), 111.4, 70.1; ¹⁹F NMR (470 MHz, CDCl₃): δ -93.54 (s); IR (KBr, cm⁻¹): $v_{\text{max}} = 3038, 2946, 1609, 1512, 1451, 1246, 1081, 980, 836, 745, 697;$ MS (EI): m/z 351 (M^+) ; HRMS (ESI-TOF) calcd for $[M+H]^+C_{21}H_{16}F_2NO_2^+$: 352.1144, found: 352.1142.

2-(difluoro(4-fluorophenyl)methyl)benzo[d]oxazole (3i):

White solid (petroleum ether/EtOAc = 20/1, 113.8 mg, 87% yield); mp: 47-48°C; ¹H NMR (500 MHz, CDCl₃): δ 7.80 (d, J = 8.0 Hz, 1H), 7.73-7.69 (m, 2H) , 7.56 (d, J = 7.9 Hz, 1H), , 7.44-7.34 (m, 2H), 7.15 (t, J = 8.3 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 164.3 (d, J = 251.1Hz), 158.2 (t, J = 37.7 Hz), 150.7, 140.0, 129.6 (td, J = 26.5, 3.3 Hz),

128.1 (dt, J = 8.9, 5.5 Hz), 126.9, 125.3, 121.4, 115.9 (d, J = 22.1 Hz), 114.2 (t, J = 245.0 Hz), 111.3; ¹⁹F NMR (470 MHz, CDCl₃): δ -94.02 (s), -108.6 - -108.7 (m, J = 10.3 Hz); IR (KBr, cm⁻¹): $v_{\text{max}} = 3079, 1605, 1511, 1453, 1261, 1079, 984, 843, 749, 556; \text{MS}$ (EI): m/z 263 (M⁺); HRMS (ESI-TOF) calcd for $[M+H]^+ C_{14}H_9F_3NO^+$: 264.0631, found: 264.0630.

2-((4-chlorophenyl)difluoromethyl)benzo[d]oxazole (3j):

White solid (petroleum ether/EtOAc = 20/1, 122.1 mg, 87% yield); mp: 59-61°C; ¹H NMR (500 MHz, CDCl₃): δ 7.80 (d, J = 7.6 Hz, 1H), 7.66 (d, J = 8.7 Hz, 2H), 7.59 (d, J = 7.8 Hz, 1H), 7.47 (d, J = 8.7 Hz, 2H), 7.45-7.37 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 158.1 (t, J = 36.2 Hz), 150.8,

140.0, 137.5 (t, J = 1.8 Hz), 132.1 (t, J = 26.6 Hz), 129.1, 127.3(t, J = 5.6 Hz), 127.0, 125.4, 121.5, 114.1 (t, J = 244.7 Hz), 111.4; ¹⁹F NMR (470 MHz, CDCl₃): δ -95.03 (s); IR (KBr, cm⁻¹): $v_{max} = 3095$, 1617, 1450, 1260, 1077, 983, 828, 750, 736; MS (EI): m/z 279 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺ C₁₄H₉ClF₂NO ⁺: 280.0335, found:

280.0336

2-((4-bromophenyl)difluoromethyl)benzo[d]oxazole (3k):

White solid (petroleum ether/EtOAc = 20/1, 113.3 mg, 70% yield); mp: 74-75°C; ¹H NMR (500 MHz, CDCl₃): δ 7.81 (d, *J* =7.8 Hz, 1H), 7.63-7.57 (m, 5H), 7.43 (t, *J* = 7.4 Hz, 1H), 7.38 (t, *J* = 7.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 157.9 (t, *J* = 36 Hz), 150.7, 140.0, 132.5 (t, *J* = 26.3 Hz), 132.0, 127.4 (t, *J* = 5.9 Hz), 127.0, 125.9, 125.4, 121.4,

114.1 (t, J = 245.0 Hz), 111.4; ¹⁹F NMR (470 MHz, CDCl₃): δ -95.18 (s); IR (KBr, cm⁻¹): $v_{max} = 3093$, 1617, 1595, 1451, 1260, 1081, 982, 824, 750; MS (EI): m/z 323 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺C₁₄H₉BrF₂NO⁺: 323.9830, found: 323.9837. Anal. Calcd. for C₁₄H₈BrF₂NO: C, 51.88; H, 2.49; N, 4.32; Found:C, 51.81; H, 2.53; N, 4.28.

2-(difluoro(4-iodophenyl)methyl)benzo[d]oxazole (3l):

White solid (petroleum ether/EtOAc = 20/1, 152.0 mg, 82% yield); mp: 83-84 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.88 - 7.78 (m, 3H), 7.58 (d, *J* = 8.1 Hz, 1H), 7.50 - 7.36 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 157.9 (t, *J* = 36.7 Hz), 150.8, 140.0, 138.0, 133.2 (t, *J* = 26.1 Hz), 127.4 (t, *J* = 5.8 Hz), 127.0, 125.4, 121.4, 114.2 (t, *J* = 243.8 Hz), 111.4, 98.1;

¹⁹F NMR (470 MHz, CDCl₃): δ -95.54 (s); IR (KBr, cm⁻¹): ν_{max} = 3089, 1615, 1589, 1452, 1346, 1256, 1094, 1080, 917, 814, 741; MS (EI): m/z 371 (M⁺); MS (EI): 371 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺C₁₄H₉F₂INO⁺: 371.9691, found: 371.9695.

