Supporting Information

Zinc-mediated CH-activation of tetrahydrofuran under mild conditions for the regioselective addition to aryl-propiolates

Florian Pünner and Gerhard Hilt

Content Pages
Experimental 2
General procedure for the zinc-mediated CH-activation of THF 2
Analytical data 2-15
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra $16-36$
Corresponding author:

Prof. Dr. Gerhard Hilt

Fachbereich Chemie
Philipps-Universität Marburg
Hans-Meerwein-Straße
35043 Marburg
Germany

Hilt@chemie.uni-marburg.de

Experimental

General

All experiments were carried out under an atmosphere of argon in dried flasks and anhydrous solvents. All used reagents and reactants were purchased and used as received or previously synthesized. The solvents were dried using common procedures, distilled and then stored over molecular sieves (MS 4Å) under an atmosphere of argon.

General procedure for the CH-activation of THF

A: Zinc powder (99.999% purity; $78.5 \mathrm{mg} ; 1.2 \mathrm{mmol}$), 1,1-dibromo-2,2,3,3tetramethylcyclopropane $(256 \mathrm{mg}, 1.0 \mathrm{mmol})$ and p-toluenesulfonic acid monohydrate ($3.8 \mathrm{mg}, 0.02 \mathrm{mmol}$) were dissolved in 1.0 mL of THF and after stirring for 2 minutes at room temperature the alkyne (0.40 mmol) was added. The reaction mixture was then stirred at $40^{\circ} \mathrm{C}$ until either alkyne or dibromocyclopropane were consumed. The reaction was monitored by GC/MS spectroscopy and after complete conversion the mixture was cooled to $0^{\circ} \mathrm{C}, 2 \mathrm{~mL}$ of 1 m HCl were added, stirred for 15 min , warmed to room temperature, diluted with water (20 mL) and extracted three times with diethyl ether. The organic layers were combined, dried over magnesium sulphate, the solvent was evaporated and the crude product was purified by column chromatography to give the pure alkenes and in some cases unconsumed alkyne.
B: Iron(II)bromide ($10 \mathrm{Mol} \%$), zinc powder ($\geq 98.5 \%$ purity; 3.0 eq.), 1,1-dibromo-2,2,3,3tetramethylcyclopropane (2.0 eq.) and triphenylphosphine ($15 \mathrm{Mol} \%$) were dissolved in THF (0.4 m) and conc. hydrobromic acid ($2 \mu \mathrm{~L} / \mathrm{mmol}$ alkyne) was added. The mixture was stirred for 2 minutes at room temperature before the alkyne (1.0 eq .) was added. The reaction mixture was then stirred at $40^{\circ} \mathrm{C}$ until either alkyne or dibromocyclopropane were consumed. The reaction was monitored by GC/MS spectroscopy and after complete conversion the mixture was cooled to $0^{\circ} \mathrm{C}, 4 \mathrm{~mL}$ of 1 m HCl (4.0 eq .) were added, stirred for 15 min , warmed to room temperature, diluted with water $(30 \mathrm{~mL})$ and extracted three times with diethyl ether. The organic layers were combined, dried over magnesium sulphate, the solvent was evaporated and the crude product was purified by column chromatography to give the pure alkenes and in some cases unconsumed alkyne; or (without quenching) passed through a short pad of silica and then purified by column chromatography.

Note: To all reported eluents 1% of dichloromethane was added.

Synthesis of 1,1-dibromo-2,2,3,3-tetramethylcyclopropane

The synthesis of dibromocyclopropane $\mathbf{5}$ was performed adopting a protocol published by Spyvee. ${ }^{[1]}$ To a solution of 2,3-dimethylbutene ($4.21 \mathrm{~g}, 50.0 \mathrm{mmol}$) in n-pentane (15 mL) potassium tert-butylate $(6.17 \mathrm{~g}, 55.0 \mathrm{mmol})$ was added and the mixture was cooled to $0{ }^{\circ} \mathrm{C}$. Then $\mathrm{CHBr}_{3}(4.6 \mathrm{~mL}, 52.5 \mathrm{mmol})$ was added dropwise over a period of 20 min . The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and 1 h at room temperature. The reaction mixture was then diluted with n-pentane (75 mL) and washed with water. The organic phase was dried over magnesium sulphate, the solvent was evaporated, and the residue was purified by column chromatography using n-pentane as eluent to give the desired product as white crystals ($10.5 \mathrm{~g}, 41.0 \mathrm{mmol}$, $82 \%)$.
${ }^{[1]}$ C. Frost, P. Linnane, P. Magnus, M. Spyvee Tetrahedon Lett. 1996, 51, 9139-9142.

Synthesis of ethyl 3-phenyl-2-(tetrahydrofuran-2-yl)acrylate (6a)

The title compound was prepared according to the general procedure \mathbf{A} from ethyl 3phenylpropiolate ($69.7 \mathrm{mg}, 0.40 \mathrm{mmol}$) and obtained after usual workup and column chromatography (n-pentane:diethyl ether $=11: 1$) as colorless oil $(81.1 \mathrm{mg}, 0.33 \mathrm{mmol}, 82 \%$, $E / Z=38: 62) .{ }^{1} \mathrm{H}$ NMR data of the E-isomer: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.73(\mathrm{~s}, 1 \mathrm{H})$, 7.42-7.22 (m, 5H), $4.88(\mathrm{dd}, J=8.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.08-3.95(\mathrm{~m}, 1 \mathrm{H})$, 3.92-3.77 (m, 1H), 2.37-1.87 (m, 4H), $1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR data of the Z-isomer: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.42-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.88(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77-4.70(\mathrm{~m}$, $1 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.08-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.77(\mathrm{~m}, 1 \mathrm{H}), 2.37-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.12$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR data of the mixture of isomers ${ }^{13} \mathbf{C}$ NMR $\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=$ 168.4, 167.0, 141.2, 135.7, 135.0, 133.7, 131.4, 129.2, 128.4, 128.3 (2 C), 128.0, 127.8, 79.5, $74.9,69.1,68.7,60.6,60.5,31.7,31.1,27.2,25.6,14.2,13.7$, ($1 \mathrm{C}_{\mathrm{sp} 2}$ is overlapping and not resolved). IR (film): 2977, 2873, 1711, 1637, 1491, 1449, 1377, 1294, 1234, 1205, 1127, 1056, 1027, 928, 870, 753, 696, 480. MS (EI): m/z (\%) = $246\left(\left[\mathrm{M}^{+}\right], 4\right), 200(7), 173$ (100), 131 (30), 115 (9), 103 (11). HR-MS (ESI): $m / z(\%)=$ calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}+\mathrm{Na}^{+}$: 269.1159; found: 269.1147.

Synthesis of methyl 3-(4-methoxyphenyl)-2-(tetrahydrofuran-2-yl)acrylate (6b)

The title compound was prepared according to the general procedure \mathbf{A} from methyl 3-(4methoxyphenyl)propiolate ($76.1 \mathrm{mg}, 0.40 \mathrm{mmol}$) and obtained after usual workup and column chromatography (n-pentane:diethyl ether $=8: 1$ to $5: 1$) as colorless oil $(78.4 \mathrm{mg}, 0.30 \mathrm{mmol}$, $75 \%, E / Z=47: 53)$. NMR data of the mixture of isomers: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=$ $7.69(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6,80(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.01(\mathrm{~m}$, 2 H), 3.90-3.80 (m, 2H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.35-1.88(\mathrm{~m}$, $8 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=169.2,167.5,160.0,159.5,141.5,133.1,131.6,131.5$, $131.0,129.9,127.9,127.3,113.8,113.6,79.8,74.9,69.0,68.7,55.3,55.2,51.6,51.5,31.8$, 30.9, 27.2, 25.6. IR (film): 2951, 2875, 1713, 1605, 1510, 1440, 1384, 1302, 1248, 1176, 1126, 1032, 979, 928, 828, 753, 665, 522. MS (EI): $m / z(\%)=262\left(\left[\mathrm{M}^{+}\right], 6\right), 230(6), 203$ (100), 161 (28). HR-MS (ESI): $m / z(\%)=$ calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}+\mathrm{Na}^{+}$: 285.1097; found: 285.1095.

Synthesis of methyl 3-(4-bromophenyl)-2-(tetrahydrofuran-2-yl)acrylate (6c)

The title compound was prepared according to the general procedure \mathbf{A} from methyl 3-(4bromophenyl)propiolate ($95.6 \mathrm{mg}, 0.40 \mathrm{mmol}$) and obtained after usual workup and column chromatography (n-pentane:diethyl ether $=11: 1$) as colorless oil $(98.0 \mathrm{mg}, 0.31 \mathrm{mmol}, 79 \%$, $E / Z=35: 65) .{ }^{1} \mathrm{H}$ NMR data of the E-isomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.63(\mathrm{~s}, 1 \mathrm{H})$, $7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.94(\mathrm{~m}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.83-3.75(\mathrm{~m}, 1 \mathrm{H}), 2.31-1.85(\mathrm{~m}, 4 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR data of the Z-isomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 4.74-$ $4.67(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.31-1.85(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR data of the mixture of isomers ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=168.5,167.1$, 140.1, 136.0, 134.6, 134.1, 133.7, 131.5, 131.3, 130.7, 130.6, 129.9, 122.8, 122.0, 79.3, 74.8,
69.1, 68.7, 51.7 (2 C), 31.7, 31.1, 27.1, 25.6. IR (film): 2951, 2873, 1716, 1638, 1586, 1486, 1437, 1380, 1335, 1209, 1128, 1058, 1011, 977, 911, 816, 729, 648, 494. MS (EI): m/z $(\%)=$ 310 ([$\left.\mathrm{M}^{+}\right], 5$), 251 (100), 209 (39), 199 (32), 115 (35), 102 (37), 71 (30). HR-MS (EI): m/z $(\%)=$ calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{Br}$: 310.0205; found: 310.0196.