2-(difluoro(4-(trifluoromethyl)phenyl)methyl)benzo[d]oxazole (3m):

White solid (petroleum ether/EtOAc = 12/1, 99.2 mg, 63% yield); mp: 76-78°C;¹H NMR (500 MHz, CDCl₃): δ 7.88 (d, *J* = 8.1 Hz, 2H), 7.81 (d, *J* = 7.8 Hz, 1H), 7.76 (d, *J* = 8.2 Hz, 2H), 7.59 (d, *J* = 8.2 Hz, 1H), 7.44 (t, *J* = 7.4 Hz, 1H), 7.40 (t, *J* = 7.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 157.8 (t, *J* = 36.7 Hz), 150.9, 140.0,

137.2 (t, J = 27.8 Hz), 133.3 (q, J = 33.0 Hz), 127.1, 126.5 (t, J = 5.6 Hz), 125.8 (q, J = 3.7 Hz), 125.5, 124.7 (q, J = 272.8 Hz), 121.5, 113.9 (t, J = 243.8 Hz), 111.4; ¹⁹F NMR (470 MHz, CDCl₃): δ-63.13 (CF₃, s), -95.82 (CF₂, s); IR (KBr, cm⁻¹): $v_{max} = 3082$, 1619, 1453, 1323, 1259, 1177, 1086, 986, 850, 744, 693; MS (EI): m/z 313 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺ C₁₅H₉F₅NO⁺: 314.0599, found: 314.0598.

4-(benzo[d]oxazol-2-yldifluoromethyl)benzonitrile (3n):

Yellow solid (petroleum ether/EtOAc = 8/1, 95.1 mg, 70% yield); mp: 101-103°C; ¹H NMR (500 MHz, CDCl₃): δ 7.84 (t, J = 7.9 Hz, 2H), 7.78 (t, J = 7.0 Hz, 3H), 7.58 (t, J = 7.6 Hz, 1H), 7.44 (t, J = 6.7 Hz, 1H), 7.39 (t, J = 7.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 157.2 (t, J = 34.8 Hz), 150.7, 139.8, 137.7 (t, J = 25.2 Hz), 132.5, 127.2, 126.7 (t, J = 5.6 Hz), 125.5, 121.4, 117.7, 115.2, 113.5 (t, J = 245.0 Hz), 111.4; ¹⁹F NMR (470 MHz, CDCl₃): δ -96.07 (s); IR (KBr, cm⁻¹): ν_{max} = 3101, 3049, 2235, 1616, 1452, 1261, 1111, 1075, 985, 920, 847, 741; MS (EI): 270 m/z (M⁺); HRMS (ESI-TOF) calcd for $[M+H]^+ C_{15}H_9F_2N_2O^+$:

271.0677, found: 271.0674.

1-(4-(benzo[d]oxazol-2-yldifluoromethyl)phenyl)ethanone (30):

White solid (petroleum ether/EtOAc = 12/1, 81.3 mg, 57% yield); mp: 90-92°C; ¹H NMR (500 MHz, CDCl₃): δ 8.04 (d, J = 8.2 Hz, 2H), 7.80 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 7.5 Hz, 1H), 7.55 (d, J = 8.1 Hz, 1H), 7.41 (t, J = 7.3 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 2.60 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 197.0, 157.7 (t, J = 38.1

Hz), 150.7, 139.9, 139.1, 137.5 (t, J = 26.9 Hz), 128.6, 127.0, 126.1 (t, J = 5.0 Hz), 125.4, 121.4, 114.0 (t, J = 245.0 Hz), 111.3, 26.7; ¹⁹F NMR (470 MHz, CDCl₃): δ -95.84 (s); IR (KBr, cm⁻¹): $v_{\text{max}} = 3100, 3071, 1690, 1612, 1265, 1078, 986, 833, 745;$ MS (EI): m/z 287 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺ C₁₆H₁₂F₂NO₂⁺: 288.0831, found: 288.0826. Anal. Calcd. for C₁₆H₁₁F₂NO₃: C, 63.37; H, 3.66; N, 4.62; Found:C, 63.33; H, 3.61; N, 4.65.

4-(benzo[d]oxazol-2-yldifluoromethyl)benzaldehyde (3p):

White solid (petroleum ether/EtOAc = 12/1, 63.1 mg, 46% yield); mp: 116-118°C; ¹H NMR (500 MHz, CDCl₃): δ 10.07 (s, 1H), 7.99 (d, J = 8.1 Hz, 2H), 7.89 (d, J = 8.1 Hz, 2H), 7.77 (d, J = 7.8 Hz, 1H), 7.57 (d, *J* = 7.9 Hz, 1H), 7.43 (t, *J* = 7.8 Hz, 1H), 7.38 (t, *J* = 7.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 191.2, 157.6 (t, J = 36.4 Hz), 150.7,

139.9, 138.9 (t, J = 26.0 Hz), 138.2, 129.9, 127.1, 126.6 (t, J = 5.6 Hz), 125.5, 121.4, 113.9 (t, J = 244.8 Hz), 111.4; ¹⁹F NMR (470 MHz, CDCl₃): δ -95.90 (s); IR (KBr, cm⁻¹): $v_{max} = 3100, 2864,$ 1705, 1612, 1451, 1261, 1096, 1076, 831, 750; MS (EI): m/z 273 (M⁺); HRMS (ESI-TOF) calcd for $[M+H]^+ C_{15}H_{10}F_2NO_2^+$: 274.0674, found: 274.0677.

2-(difluoro(4-nitrophenyl)methyl)benzo[d]oxazole (3q):

Yellow solid (petroleum ether/EtOAc = 6/1, 83.3 mg, 57% yield); mp: 133-135°C; ¹H NMR (500

MHz, CDCl₃): δ 8.33 (d, J = 8.7 Hz, 2H), 7.92 (d, J =8.9 Hz, 2H), 7.78 (d, J = 7.9 Hz, 1H), 7.60 (d, J = 7.9 Hz 1H), 7.46 (t, J = 7.3 Hz, 1H), 7.40 (t, J = 7.60 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 157.2 (t, J = 33.0 Hz), 150.8, 149.6, 139.9, 139.4 (t, J = 26.0 Hz), 127.34 (t, J = 5.6 Hz), 127.29, 126.7, 125.6, 124.0, 121.5, 113.5 (t, J = 245.0 Hz), 111.5; ¹⁹F NMR (470 MHz, CDCl₃): δ -95.80 (s); IR (KBr, cm⁻¹):

 $v_{\text{max}} = 3077, 1615, 1533, 1452, 1258, 1071, 954, 854, 752;$ MS (EI): m/z 290 (M⁺); HRMS (ESI-TOF) calcd for $[M+H]^+ C_{14}H_9F_2N_2O_3^+$: 291.0576, found: 291.0581.

Methyl 4-(benzo[d]oxazol-2-yldifluoromethyl)benzoate (3r):

White solid (petroleum ether/EtOAc = 6/1, 106.3 mg, 70% yield); mp: 107-109°C; ¹H NMR (500 MHz, CDCl₃): δ 8.14 (d, *J* = 8.1 Hz, 2H), 7.78 (t, *J* = 8.6 Hz, 3H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.40 (d, *J* = 7.3 Hz, 1H), 7.36 (t, *J* = 7.5 Hz, 1H), 3.92 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 166.0, 157.8 (t, *J* = 36.8 Hz), 150.7, 140.0, 137.6

(t, J = 25.50 Hz), 132.7, 129.9, 127.0, 125.9 (t, J = 5.7 Hz), 125.4, 121.4, 114.0 (t, J = 245.0 Hz), 111.4, 52.4; ¹⁹F NMR (470 MHz, CDCl₃): δ -95.87 (s); IR (KBr, cm⁻¹): $v_{max} = 3067$, 2957, 1715, 1609, 1453, 1283, 1071, 982, 824, 785, 742, 725; MS (EI): m/z 303 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺C₁₆H₁₂F₂NO₃⁺: 304.0780, found: 304.0782.

Methyl 3-(benzo[d]oxazol-2-yldifluoromethyl)benzoate (3s):

White solid (petroleum ether/EtOAc = 6/1, 118.6 mg, 78% yield); mp: 93-95°C; ¹H NMR (500 MHz, CDCl₃): δ 8.40 (s, 1H), 8.17 (d, J = 8.1 Hz, 1H), 7.90 (d, J = 7.6 Hz, 1H), 7.77 (d, J = 7.6 Hz, 1H), 7.56 (t, J = 7.5 Hz, 2H), 7.41 (t, J = 8.9 Hz, 1H), 7.34 (t, J = 7.3 Hz, 1H), 3.91 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 165.9, 157.9 (t, J = 36.3 Hz),

150.7, 140.0, 134.0 (t, J = 26.50 Hz), 132.2, 130.9, 130.0 (t, J = 5.6 Hz), 129.0, 126.94 (t, J = 6.5 Hz), 126.92, 125.3, 121.4, 114.0 (t, J = 245.0 Hz), 111.4, 52.4; ¹⁹F NMR (470 MHz, CDCl₃): δ -95.27 (s); IR (KBr, cm⁻¹): $v_{max} = 3070$, 2959, 1722, 1614, 1450, 1294, 1235, 1078, 966, 764, 746, 723; MS (EI): m/z 303 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺C₁₆H₁₂F₂NO₃⁺: 304.0780, found: 304.0781.