Synthesis of methyl 3-(2-chlorophenyl)-2-(tetrahydrofuran-2-yl)acrylate (6d)

The title compound was prepared according to the general procedure \mathbf{A} from methyl 3-(2chlorophenyl)propiolate ($77.8 \mathrm{mg}, 0.40 \mathrm{mmol}$) and obtained after usual workup and column chromatography (n-pentane:diethyl ether $=10: 1$) as colorless oil $(91.0 \mathrm{mg}, 0.34 \mathrm{mmol}, 85 \%$, $E / Z=32: 68) .{ }^{1} \mathrm{H}$ NMR data of the E-isomer: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.83(\mathrm{~s}, 1 \mathrm{H})$, 7.50-7.20 (m, 4H), 4.77 (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.87-3.79(\mathrm{~m}$, $1 \mathrm{H}), 2.37-1.88(\mathrm{~m}, 4 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR data of the Z-isomer: ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=$ 7.50-7.20 (m, 4H), $7.15(\mathrm{~d}, J=1.5,1 \mathrm{H}), 4.93-4.86(\mathrm{~m}, 1 \mathrm{H}), 4.15-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H})$, 2.37-1.88 (m, 4H). ${ }^{13} \mathrm{C}$ NMR data of the mixture of isomers ${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=$ 167.8, 166.7, 138.7, 137.0, 134.9, 134.7, 133.8, 133.7, 133.1, 130.5, 130.4, 129.7, 129.5, 129.4, 129.1, 128.9, 126.4, 126.2, 78.7, 75.3, 69.0, 68.7, 51.8, 51.5, 31.9, 31.1, 27.0, 25.3. IR (film): 2951, 2875, 1717, 1642, 1436, 1376, 1330, 1236, 1207, 1126, 1055, 980, 913, 832, 737, 694, 647, 610, 544, 454. MS (EI): $m / z(\%)=266\left(\left[M^{+}\right], 1\right), 231(67), 207(100), 165$ (39), 101 (18). HR-MS (ESI): $m / z(\%)=$ calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClO}_{3}+\mathrm{Na}^{+}: 289.0602$; found: 289.0603.

Synthesis of methyl 3-(2-bromophenyl)-2-(tetrahydrofuran-2-yl)acrylate (6e)

The title compound was prepared according to the general procedure \mathbf{A} from methyl 3-(2bromophenyl)propiolate ($95.6 \mathrm{mg}, 0.40 \mathrm{mmol}$) and obtained after usual workup and column chromatography (n-pentane:diethyl ether $=11: 1$) as colorless oil $(106 \mathrm{mg}, 0.34 \mathrm{mmol}, 85 \%$, $E / Z=26: 74) .{ }^{1} \mathrm{H}$ NMR data of the E-isomer: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.71(\mathrm{~s}, 1 \mathrm{H})$,
$7.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.09(\mathrm{~m}, 3 \mathrm{H}), 4.69(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.82$ $(\mathrm{s}, 3 \mathrm{H}), 3.80-3.72(\mathrm{~m}, 1 \mathrm{H}), 2.30-1.81(\mathrm{~m}, 4 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR data of the Z-isomer: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.55(\mathrm{dd}, J=7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.09(\mathrm{~m}, 2 \mathrm{H})$, $7.04(\mathrm{~d}, J=1.3,1 \mathrm{H}), 4.84(\mathrm{ddd}, J=6.7,5.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.01(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.85(\mathrm{~m}$, $1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.30-1.81(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR data of the mixture of isomers ${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=167.6,166.7,140.8,136.9,136.8,135.6,134.4,132.7,132.5,132.3$, $130.5,129.8,129.5,129.1,127.0,126.8,123.7,123.2,78.6,75.3,69.0,68.7,51.8,51.5,31.8$, 31.1, 27.0, 25.3. IR (film): 2951, 2874, 1716, 1642, 1434, 1375, 1329, 1238, 1206, 1126, 1057, 1028, 980, 911, 832, 731, 665, 611, 445. MS (EI): m/z (\%) = $310\left(\left[\mathrm{M}^{+}\right], 1\right), 251(60)$, 231 (100), 209 (25), 115 (22), 102 (25). HR-MS (ESI): $\mathrm{m} / \mathrm{z}(\%)=$ calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{3}+\mathrm{Na}^{+}: 333.0097$; found: 333.0095.

Synthesis of methyl 3-(2-methoxyphenyl)-2-(tetrahydrofuran-2-yl)acrylate (6f)

The title compound was prepared according to the general procedure \mathbf{A} from methyl 3-(2methoxyphenyl)propiolate ($76.1 \mathrm{mg}, 0.40 \mathrm{mmol}$) and obtained after usual workup and column chromatography (n-pentane:diethyl ether $=8: 1$ to $5: 1$) as colorless oil $(93.6 \mathrm{mg}, 0.36 \mathrm{mmol}$, $890 \%, E / Z=35: 65) .{ }^{1} \mathrm{H}$ NMR data of the E-isomer: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \delta=7.87$ (s, $1 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.83(\mathrm{~m}$, $1 \mathrm{H}), 4.83(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, 2.34-1.83 (m, 4H). ${ }^{1} \mathrm{H}$ NMR data of the Z-isomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$): $\delta=7.36$ $7.26(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.91-6.83(\mathrm{~m}, 2 \mathrm{H}), 4.79-4.73(\mathrm{~m}$, $1 \mathrm{H}), 4.08-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.34-1.83(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR data of the mixture of isomers ${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=168.8,167.1$, $157.5,156.9,138.4,135.0,132.7,130.3,130.2,129.3,128.5,124.9,123.9,120.1$ (2 C), 110.4, $79.6,75.3,69.0,68.6,55.4,55.3,51.5,51.3,31.8,30.8,27.2,25.6\left(2 \mathrm{C}_{\text {sp } 2}\right.$ are overlapping and are not resolved). IR (film): 2950, 2875, 1714, 1637, 1595, 1441, 1383, 1296, 1242, 1123, 1053, 980, 918, 749, 491. MS (EI): $m / z(\%)=262\left(\left[\mathrm{M}^{+}\right], 4\right), 230(9), 203(100), 161$ (21), 131 (17), 115 (12). HR-MS (ESI): $m / z(\%)=$ calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}+\mathrm{Na}^{+}: 285.1097$; found: 285.1096.