Methyl 2-(benzo[d]oxazol-2-yldifluoromethyl)benzoate (3t):

White solid (petroleum ether/EtOAc = 4/1, 144.7 mg, 95% yield); mp: 98-100°C; ¹H NMR (500 MHz, CDCl₃): δ 8.02 (d, *J* = 7.6 Hz, 1H), 7.98 (d, *J* = 7.6 Hz, 1H), 7.75 (d, *J* = 7.7 Hz, 1H), 7.70 (t, *J* = 7.3 Hz, 1H), 7.61 (t, *J* = 7.6 Hz, 2H), 7.41 (t, *J* = 7.3 Hz, 1H), 7.36 (t, *J* = 6.6 Hz, 1H),

3.64 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 166.5, 159.3 (t, J = 34.3 Hz), 150.2, 140.2, 133.0 (t,

J = 24.50 Hz), 132.1, 131.2, 131.1, 129.9 (t, *J* = 3.5 Hz), 127.1 (t, *J* = 9.0 Hz), 126.5, 125.1, 121.1, 113.9 (t, J = 245.0 Hz), 111.3, 52.4; ¹⁹F NMR (470 MHz, CDCl₃): δ -90.60 (s); IR (KBr, cm⁻¹): $v_{\text{max}} = 3075, 2954, 1719, 1600, 1452, 1272, 1090, 916, 829, 753; \text{MS}$ (EI): m/z 303 (M⁺); HRMS (ESI-TOF) calcd for $[M+H]^+C_{16}H_{12}F_2NO_3^+$: 304.0780, found: 304.0785.

2-(difluoro(furan-2-yl)methyl)benzo[d]oxazole (3u):

Colorless oil (petroleum ether/EtOAc = 20/1, 80.3 mg, 68% yield); ¹H NMR (500 MHz, CDCl₃): δ 7.85 (d, *J* = 7.6 Hz, 1H), 7.62 (d, *J* = 7.9 Hz, 1H), 7.56 (s, 1H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.41 (t, *J* = 7.9 Hz, 1H), 6.89 (s, 1H), 6.49 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 156.7 (t, J = 37 Hz), 150.8, 145.2, 145.0 (t, J = 34 Hz), 140.0, 127.1, 125.4, 121.5, 112.2 (t, J = 4 Hz), 111.5, 110.8, 109.6 (t, J = 240 Hz); ¹⁹F NMR (470 MHz, CDCl₃): δ -94.28 (s); IR (KBr, cm⁻¹): $v_{max} = 3143$, 3092, 1614, 1498, 1452, 1267, 1162, 1087, 1010, 881, 762, 749; MS (EI): m/z 235 (M⁺); HRMS

2-(difluoro(thiophen-2-yl)methyl)benzo[d]oxazole (3v):

(ESI-TOF) calcd for $[M+H]^+ C_{12}H_8F_2NO_2^+$: 236.0518, found: 236.0525.

Colorless oil (petroleum ether/EtOAc = 20/1, 63.7 mg, 51% yield); ¹H NMR (500 MHz, CDCl₃): δ 7.84 (d, J = 7.6 Hz, 1H), 7.60 (d, J = 7.6 Hz, 1H), 7.50-7.48 (m, 2H), 7.44-7.38 (m, 2H), 7.08 (d, J = 5.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 157.6 (t, J = 37 Hz), 150.7, 139.9, 134.9 (t, J

= 31 Hz), 129.1, 128.9 (t, J = 6 Hz), 127.1, 126.9, 125.3, 121.4, 112.8 (t, J = 241 Hz), 111.3; ¹⁹F NMR (470 MHz, CDCl₃): δ -83.18 (s); IR (KBr, cm⁻¹): $v_{max} = 3110, 1688, 1616, 1550, 1462, 1080,$ 843, 748, 718; MS (EI): m/z 251 (M⁺); HRMS (ESI-TOF) calcd for $[M+H]^+ C_{12}H_8F_2NOS^+$: 252.0289, found: 252.0296.

2-(difluoro(6-methoxypyridin-3-yl)methyl)benzo[d]oxazole (3w):

White solid (petroleum ether/EtOAc = 5/1, 76.2 mg, 55% yield); mp: 60-62°C; ¹H NMR (500 MHz, CDCl₃): δ 8.51 (s, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.44-7.34 (m, 2H), 6.81 (d, J = 8.7 Hz, 1H), 3.95 (s, 3H); ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3)$: δ 165.8, 158.0 (t, J = 36.9 Hz), 150.8, 145.3 (t, J

= 6.5 Hz), 140.0, 136.2 (t, J = 4.7 Hz), 127.0, 125.4, 122.6 (t, J = 26.4 Hz), 121.4, 114.1 (t, J = 244.5 Hz), 111.4, 111.1, 53.9; ¹⁹F NMR (470 MHz, CDCl₃): δ -94.05 (s); IR (KBr, cm⁻¹): v_{max} = 3085, 2945, 1608, 1493, 1387, 1259, 1079, 919, 841, 749; MS (EI): m/z 276 (M⁺); HRMS (ESI-TOF) calcd for $[M+H]^+C_{14}H_{11}F_2N_2O_2^+$: 277.0783, found: 277.0780.

(E)-2-(1,1-difluoro-3-phenylallyl)benzo[d]oxazole (3x):

White solid (petroleum ether/EtOAc = 20/1, 69.6 mg, 51% yield); mp: 57-59°C; ¹H NMR (500

MHz, CDCl₃): δ 7.85 (d, *J* =7.9 Hz, 1H), 7.63 (d, *J* =7.9 Hz, 1H), 7.50 (d, *J* = 6.7 Hz, 2H), 7.48-7.42 (m, 2H), 7.41-7.36 (m, 3H), 7.22 (d, *J* = 16.2 Hz, 1H), 6.71-6.62 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 158.1 (t, *J* = 35.8 Hz), 150.7, 140.1, 136.8 (t, *J* = 8.8 Hz), 134.1, 129.7, 128.9, 127.6, 126.9, 125.4, 121.4, 119.5 (t, *J* = 24.4 Hz), 113.5 (t, *J* = 240.3 Hz), 111.4;

¹⁹F NMR (470 MHz, CDCl₃): δ -94.45 (d, J = 10.0 Hz); IR (KBr, cm⁻¹): ν_{max} = 3033, 1656, 1615, 1595, 1451, 1224, 979, 763, 750; MS (EI): m/z 271 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺ C₁₆H₁₂F₂NO⁺: 272.0881, found: 272.0886.

2-(difluoro(1H-inden-2-yl)methyl)benzo[d]oxazole (3y):

White solid (petroleum ether/EtOAc = 20/1, 74.2 mg, 52% yield); mp: 67-69°C; ¹H NMR (500 MHz, CDCl₃): δ 7.86 (d, *J* =7.8 Hz, 1H), 7.64 (d, *J* =7.8 Hz, 1H), 7.51 (d, *J* = 6.8 Hz, 1H), 7.49-7.41 (m, 3H), 7.35-7.29 (m, 3H), 3.80 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 157.9 (t, *J* = 36.2 Hz), 150.7, 143.5, 142.3, 140.1, 138.5 (t, *J* = 26.4 Hz),

134.7 (t, J = 7.6 Hz), 126.9, 126.89, 126.8, 125.4, 124.1, 122.8, 121.4, 113.5 (t, J = 239.2 Hz), 111.4, 37.5; ¹⁹F NMR (470 MHz, CDCl₃): δ -91.97 (s); IR (KBr, cm⁻¹): $v_{max} = 3076$, 2923, 1616, 1451, 1293, 1185, 1070, 1021, 981, 887, 749, 716; MS (EI): m/z 283 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺C₁₇H₁₂F₂NO⁺: 284.0881, found: 284.0887.

1,4-bis(benzo[d]oxazol-2-yldifluoromethyl)benzene (3z):

White solid (petroleum ether/EtOAc = 20/1, 87.4 mg, 42% yield); mp: 90-92°C; ¹H NMR (500 MHz, CDCl₃): δ 7.88 (s, 4H), 7.81 (d, *J* = 7.8 Hz, 2H), 7.60 (d, *J* = 8.3 Hz, 2H), 7.46 (t, *J* = 7.3 Hz, 2H), 7.41 (t, *J* = 8.0 Hz, 2H);

¹³C NMR (125 MHz, CDCl₃): δ 157.9 (t, *J* = 36.3 Hz), 150.9, 140.0, 136.5 (t, *J* =27.2 Hz), 127.1, 126.5 (t, *J* = 5.5 Hz), 125.5, 121.5, 114.0 (t, *J* = 245.0 Hz), 111.5; ¹⁹F NMR (470 MHz, CDCl₃): δ -95.92 (s); IR (KBr, cm⁻¹): v_{max} = 3103, 3058, 1616, 1451, 1264, 1076, 983, 919, 842, 761, 747; MS (EI): *m*/*z* 412 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺C₂₂H₁₃F₄N₂O₂⁺: 413.0908, found: 413.0912.

2-(difluoro(4-methoxyphenyl)methyl)-5-methylbenzo[d]oxazole (7a):

White solid (petroleum ether/EtOAc = 20/1, 110.4mg, 76% yield); mp: 90-92°C; ¹H NMR (500 MHz, CDCl₃): δ 7.64 (d, *J* = 8.7 Hz, 2H), 7.58 (s, 1H), 7.43 (d, *J* = 8.4 Hz, 1H), 7.21 (d, *J* = 8.5 Hz, 1H), 6.97 (d, *J* = 8.8 Hz, 2H), 3.81 (s, 3H), 2.45 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 161.6 (t, *J* = 1.7 Hz), 158.8 (t, *J* =

38.7 Hz), 149.0, 140.3, 135.2, 127.9, 127.3 (t, J =6.5 Hz), 125.7 (t, J = 27.3 Hz), 121.0, 114.7 (t, J

= 245.0 Hz), 114.0, 110.6, 55.3, 21.4; ¹⁹F NMR (470 MHz, CDCl₃): δ -93.39 (s); IR (KBr, cm⁻¹): v_{max} = 2968, 2964, 1616, 1518, 1246, 1048, 980, 838, 812; MS (EI): *m*/*z* 289 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺C₁₆H₁₄F₂NO₂⁺: 290.0987, found: 290.0988.