Synthesis of methyl 2-(3-methoxy-3-oxo-2-(tetrahydrofuran-2-yl)prop-1-enyl)benzoate (6g)

The title compound was prepared according to the general procedure \mathbf{A} from methyl 2-(3-methoxy-3-oxoprop-1-ynyl)benzoate ($87.3 \mathrm{mg}, 0.40 \mathrm{mmol}$) and obtained after usual workup and column chromatography (n-pentane:diethyl ether $=3: 1$) as slightly yellow oil (99.9 mg , $0.34 \mathrm{mmol}, 86 \%, E / Z=29: 71) .{ }^{1} \mathrm{H}$ NMR data of the E-isomer: ${ }^{1} \mathbf{H} \mathbf{N M R}(\mathbf{3 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta=8.16(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dt}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-$ $7.29(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{dd}, J=8.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, 3.76-3.67 (m, 1H), 2.31-1.76 (m, 4H). ${ }^{1} \mathrm{H}$ NMR data of the Z-isomer: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{3 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta=8.00(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{ddd}, J=6.9,5.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.87$ $(\mathrm{s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.31-1.76(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR data of the mixture of isomers ${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=167.8$ (2 C), 167.0, 166.9, 142.7, 139.1, 137.2, 135.3, 134.3, 132.0, $131.9,131.7,130.6,130.3,130.2,129.5,128.8,128.2,128.1,127.4,78.5,75.5,68.9,68.7$, 52.2, 52.0, 51.7, 51.2, 31.9, 31.1, 27.0, 25.3. IR (film): 2952, 2875, 2252, 1714, 1642, 1599, 1569, 1436, 1374, 1257, 1203, 1127, 1057, 965, 913, 824, 727, 648, 614, 523. MS (EI): m/z $(\%)=258\left(\left[\mathrm{M}^{+}-\mathrm{MeOH}\right], 3\right), 219(100), 199$ (48), 174 (13), 157 (18), 115 (13), 71 (13). HRMS (ESI): $m / z(\%)=$ calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{5}+\mathrm{Na}^{+}: 313.1046$; found: 313.1042.

Synthesis of ethyl 3-(3,5-di-tert-butylphenyl)-2-(tetrahydrofuran-2-yl)acrylate (6h)

The title compound was prepared according to the general procedure \mathbf{B} from ethyl ethyl 3-(3,5-di-tert-butylphenyl)propiolate ($143 \mathrm{mg}, 0.50 \mathrm{mmol}$), which was stirred for 32 h and obtained after usual workup and column chromatography (n-pentane:diethyl ether $=15: 1$) as colorless oil ($133 \mathrm{mg}, 0.37 \mathrm{mmol}, 74 \%, E / Z=44: 56$). ${ }^{1} \mathrm{H} \mathrm{NMR}$ data of the E-isomer: ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=7.76(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=1.4 \mathrm{~Hz}$,
$2 \mathrm{H}), 4.88(\mathrm{dd}, J=8.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.20-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{ddd}, J=$ $7.7,7.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.26-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~s}$, $18 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR data of the Z-isomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.32(\mathrm{t}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 4.75-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.20-3.98(\mathrm{~m}, 3 \mathrm{H}), 3.93-3.84$ $(\mathrm{m}, 1 \mathrm{H}), 2.26-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~s}, 18 \mathrm{H}), 1.11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR data of the mixture of isomers ${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta=168.9,167.2,150.6,150.4,142.6,135.0$, $134.8,134.1,132.9,132.1,123.6,122.6$ (2 C), 122.1, 79.8, 75.2, 69.1, 68.7, 60.6, 60.5, 34.8 (2 C), 31.6, 31.4 (2 C), 31.2, 27.3, 25.6, 14.3, 13.9. IR (film): 2960, 2871, 2250, 1714, 1634, 1593, 1468, 1366, 1329, 1242, 1202, 1124, 1058, 911, 875, 769, 730, 647, 517. MS (EI): m/z $(\%)=358\left(\left[\mathrm{M}^{+}\right], 1\right), 285(100), 269(15), 255(30), 57(54)$. HR-MS (ESI): $m / z(\%)=$ calculated for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3}+\mathrm{Na}^{+}$: 381.2400 ; found: 381.2392 .