2-(difluoro(4-iodophenyl)methyl)-5-methylbenzo[d]oxazole (7b):

White solid (petroleum ether/EtOAc = 20/1, 143.7 mg, 75% yield); mp: 97-99°C; ¹H NMR (500 MHz, CDCl₃): δ 7.82 (d, *J* = 7.9 Hz, 2H), 7.57 (s, 1H), 7.44 (d, *J* = 8.4 Hz, 3H), 7.23 (d, *J* = 8.3 Hz, 1H), 2.46 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 157.9 (t, *J* = 36.8 Hz), 149.0, 140.2, 137.9, 135.4, 133.2 (t, *J* = 26.2 Hz), 128.1, 127.4 (t, *J* = 5.6 Hz), 121.1,

114.2 (t, J = 244.9 Hz), 110.7, 98.0, 21.5; ¹⁹F NMR (470 MHz, CDCl₃): δ -95.42 (s); IR (KBr, cm⁻¹): $\nu_{\text{max}} = 3091$, 1625, 1588, 1393, 1259, 1097, 1078, 986, 829, 801; MS (EI): m/z 385 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺C₁₅H₁₁F₂INO⁺: 385.9848, found: 385.9853.

Methyl 2-(difluoro(5-methylbenzo[d]oxazol-2-yl)methyl)benzoate (7c):

White solid (petroleum ether/EtOAc = 4/1, method A: 151.0 mg, 95% yield); mp: 101-103 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.00 (d, *J* = 7.9 Hz, 1H), 7.97 (d, *J* = 7.5 Hz, 1H), 7.70 (t, *J* = 7.8 Hz, 1H), 7.61 (t, *J* = 7.8 Hz, 1H), 7.53 (s, 1H), 7.48 (d, *J* = 8.1 Hz, 1H), 7.22 (d, *J* = 8.5Hz,

1H), 3.64 (s, 3H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 166.6, 159.3 (t, J = 32.3 Hz), 148.5, 140.4, 135.0, 133.1 (t, J = 24.1 Hz), 132.0, 131.1, 130.0, 127.7, 127.1 (t, J = 8.7 Hz), 120.9, 113.9 (t, J = 245.0 Hz), 110.7, 52.4, 21.4; ¹⁹F NMR (470 MHz, CDCl₃): δ -90.51 (s); IR (KBr, cm⁻¹): $v_{\text{max}} = 3001$, 2953, 1721, 1612, 1283, 1038, 981, 806, 770, 718; MS (EI): m/z 317 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺C₁₇H₁₄F₂NO₃⁺: 318.0936, found: 318.0944.

2-(difluoro(4-methoxyphenyl)methyl)benzo[d]thiazole (8a):

Yellow solid (petroleum ether/EtOAc = 20/1, 111.3 mg, 76% yield); mp: 82-84°C; ¹H NMR (500 MHz, CDCl₃): δ 8.12 (d, *J* = 8.1 Hz, 1H), 7.90 (d, *J* = 8.1 Hz, 1H), 7.68 (d, *J* = 8.7 Hz, 2H), 7.51 (t, *J* = 7.9 Hz, 1H), 7.43 (t, *J* = 7.3 Hz, 1H), 6.97 (d, *J* = 8.9 Hz, 2H), 3.80 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): 165.3 (t, *J* = 36.8 Hz), 161.3 (t, *J* = 1..9

Hz), 152.8, 127.4 (t, J = 5.6 Hz), 126.9 (t, J = 27.5 Hz), 126.6, 126.4, 124.3, 121.8, 117.6 (t, J = 242.5 Hz), 113.9, 55.2; ¹⁹F NMR (470 MHz, CDCl₃): δ -84.84 (s); IR (KBr, cm⁻¹): $v_{max} = 3065$, 2961, 1614, 1516, 1311, 1256, 1178, 1029, 907, 831, 760, 730; MS (EI): m/z 291 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺C₁₅H₁₂F₂NOS⁺: 292.0602, found: 292.0607.

2-(difluoro(4-iodophenyl)methyl)benzo[d]thiazole (8b):

Yellow solid (petroleum ether/EtOAc = 20/1, 142.1 mg, 73% yield); mp: 105-106°C; ¹H NMR (500 MHz, CDCl₃): δ 8.10 (d, *J* = 8.1 Hz, 1H), 7.93 (d, *J* = 8.0 Hz, 1H), 7.81 (d, *J* = 8.2 Hz, 2H), 7.53 (t, *J* = 7.9 Hz, 1H), 7.50 - 7.44 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 164.4 (t, *J* = 36.6 Hz), 152.8, 137.8, 135.0, 134.5 (t, *J* = 27.3 Hz), 127.6 (t, *J* = 5.7 Hz), 126.8,

126.6, 124.5, 121.9, 117.2 (t, J = 245.0 Hz), 97.6; ¹⁹F NMR (470 MHz, CDCl₃): δ -87.03 (s); IR (KBr, cm⁻¹): $v_{\text{max}} = 2965$, 2928, 1615, 1588, 1452, 1346, 1256, 1080, 977, 917, 814, 741; MS (EI): m/z 387 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺C₁₄H₉F₂INS⁺: 387.9463, found: 387.9469.