Synthesis of ethyl 2-(tetrahydrofuran-2-yl)-3-(3-(trifluoromethyl)phenyl)acrylate (6i)

The title compound was prepared according to the general procedure \mathbf{B} from ethyl ethyl 3-(3(trifluoromethyl)phenyl)propiolate ($121 \mathrm{mg}, 0.50 \mathrm{mmol}$), which was stirred for 20 h and obtained after usual workup and column chromatography (n-pentane:diethyl ether $=12: 1$) as colorless oil ($107 \mathrm{mg}, 0.34 \mathrm{mmol}, 68 \%, E / Z=35: 65$). ${ }^{1} \mathrm{H}$ NMR data of the E-isomer: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.70(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.38(\mathrm{~m}, 4 \mathrm{H}), 4.81-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.05-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.75(\mathrm{~m}, 1 \mathrm{H}), 2.34-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR data of the Z-isomer: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=7.61-7.38(\mathrm{~m}, 4 \mathrm{H})$, $6.93(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.81-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.05-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.93-$ $3.85(\mathrm{~m}, 1 \mathrm{H}), 2.34-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.10(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\left.\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$: $\delta=$ -63.63 (s, Z-isomer), -63.68 (s, E-isomer). ${ }^{13} \mathrm{C}$ NMR data of the mixture of isomers ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=167.7,166.6,139.1,137.6,136.7,135.8,135.5,132.2$, 131.6, 131.5, 131.1-130.3 (m, 2 C), 130.0, 128.7, 128.5, 125.9 (q, $J=4.0 \mathrm{~Hz}, 1 \mathrm{C}$), 125.2124.9 (m, 2 C), 124.3 (q, $J=3.7 \mathrm{~Hz}, 1 \mathrm{C}$), 122.2, 79.1, 75.0, 69.1, 68.8, 60.9, 60.8, 31.8, 31.3, 27.0, 25.6, 14.2, 13.7. IR (film): 2980, 2876, 1715, 1644, 1444, 1378, 1328, 1289, 1206, $1166,1123,1061,914,866,802,733,700,659,510,450,409 . \mathbf{M S}(\mathbf{E I}): m / z(\%)=314\left(\left[\mathrm{M}^{+}\right]\right.$, 1), 241 (100), 199 (43), 171 (13), 151 (14), 71 (14). HR-MS (ESI): $m / z(\%)=$ calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3}+\mathrm{Na}^{+}: 337.1022$; found: 337.1015.

Synthesis of ethyl 2-(tetrahydrofuran-2-yl)-3-(3,4,5-trimethoxyphenyl)acrylate (6j)

The title compound was prepared according to the general procedure \mathbf{B} from ethyl 3-(3,4,5trimethoxyphenyl)propiolate ($132 \mathrm{mg}, 0.50 \mathrm{mmol}$), which was stirred for 48 h and obtained after usual workup and column chromatography (n-pentane:diethyl ether $=3: 1$) as slightly yellow oil ($97.8 \mathrm{mg}, 0.29 \mathrm{mmol}, 58 \%, E / Z=54: 46$). ${ }^{1} \mathrm{H}$ NMR data of the E-isomer: ${ }^{1} \mathbf{H} \mathbf{N M R}$ ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.65(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 2 \mathrm{H}), 4.88(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dq}, J=7.1$, $1.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.10-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 2.37-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{1} \mathrm{H}$ NMR data of the Z-isomer: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): $\delta=6.77-6.75(\mathrm{~m}$, $1 \mathrm{H}), 6.55(\mathrm{~s}, 2 \mathrm{H}), 4.73-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{dq}, J=7.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.10-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.83$ $(\mathrm{s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 2.37-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR data of the mixture of isomers ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=168.6,167.0,152.9,152.8,141.6,138.4$, $138.0,135.5,133.2,131.2,130.8,130.3,106.6,105.6,79.5,75.0,69.0,68.7,60.9,60.8,60.7$, 60.6, 56.1, 56.0, 31.6, 30.9, 27.2, 25.6, 14.2, 13.9. IR (film): 2943, 2877, 2838, 2250, 1711, $1629,1579,1504,1457,1418,1382,1330,1238,1120,1053,1005,916,832,778,730,642$, 525, 436. MS (EI): $m / z(\%)=336\left(\left[\mathrm{M}^{+}\right], 60\right), 275(21), 262(100), 207(48), 115$ (22). HRMS (ESI): $m / z(\%)=$ calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{6}+\mathrm{Na}^{+}: 359.1465$; found: 359.1464.

Synthesis of methyl 3-(2-methyl-5-phenylthiophen-3-yl)-2-(tetrahydrofuran-2-yl) acrylate (6 k)

The title compound was prepared according to the general procedure \mathbf{A} from methyl 3-(2-methyl-5-phenylthiophen-3-yl)propiolate ($103 \mathrm{mg}, 0.40 \mathrm{mmol}$) and obtained after usual workup and column chromatography (n-pentane:diethyl ether $=10: 1$ to $8: 1$) as slightly yellow oil $(97.5 \mathrm{mg}, 0.30 \mathrm{mmol}, 74 \%, E / Z=42: 58) .{ }^{1} \mathrm{H}$ NMR data of the E-isomer: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.59(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 4.98$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.33-1.88$
($\mathrm{m}, 4 \mathrm{H}$). ${ }^{1} \mathrm{H}$ NMR data of the Z-isomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.56-7.48(\mathrm{~m}, 2 \mathrm{H})$, 7.41-7.24 (m, 3H), $7.16(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}) 4.79-4.72(\mathrm{~m}, 1 \mathrm{H}), 4.12-3.96(\mathrm{~m}$, $2 \mathrm{H})$, 3.93-3.79 (m, 2H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.33-1.88(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR data of the mixture of isomers ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=168.7,167.4,140.2,140.0,139.6,138.7$, $134.8,134.2,134.0,133.4,133.3,133.0,132.1,128.9,128.8,127.4,127.2,125.6,125.4$, 125.0, 124.3, 123.3, 79.5, 75.4, 69.0, 68.7, 51.7, 51.6, 32.0, 30.7, 27.1, 25.6, 14.0, 13.7. IR (film): 2949, 2869, 1713, 1602, 1496, 1438, 1383, 1333, 1242, 1126, 1054, 980, 920, 839, 755, 689, 554, 471. MS (EI): m/z (\%) = 328 ([M $\left.{ }^{+}\right], 37$), 269 (46), 237 (100), 165 (27), 155 (50), 85 (39), 71 (71). HR-MS (EI): $m / z(\%)=$ calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}: 328.1133$; found: 328.1119 .

Synthesis of (E)- and (Z)-ethyl 3-(tetrahydrofuran-2-yl)but-2-enoate (6l)

The title compounds were prepared according to the general procedure \mathbf{B} from ethyl but-2ynoate ($112 \mathrm{mg}, 1.0 \mathrm{mmol}$), which was stirred for 48 h and obtained after usual workup and column chromatography (n-pentane:diethyl ether $=15: 1$) as colorless oils (30.4 mg , $0.17 \mathrm{mmol}, 17 \%, E$-isomer; and $42.8 \mathrm{mg}, 0.23 \mathrm{mmol}, 23 \%, Z$-isomer). Analytical data of the E-isomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=5.96-5.93(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.99-3.81(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.95-1.85$ $(\mathrm{m}, 2 \mathrm{H}), 1.71-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (75 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta=167.0$, 158.8, 113.5, 82.3, 68.9, 59.6, 31.2, 25.6, 15.3, 14.3. IR (film): 2976, 2871, 1711, 1654, 1448, 1371, 1315, 1272, 1222, 1144, 1074, 1042, 920, 872, 811, 732, 650, 576, 480. MS (EI): m/z $(\%)=184\left(\left[\mathrm{M}^{+}\right], 6\right), 155(26), 139(26), 111$ (100), 97 (18), 69 (35). HR-MS (ESI): m/z (\%) $=$ calculated for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}+\mathrm{Na}^{+}$: 207.0992; found: 207.0991. Analytical data of the Z -isomer: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=5.67-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.95-3.79(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.59-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=165.8$, 161.3, 116.2, 77.5, 69.0, 59.7, 31.3, 26.4, 19.0, 14.2. IR (film): 2978, 2868, 1710, 1643, 1444 , 1378, 1233, 1149, 1047, 926, 857, 797, 732, 653, 563, 455, 409. MS (EI): m/z (\%) = 184 ([$\left.\mathrm{M}^{+}\right], 12$), 155 (100), 139 (26), 113 (60), 97 (19), 85 (18), 69 (24). HR-MS (ESI): $m / z(\%)=$ calculated for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}+\mathrm{Na}^{+}$: 207.0992; found: 207.0991.

Synthesis of 2-(dodec-5-en-7-yn-5-yl)tetrahydrofuran (6m)

The title compound was prepared according to the general procedure \mathbf{B} from dodeca-5,7diyne ($162 \mathrm{mg}, 1.0 \mathrm{mmol}$), which was stirred for 56 h and obtained after usual workup and column chromatography (n-pentane:diethyl ether $=50: 1$ to $25: 1$) as colorless oil (60.9 mg , $0.26 \mathrm{mmol}, 26 \%, E / Z=>99: 1$; recovered starting material: $81.2 \mathrm{mg}, 0.50 \mathrm{mmol}) .{ }^{1} \mathbf{H} \mathbf{N M R}$ ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=5.55(\mathrm{dd}, J=3.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.87(\mathrm{~m}$, $1 \mathrm{H}), 3.84-3.76$ (m, 1H), 2.43-2.31 (m, 3H), 2.15-1.99 (m, 2H), 1.94-1.83 (m, 2H), 1.69-1.30 (m, 9H), $0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=154.1,104.2,94.2,80.8$, $77.9,68.4,31.4,31.0,30.7,30.5,25.7,22.9,21.9,19.3,13.9,13.6$. IR (film): 2932, 2865, 2213, 1715, 1670, 1458, 1375, 1321, 1252, 1180, 1056, 925, 854, 732, 641, 457, 411. MS (EI): $m / z(\%)=234\left(\left[M^{+}\right], 8\right), 191(8), 177(100), 91(12)$. HR-MS (EI): $m / z(\%)=$ calculated for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}: 234.1984$; found: 234.1984.