Methyl 2-(benzo[d]thiazol-2-yldifluoromethyl)benzoate (8c):

Yellow solid (petroleum ether/EtOAc = 6/1, 135.9 mg, 85% yield); mp: $65-67^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃): δ 8.03 (d, *J* = 7.9 Hz, 2H), 7.93 (d, *J* = 7.52 Hz, 1H), 7.87 (d, *J* = 7.8 Hz, 1H), 7.67 (t, *J* = 7. 8 Hz, 1H), 7.58 (t, *J* = 7. 8 Hz, 1H), 7.47 (t, *J* = 7. 6 Hz, 1H), 7.43 (t, *J* = 7. 6 Hz, 1H),

3.66 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 167.2, 165.8 (t, *J* = 35.5 Hz), 152.2, 135.1, 133.4 (t, *J* = 25.3 Hz), 131.5, 130.7, 130.5, 130.4, 127.6 (t, *J* = 8.8 Hz), 126.4, 126.3, 124.3, 121.9, 117.2 (t, *J* = 241.1 Hz), 52.2; ¹⁹F NMR (470 MHz, CDCl₃): δ -81.45 (s); IR (KBr, cm⁻¹): v_{max} = 3069, 2958, 1730, 1512, 1490, 1434, 1272, 1190, 1099, 1018, 904, 763, 715; MS (EI): *m*/*z* 319 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺C₁₆H₁₂F₂NO₂S ⁺: 320.0551, found: 320.0556.

4-(benzo[d]thiazol-2-yldifluoromethyl)benzonitrile (8d):

Yellow solid (petroleum ether/EtOAc = 8/1, 95.5 mg, 67% yield); mp: 104-106°C; ¹H NMR (500 MHz, CDCl₃): δ 8.05 (d, *J* = 8.2 Hz, 1H), 7.93 (d, *J* = 7.8 Hz, 1H), 7.84 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 8.4 Hz, 2H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.6Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 163.5 (t, *J* = 35.5 Hz), 152.6, 139.0 (t, *J* = 28.6 Hz),

134.8, 132.3, 126.9, 126.8, 126.7 (t, J = 5.6 Hz), 124.4, 121.9, 117.8, 116.5 (t, J = 245.0 Hz), 114.7; ¹⁹F NMR (470 MHz, CDCl₃): δ -87.69 (s); IR (KBr, cm⁻¹): $v_{max} = 3101$, 3058, 2234, 1516, 1261, 1229, 1095, 1046, 925, 831, 758, 724; MS (EI): m/z 286 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺C₁₅H₉F₂N₂S⁺: 287.0449, found: 287.0448.

3-(benzo[d]thiazol-2-yldifluoromethyl)benzonitrile (8e):

Yellow solid (petroleum ether/EtOAc = 8/1, 106.2 mg, 74% yield); mp: 85-87°C; ¹H NMR (500 MHz, CDCl₃): δ 8.06 (d, *J* = 8.0 Hz, 1H), 8.03 (s, 1H), 7.98 - 7.92 (m, 2H), 7.76 (d, *J* = 7.7 Hz, 1H), 7.58 (t, *J* = 8.0 Hz, 1H), 7.52 (t, *J* = 8.2 Hz, 1H), 7.47 (t, *J* = 7.6 Hz,

1H); ¹³C NMR (125 MHz, CDCl₃): δ 163.5 (t, *J* = 36.8 Hz), 152.6, 136.2 (t, *J* = 27.6 Hz), 134.9, 134.1, 130.2 (t, *J* = 5.4 Hz), 129.7 (t, *J* = 6.1 Hz), 129.6, 126.9, 126.8, 124.4, 122.0, 117.8, 116.3 (t, *J* = 6.1 Hz), 129.6, 126.9, 126.8, 124.4, 122.0, 117.8, 116.3 (t, *J* = 6.1 Hz), 129.6, 126.9, 126.8, 124.4, 122.0, 117.8, 116.3 (t, *J* = 6.1 Hz), 129.6, 126.9, 126.8, 124.4, 122.0, 117.8, 116.3 (t, *J* = 6.1 Hz), 129.7 (t, *J* = 6.1 Hz), 129.6, 126.9, 126.8, 124.4, 122.0, 117.8, 116.3 (t, *J* = 6.1 Hz), 129.6, 126.9, 126.8, 124.4, 122.0, 117.8, 116.3 (t, *J* = 6.1 Hz), 129.6, 126.9, 126.8, 124.4, 122.0, 117.8, 116.3 (t, *J* = 6.1 Hz), 129.6, 126.9, 126.8, 124.4, 122.0, 117.8, 116.3 (t, J = 6.1 Hz), 129.6, 126.9, 126.8, 124.4, 122.0, 117.8, 116.3 (t, J = 6.1 Hz), 129.6, 126.9, 126.8, 124.4, 122.0, 117.8, 116.3 (t, J = 6.1 Hz), 129.6, 126.9, 126.8, 124.4, 122.0, 117.8, 116.3 (t, J = 6.1 Hz), 129.6, 126.9, 126.8, 124.4, 122.0, 117.8, 116.3 (t, J = 6.1 Hz), 129.6, 126.8, 124.4, 122.0, 117.8, 116.3 (t, J = 6.1 Hz), 129.6, 126.8, 124.4, 122.0, 117.8, 116.3 (t, J = 6.1 Hz), 129.6, 126.8, 124.4, 122.0, 117.8, 116.3 (t, J = 6.1 Hz), 129.6, 126.8, 126.8, 124.4, 122.0, 117.8, 116.3 (t, J = 6.1 Hz), 129.6, 126.8,

J = 244.1 Hz), 113.0; ¹⁹F NMR (470 MHz, CDCl₃): δ -86.98 (s). IR (KBr, cm⁻¹): $v_{max} = 3082$, 3059, 2234, 1518, 1429, 1229, 1090, 1054, 951, 813, 792, 757, 698; MS (EI): m/z 286 (M⁺); HRMS (ESI-TOF) calcd for [M+H]⁺C₁₅H₉F₂N₂S⁺: 287.0449, found: 287.0448.

(S)-4-benzyl-2-(difluoro(phenyl)methyl)-4,5-dihydrooxazole (9)

A 10 mL Schlenk tube was charged with copper (96 mg, 1.5 mmol, 3 equiv), phenylboronic acid (0.5 mmol, 1.0 equiv), 6 (1.5 mmol, 3 equiv) and solvent (NMP, 3 mL). The mixture was stirred at 50 $^{\circ}$ C under N₂. After the completion of the reaction, the solution was poured into cold water and filtered through a pad of Celite, washed with ether. The combined filtrates were

cold water and filtered through a pad of Celite, washed with ether. The combined filtrates were washed with brine (10 mL×3), and the organic phase was dried over Na₂SO₄. After filtration and evaporation of the solvent, the crude mixture was purified by flash silica gel column chromatography to afford the desired products **9**. Clear oil; 66.1 mg, 46%; ¹H NMR (500 MHz, CDCl₃): δ 7.60 (d, *J* = 7.3 Hz, 2H), 7.53-7.43 (m, 3H), 7.31-7.20 (m, 3H), 7.17 (d, *J* = 7.0 Hz, 2H), 4.61-4.53 (m, 1H), 4.34 (t, *J* = 9.0 Hz, 1H), 4.15 (t, *J* = 8.1 Hz, 1H), 3.17 (dd, *J* = 13.9, 4.9 Hz, 1H), 2.75 (dd, *J* = 13.9, 4.9 Hz, 1H); ¹⁹F NMR (470 MHz, CDCl₃): δ -99.48 (dd, *J* = 41.4 Hz,); ¹³C NMR (125 MHz, CDCl₃): δ 161.3 (t, *J* = 33.7 Hz), 136.9, 133.7 (t, *J* = 25.5 Hz), 131.0, 129.4, 128.7, 128.6, 126.9, 125.6 (t, *J* = 6.2 Hz), 114.0 (t, *J* = 242.8 Hz), 73.2, 67.5, 40.8; HRMS (ESI FT) calcd for [M+H]⁺ C₁₇H₁₆F₂NO⁺: 288.1200, found: 288.1211.

Biphenyl-4-yl(difluoro)acetic acid:

The decarbonylation of Biphenyl-4-yl(difluoro)acetic acid obtained from the reaction of **3d** (65 mg, 0.2 mmol) was hydrolyzed upon treatment with ZnCl₂ (55 mg, 0.4 mmol) and a 14% HCl aqueous solution (2.0 mL) in EtOH (4.0 mL) at 80 °C for 12h. The NaOH was added at room temperature with continuous stirring for 2h. After evaporation of the solvent, the aqueous layer was washed with CH₂Cl₂ (3×5 mL). The aqueous layer was acidified with a concentrated HCl aqueous solution and then extracted with EtOAc (10 mL x 5). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo to give the corresponding carboxylic acid as a off-white solid; (32.3 mg, 65% yield); ¹H NMR (500 MHz, CDCl₃) δ 10.50 (s, 1H), 7.75-7.69 (m, 4H), 7.62 (d, *J* = 7.8 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 2H), 7.42 (t, *J* = 7.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 169.4 (t, *J* = 37.5 Hz), 144.5, 139.9, 130.7 (t, *J* = 25.7 Hz), 129.0, 128.2, 127.6, 127.3, 126.1 (t, *J* = 5.5 Hz), 113.2 (t, *J* = 257.3 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -104.99 (s).

6. Copies of ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra

Part 2012 Part 2

7,842 7,827 7,568 7,568 7,564 7,564 7,564 7,564 7,567 7,567 7,567 7,567 7,567 7,567 7,567 7,567 7,567 7,567 7,567 7,567 7,567 7,567 7,567 7,567 7,567 7,568 7,567 7,568 7,758 7,759

7.845 7.829 7.829 7.829 7.800 7.800 7.533 7.464 7.448 7.448 7.448 7.448 7.448 7.448 7.437 7.333 7.338 7.378

8.002 7.3986 7.3986 7.785 7.785 7.785 7.785 7.7414 7.444 7.444 7.444 7.444 7.336 7.7396 7.7396 7.7380 7.7380 7.7380 7.7380 7.7380

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

S51

200 180 160 140 120 100 80 60 40 20 0 ppm

S61