Synthesis of (1-(tetrahydrofuran-2-yl)but-1-en-3-yne-1,4-diyl)bis(trimethylsilane) (6n)

The title compound was prepared according to the general procedure \mathbf{B} from 1,4-bis(trimethylsilyl)buta-1,3-diyne ($194 \mathrm{mg}, 1.0 \mathrm{mmol}$), which was stirred for 24 h and obtained after usual workup and column chromatography (n-pentane:diethyl ether $=50: 1$) as colorless oil ($75.4 \mathrm{mg}, 0.28 \mathrm{mmol}, 28 \%, Z / E=>99: 1$; recovered starting material: $82.3 \mathrm{mg}, 0.42 \mathrm{mmol}$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=6.33(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dt}, J=7.1,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.92 (dt, $J=8.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dt}, J=7.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.81(\mathrm{~m}$, $2 \mathrm{H}), 1.57-1.45(\mathrm{~m}, 1 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=159.0$, 116.3, 105.2, 99.7, 81.6, 68.4, 32.8, 25.4, -0.3, -1.0. IR (film): 2959, 2896, 2133, 1567, 1453, 1409, 1348, 1248, 1179, 1089, 1053, 957, 833, 757, 696, 648, 522, 436. MS (EI): m/z $(\%)=$ $266\left(\left[\mathrm{M}^{+}\right], 14\right), 223$ (19), 193 (16), 150 (28), 135 (15), 73 (100). HR-MS (EI): m/z $(\%)=$ calculated for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{OSi}_{2}$: 266.1522; found: 266.1530 .

Synthesis of 2-(1,4-diphenylbut-1-en-3-ynyl)tetrahydrofuran (60)

The title compound was prepared according to the general procedure \mathbf{B} from 1,4diphenylbutadiyne ($202 \mathrm{mg}, 1.0 \mathrm{mmol}$), which was stirred for 48 h and obtained after usual workup and column chromatography (n-pentane:diethyl ether $=25: 1$) as slightly yellow oil $(112 \mathrm{mg}, 0.41 \mathrm{mmol}, 41 \%, E / Z=>20: 1$; recovered starting material: $94.8 \mathrm{mg}, 0.47 \mathrm{mmol})$. NMR data of the major isomer: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta=7.58-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.44-$ 7.33 (m, 3H), 7.25 (s, 5 H), 6.13 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.90$ (ddd, $J=7.3,7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04$ (dt, $J=8.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.87(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.59$ ($\mathrm{m}, 1 \mathrm{H}$) ${ }^{\mathbf{1 3}}{ }^{\mathbf{C}} \mathbf{~ N M R ~ (7 5 ~ M H z}, \mathbf{C D C l}_{3}$): $\delta=153.6,137.9,131.3,128.4,128.1,128.0,127.9$, 127.8, 123.8, 105.1, $92.8,88.0,81.0,68.8,32.0,25.5$. IR (film): 3058, 2973, 2868, 2247, $2195,1954,1886,1679,1594,1490,1443,1377,1323,1271,1179,1066,911,856,753,732$, 691, 576, 524, 480. MS (EI): m/z (\%) = $274\left(\left[\mathrm{M}^{+}\right], 100\right), 246$ (38), 231 (30), 217 (55), 202 (91), 102 (20). HR-MS (EI): $m / z(\%)=$ calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}$: 274.1358; found: 274.1359.

Synthesis of ethyl 3,3-diphenyl-2-(tetrahydrofuran-2-yl)acrylate (9a)

The title compound was prepared from ethyl 3-phenylpropiolate ($69.7 \mathrm{mg}, 0.40 \mathrm{mmol}$) according to the general procedure A. After 6 h at $40^{\circ} \mathrm{C}$ the reaction mixture was cooled to room temperature and iodobenzene $(81.6 \mathrm{mg}, 0.40 \mathrm{mmol})$ was added, followed by the addition of tetrakis(triphenylphosphine)palladium(0) ($11.6 \mathrm{mg}, 0.01 \mathrm{mmol}$) and the mixture was again stirred at $40^{\circ} \mathrm{C}$ under argon atmosphere for additional 17 h . The product was obtained after filtration through a short pad of silica and column chromatography (n-pentane:diethyl ether $=10: 1$) as pale yellow solid ($115 \mathrm{mg}, 0.36 \mathrm{mmol}, 89 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.38-7.18(\mathrm{~m}, 10 \mathrm{H}), 4.59(\mathrm{dd}, J=8.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dq}, J=7.1$, $2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.92-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.73$ (ddd, $J=8.1,8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.03-$ $1.90(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.71(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=$
$169.0,145.1,141.4,139.9,134.5,129.0,128.5,128.3,127.9,127.6$ (2 C), 78.0, 68.9, 60.5, 31.4, 26.5, 13.6. IR (neat): 3053, 2980, 2929, 2873, 1707, 1625, 1490, 1445, 1367, 1307, 1257, 1146, 1106, 1041, 935, 864, 811, 768, 735, 700, 632, 587, 519, 460, 406. MS (EI): m/z $(\%)=322\left(\left[\mathrm{M}^{+}\right], 3\right), 276(90), 249(100), 207(25), 178(52)$. HR-MS (ESI): $m / z(\%)=$ calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3}+\mathrm{Na}^{+}$: 345.1461; found: 345.1454.

Synthesis of methyl 3,3-bis(4-methoxyphenyl)-2-(tetrahydrofuran-2-yl)acrylate (9b)

The title compound was prepared from methyl 3-(4-methoxyphenyl)propiolate (76.1 mg , 0.40 mmol) according to the general procedure A. After 20 h at $40^{\circ} \mathrm{C}$ the reaction mixture was cooled to room temperature and 4-iodoanisole ($93.6 \mathrm{mg}, 0.40 \mathrm{mmol}$) was added, followed by the addition of tetrakis(triphenylphosphine)palladium $(0)(11.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ and the mixture was again stirred at $40^{\circ} \mathrm{C}$ under argon atmosphere for additional 20 h . The product was obtained after filtration through a short pad of silica and column chromatography (n-pentane:diethyl ether $=4: 1$) as pale yellow solid ($113 \mathrm{mg}, 0.31 \mathrm{mmol}, 76 \%$). ${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=7.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.78$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 4.61 (dd, $J=8.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, 3.77 (s, 3H), 3.72 (ddd, $J=8.1,8.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.51$ (s, 3 H), 2.35-2.21 (m, 1H), 2.03-1.73 $(\mathrm{m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=170.1,159.2$ (2C), 145.0, 134.1, 132.6, 132.4, 130.6, 129.9, 113.6, 113.3, 78.3, 68.8, 55.2, 55.1, 51.6, 31.3, 26.5. IR (neat): 2950, 2869, $1715,1605,1508,1457,1322,1286,1244,1176,1131,1033,981,922,830,734,590,560$, 517, 420. MS (EI): m/z (\%) = $368\left(\left[\mathrm{M}^{+}\right], 14\right), 336(100), 309$ (94), 291 (21), 277 (28), 265 (26), 207 (35). HR-MS (ESI): $m / z(\%)=$ calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5}+\mathrm{H}^{+}: 369.1697$; found: 369.1707.

Synthesis of methyl 3,3-bis(4-bromophenyl)-2-(tetrahydrofuran-2-yl)acrylate (9c)

The title compound was prepared from methyl 3-(4-bromophenyl)propiolate (95.6 mg , 0.40 mmol) according to the general procedure \mathbf{A}. After 9 h at $40^{\circ} \mathrm{C}$ the reaction mixture was cooled to room temperature and 1-bromo-4-iodobenzene ($113 \mathrm{mg}, 0.40 \mathrm{mmol}$) was added, followed by the addition of tetrakis(triphenylphosphine)palladium(0) ($11.6 \mathrm{mg}, 0.01 \mathrm{mmol}$) and the mixture was stirred at room temperature under argon atmosphere for additional 15 h . The product was obtained after filtration through a short pad of silica and column chromatography (n-pentane:diethyl ether $=10: 1$) as pale yellow solid ($143 \mathrm{mg}, 0.31 \mathrm{mmol}$, 77%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.48(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{dd}, J=8.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dt}, J=$ $7.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.88-$ $1.73(\mathrm{~m}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=169.0,142.6,139.5,138.1,135.3,131.7$, $131.3,130.8,130.1,122.3,77.8,69.0,51.8,31.4,26.4$. ($2 \mathrm{C}_{\text {sp } 2}$ are overlapping). IR (neat): 2951, 2879, 1723, 1628, 1584, 1484, 1432, 1393, 1313, 1256, 1185, 1135, 1056, 1009, 946, 816, 744, 691, 655, 606, 509. MS (EI): $m / z(\%)=466\left(\left[\mathrm{M}^{+}\right], 1\right), 434$ (71), 407 (100), 365 (18), 284 (19), 256 (19), 189 (18), 176 (29). HR-MS (ESI): m / z (\%) = calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{O}_{3}+\mathrm{Na}^{+}$: 488.9496; found: 488.9494 .

Synthesis of (E)-ethyl 3-iodo-3-phenyl-2-(tetrahydrofuran-2-yl)acrylate

The title compound was prepared according to the general procedure \mathbf{A} from ethyl 3phenylpropiolate ($69.7 \mathrm{mg}, 0.40 \mathrm{mmol}$). After 16 h at $40^{\circ} \mathrm{C}$ the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and iodine ($355 \mathrm{mg}, 1.4 \mathrm{mmol}$) was added and the mixture was stirred at room temperature under argon atmosphere for additional 1.5 h . The mixture was quenched with sodium thiosulphate solution and extracted with diethyl ether. The organic layers were combined, dried over magnesium sulphate, the solvent was evaporated and the crude product was purified by column chromatography (n-pentane:diethyl ether $=12: 1$). The E-isomer was
isolated as slightly yellow oil ($58.7 \mathrm{mg}, 0.16 \mathrm{mmol}, 39 \%$). The Z-isomere ($\sim 25-30 \%$) was contaminated with small amounts of inseparable $\mathbf{6 a}$ and could not be obtained in pure form. Analytical data are given for the purified E-isomer: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=7.34$ $7.20(\mathrm{~m}, 5 \mathrm{H}), 4.81(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.83(\mathrm{~m}, 4 \mathrm{H}), 2.54-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.24-1.89(\mathrm{~m}$, $3 \mathrm{H}), 0.82(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=165.1,144.5,143.1,128.5$, 128.0 (2C), 103.1, 86.1, 69.6, 60.9, 31.0, 26.1, 13.5. IR (film): 2969, 2872, 1716, 1620, 1448, 1368, 1264, 1140, 1059, 1017, 920, 868, 797, 761, 731, 693, 623, 516. MS (EI): m/z $(\%)=$ 326 ([M $\left.{ }^{+}-\mathrm{EtOH}\right], 12$), 299 (24), 245 (62), 129 (31), 115 (17), 102 (17), 71 (100). HR-MS (ESI): $m / z(\%)=$ calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{IO}_{3}+\mathrm{Na}^{+}: 395.0115$; found: 395.0115 .

NMR spectra of the products:

