A New Type of Organic Photovoltaic Materials: Poly(Rod-Coil)

Polymers having Alternative Conjugated and Non-Conjugated

Segments

Hong-Jiao Li, Jin-Tu Wang, Chong-Yu Mei, and Wei-Shi Li*
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling road, Shanghai 200032, China
E-Mail:liws@mail.sioc.ac.cn

Experimental Section

Methods and Characterizations

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Mercury 300 MHz spectrometer using CDCl_{3} as a solvent and tetramethylsilane (TMS) as an internal reference. High temperature ${ }^{1} \mathrm{H}$ NMR was performed on a Varian 400 MHz spectrometer or a Agilent 600 MHz DD 2 spectrometer at $110{ }^{\circ} \mathrm{C}$ using tetrachloroethane- d_{2} as a solvent. Electron ionization (EI) mass spectra were measured on an Agilent 5973N mass spectrometer by an electron impact ionization procedure (70 eV). Gel permeation chromatography (GPC) was carried out on a Waters 1515 HPLC instrument equipped with a Waters 2489 UV detector, using THF as an eluent. The molecular weight and polydispersity index (PDI) were calculated based on polystyrene standards. UV-vis absorption spectroscopy was performed on a Hitachi U-3310 spectrophotometer. Cyclic voltammetry (CV) measurements were performed on a CHI 660C instrument using a three-electrode cell with a glassy carbon as working electrode, a platinum wire as counter electrode, and $\mathrm{Ag} / \mathrm{AgNO}_{3}$ as reference electrode. The samples were first casted on a glassy carbon electrode to form a film and then measured in $\mathrm{CH}_{3} \mathrm{CN}$ in the presence of $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ with a scan rate of 50 mV s . . Thermogravimetric analysis (TGA) was carried out by a TGA Q500 instrument under N_{2} with a temperature rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$. Differential scanning calorimetry (DSC) was performed on a Q2000 modulated DSC instrument under N_{2} with a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$ and a cooling rate of $15^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$. Transmission electron microscopy
(TEM) was performed on a Tecnai G2 Sphera TEM (FEI) operated at 200 kV . X-ray diffraction (XRD) was carried out on a PANalytical X'Pert Pro diffractometer with Cu $\mathrm{K} \alpha$ beam ($40 \mathrm{kV}, 40 \mathrm{~mA}$) in $\theta-2 \theta$ scans ($0.033 \AA$ step size, $30 \mathrm{~s} / \mathrm{step}$). Polymer sample films were prepared by drop-casting from their CHCl_{3} solutions onto a quartz plate.

Materials.

Unless indicated, all commercial reagents were used as received. The solvents for reactions were dehydrated following common methods, tetrahydrofuran (THF), ether, and NEt_{3} refluxed over a mixture of Na and benzophenone while chlorobenzene dried over CaH_{2} under argon, and freshly distilled prior to use.

Scheme S1. Synthesis of $\mathbf{D P P}(\mathbf{3 T P})_{2}$ and $\mathbf{D P P}(\mathbf{3 T P O H})_{2}$.
$\mathbf{B r}\left(\mathbf{C H}_{2}\right)_{11} \mathbf{O T H P}:$ A solution of $3,4-2 H$-dihydropyran ($8 \mathrm{~mL}, 87.7 \mathrm{mmol}$) in dichloromethane (60 mL) was dropwise added to a solution of 11-bromoundecyl-1-alcohol ($10 \mathrm{~g}, 39.8 \mathrm{mmol}$) and pyridinium p-toluenesulfonate (1.2 $\mathrm{g}, 4.7 \mathrm{mmol})$ in dichloromethane $(60 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon. Then, the reaction
mixture was warmed to room temperature and stirred over 8 hours. After reaction, the organic solution was washed with deionized water, saturated salt water orderly and then dried over anhydrous MgSO_{4}. After filtration, the filtrate was concentrated under reduced pressure. The residue was subjected to silica column chromatography using hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(2 / 1, \mathrm{v} / \mathrm{v})$ as eluent, allowing to separate 12.46 g compound $\mathbf{B r}\left(\mathbf{C H}_{2}\right)_{11} \mathbf{O T H P}$ as a colorless oil with a yield of $93 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 4.57(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.48(\mathrm{~m}, 1 \mathrm{H})$, 3.43-3.34 (m, 3H), 1.90-1.80 (m, 3H), 1.59-1.52 (m, 7H), 1.42-1.28 (m, 14H).

THPOPhBr: Into a refluxed mixture of 4-bromo-phenol ($5 \mathrm{~g}, 2.89 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(5.438 \mathrm{~g}, 8.67 \mathrm{mmol})$ in acetone (50 mL), a solution of $\mathbf{B r}\left(\mathbf{C H}_{2}\right)_{11} \mathbf{O T H P}(9.69 \mathrm{~g}, 2.89$ $\mathrm{mmol})$ in acetone (15 mL) was dropwise added under argon. After stirred and refluxed overnight, the reaction mixture was filtrated. The filtrate was concentrated under a reduced pressure and the residue was subjected to silica column chromatography using hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(1 / 1, \mathrm{v} / \mathrm{v})$ as eluent. The product $\mathbf{T H P O P h B r}$ was obtained as a colorless oil in a yield of $84 \%(10.44 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{br}, 1 \mathrm{H})$, $3.93-3.89(\mathrm{~m}, 3 \mathrm{H}), 3.75-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.28(\mathrm{~m}$, 24H).

THPOPhB: A solution of n-butyllithium ($17 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, 27.2 mmol) was dropwise added into a solution of THPOPhBr $(5.43 \mathrm{~g}, 12.7 \mathrm{mmol})$ in dry THF (100 mL) under argon at $-78{ }^{\circ} \mathrm{C}$ and continued to stir for 2.5 hours. Then a solution of isopropoxyboronic acid pinacol ester ($9.1 \mathrm{~mL}, 44.6 \mathrm{mmol}$) in THF (50 mL) was slowly added to the reaction system. The reaction mixture was warmed to room temperature and stirred overnight. After the reaction was quenched by a slow addition of water, the reaction mixture was extracted and the organic layer was collected, washed with water, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure. The residue was subjected to silica column chromatography using hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(1 / 1, \mathrm{v} / \mathrm{v})$ as eluent, allowing to separate 5.48 g the product THPOPhB as a light yellow oil with a yield of $91 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.55(\mathrm{br}, 1 \mathrm{H}), 3.95-3.91(\mathrm{~m}, 3 \mathrm{H}), 3.74-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.32$ (m, 1H), 1.81-1.27 (m, 36H).

THPOPhT $_{2} \mathrm{Br}$: A mixture of 5,5'-dibromo-2,2'-bithiophene ($3.4149 \mathrm{~g}, 10.5 \mathrm{mmol}$), THPOPhB ($2.35 \mathrm{~g}, 5.25 \mathrm{mmol}$), methyltributylammonium chloride ($3.71 \mathrm{~g}, 15.8$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(8.186 \mathrm{~g}, 59.3 \mathrm{mmol})$, water (20 mL) and THF (100 mL) was degassed by argon bubbling for 10 min , and then added with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.2157 \mathrm{~g}, 0.187 \mathrm{mmol})$. The resultant mixture was subject to three circles of freeze-pump-thaw and finally backfilled with argon. After stirred and refluxed for 24 h , the reaction mixture was concentrated and extracted with $\mathrm{CHCl}_{3} /$ water. The organic layers were collected and subsequently washed with water and saturated aqueous NaCl solution, dried over anhydrous MgSO_{4}. After filtration, the filtrate was concentrated under reduced
pressure. The residue was subjected to silica column chromatography using hexane $/ \mathrm{CHCl}_{3}(10 / 1, \mathrm{v} / \mathrm{v})$ as eluent, allowing to separate 1.6447 g product THPOPhT ${ }_{2} \mathbf{B r}$ as a yellow solid with a yield of 57%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 7.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=3.9,1 \mathrm{H}), 7.05(\mathrm{~d}, J=3.3,1 \mathrm{H}), 6.97(\mathrm{~d}$, $J=4.2,1 \mathrm{H}), 6.88-6.91(\mathrm{~m}, 3 \mathrm{H}), 4.58(\mathrm{~m}, 1 \mathrm{H}), 4.0(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H})$, $3.75(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.29(\mathrm{~m}, 24 \mathrm{H})$.

THPOPhT $_{2} \mathbf{B}$: Compound THPOPhT $_{2} \mathbf{B}(0.435 \mathrm{~g})$ was synthesized as a yellow green solid in a yield of 72% following a method similar to that of compound THPOPhB using THPOPhT $_{2} \mathbf{B r}(0.5110 \mathrm{~g}, 0.86 \mathrm{mmol}$), n-butyl lithium (3.01 mL , 4.81 mmol) and isopropoxyboronic acid pinacol ester ($1.30 \mathrm{~mL}, 6.34 \mathrm{mmol}$) as starting materials. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.53(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.58(\mathrm{~m}, 1 \mathrm{H}), 4.0(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H})$, $1.82-1.25$ (m, 36H).
$\mathbf{D P P}(\mathbf{3 T P O T H P})_{2}$: \quad The synthesis of compound $\mathbf{D P P}(\mathbf{3 T P O T H P})_{2}$ was followed a method similar to that of compound $\mathbf{T H P O P h T}_{2} \mathbf{B r}$ using 3,6-bis(5-bromothien-2-yl)-2,5-di(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)dione $(0.1915 \mathrm{~g}, \quad 0.18 \mathrm{mmol})$, $\mathbf{T H P O P h T}_{2} \mathbf{B}(0.36 \mathrm{~g}, \quad 0.56 \mathrm{mmol})$, methyltributylammonium chloride ($0.13 \mathrm{~g}, 0.56 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.12 \mathrm{~g}, 0.87 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.0131 \mathrm{~g}, 0.011 \mathrm{mmol})$ as starting materials. After purified by silica column chromatography using $\mathrm{CHCl}_{3} /$ hexane $(1 / 1, \mathrm{v} / \mathrm{v})$ as eluent and recrystallization from $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, 0.2869 \mathrm{~g}$ DPP(3TPOTHP) $)_{2}$ was obtained as purple solid in a yield of $81 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 110^{\circ} \mathrm{C}$) $\delta(\mathrm{ppm}): 8.79(\mathrm{~s}, 2 \mathrm{H}), 7.54(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.33-7.14(\mathrm{~m}, 10 \mathrm{H}), 6.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 4.58(\mathrm{~m}, 2 \mathrm{H})$, 4.06-4.02 (m, 8H), $3.88(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.40(\mathrm{~m}, 4 \mathrm{H}), 1.82(\mathrm{~m}, 6 \mathrm{H})$, $1.62-1.28(\mathrm{~m}, 108 \mathrm{H}), 0.90(\mathrm{~m}, 12 \mathrm{H})$. MALDI-TOF MS for $\mathrm{C}_{114} \mathrm{H}_{164} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{6}$: calcd 1882.9; found: 1881.7 (M ${ }^{+}$). Anal. calcd (\%): C, 72.72; H, 8.78; N, 1.49. Found: C, 72.84; H, 9.02; N, 0.99.

DPP(3TPOH) $\mathbf{2}_{2}$: To a solution of $\left.\mathbf{D P P}^{(3 T P O T H P}\right)_{2}(0.108 \mathrm{~g}, 0.057 \mathrm{mmol})$ in chloroform (6 mL) was added with a solution of p-toluene sulfonic acid ($0.2 \mathrm{~g}, 1.16$ $\mathrm{mmol})$ in methanol $(1.2 \mathrm{~mL})$. After stirred at $50^{\circ} \mathrm{C}$ for 2 days, the reaction mixture was washed with water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated under reduced pressure. The residue was subjected to silica column chromatography using CHCl_{3} as eluent, allowing to separate 0.094 g DPP(3TPOH) $)_{2}$ in a yield of $96 \% .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 110{ }^{\circ} \mathrm{C}\right) \delta(\mathrm{ppm})$: $8.78(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.32(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 8 \mathrm{H})$, $6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.04\left(\mathrm{dd}, J_{1}=12.4 \mathrm{~Hz}, J_{2}=6.4 \mathrm{~Hz}, 8 \mathrm{H}\right), 3.63(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $4 \mathrm{H}), 1.83-1.80(\mathrm{~m}, 6 \mathrm{H}), 1.58-1.27(\mathrm{~m}, 117 \mathrm{H}), 0.90-0.86(\mathrm{~m}, 12 \mathrm{H})$. MALDI-TOF MS for $\mathrm{C}_{104} \mathrm{H}_{148} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{6}$: calcd 1714.7; found: $1713.7\left(\mathrm{M}^{+}\right)$. Anal. Calcd (\%): C, 72.85 ; H, 8.70; N, 1.63. Found: C, 72.57; H, 8.88; N, 1.53.
$\mathbf{P h B r}$: Compound $\mathbf{P h B r}(15.35 \mathrm{~g})$ was synthesized as white solid in a yield of 90% following a method similar to that of compound THPOPhBr using 4-bromophenol ($10 \mathrm{~g}, 57.8 \mathrm{mmol}$), 1-bromododecane ($16.8 \mathrm{~mL}, 69.3 \mathrm{mmol}$), and potassium carbonate $(23.96 \mathrm{~g}, 173.6 \mathrm{mmol})$ as starting materials. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $7.36(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.71$ $(\mathrm{m}, 2 \mathrm{H}), 1.43-1.26(\mathrm{~m}, 18 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

PhB: Compound $\mathbf{P h B}$ (5.93 g) was synthesized as yellow white solid in a yield of 93% following a method similar to that of compound THPOPhB using compound $\operatorname{PhBr}(6.0 \mathrm{~g}, 17.5 \mathrm{mmol})$, n-butyl lithium ($15 \mathrm{~mL}, 24 \mathrm{mmol}$), and isopropoxyboronic acid pinacol ester ($8 \mathrm{~mL}, 39 \mathrm{mmol}$) as starting materials. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.79-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.24(\mathrm{~m}, 30 \mathrm{H}), 0.85(\mathrm{t}, J=6.9,3 \mathrm{H})$.

PhT $\mathbf{T}_{2} \mathbf{B r}$: Compound $\mathbf{P h T}_{2} \mathbf{B r}(0.42 \mathrm{~g})$ was synthesized as yellow solid in a yield of 65% following a method similar to that of compound $\mathbf{T H P O P h T}{ }_{2} \mathbf{B r}$ using compound PhB ($0.50 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 5,5'-dibromo-2,2'-bithiophene ($1.0 \mathrm{~g}, 3.1 \mathrm{mmol}$) as starting materials. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.09 (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.88$ $(\mathrm{m}, 3 \mathrm{H}), 3.97(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.26(\mathrm{~m}, 18 \mathrm{H}), 0.88(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
$\mathbf{P h T} \mathbf{T}_{2} \mathbf{B}$: Compound $\mathbf{P h T}_{2} \mathbf{B}(0.28 \mathrm{~g})$ was synthesized as yellow green solid in a yield of 96% following a method similar to that of compound THPOPhB using compound $\mathbf{P h T}_{2} \mathbf{B r}(0.23 \mathrm{~g}, 0.45 \mathrm{mmol})$, n-butyl lithium ($0.4 \mathrm{~mL}, 0.64 \mathrm{mmol}$) and isopropoxyboronic acid pinacol ester ($0.26 \mathrm{~mL}, 1.27 \mathrm{mmol})$ as starting materials. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.52-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.26(\mathrm{~m}, 24 \mathrm{H}), 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
$\mathbf{D P P}(\mathbf{3 T P})_{2}$: \quad Compound $\operatorname{DPP}(\mathbf{3 T P})_{2}(0.26 \mathrm{~g})$ was synthesized as purple solid in a yield of 85% following a method similar to that of compound $\mathbf{T H P O P h} \mathbf{T}_{2} \mathbf{B r}$ using 3,6-bis(5-bromothien-2-yl)-2,5-di(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)dione $(0.18 \mathrm{~g}, 0.17 \mathrm{mmol})$, and compound $\mathbf{P h T}_{2} \mathbf{B}(0.39 \mathrm{~g}, 0.68 \mathrm{mmol})$ as starting materials. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 110{ }^{\circ} \mathrm{C}$) $\delta(\mathrm{ppm}): 8.74$ (s, 2H), $7.50(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.09(\mathrm{~m}, 8 \mathrm{H}), 6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H})$, $4.02-3.97(\mathrm{~m}, 8 \mathrm{H}), 1.98(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.24(\mathrm{~m}, 106 \mathrm{H})$, 0.90-0.83 (m, 18H). MALDI-TOF MS for $\mathrm{C}_{106} \mathrm{H}_{152} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{6}$: calcd 1710.7; found: $1710.3\left(\mathrm{M}^{+}\right)$. Anal. Calcd (\%): C, 74.42; H, 8.96; N, 1.64. Found: C, 74.17; H, 8.82; N, 1.41.

General Procedure for Synthesis of Polymers: A mixture of $\operatorname{DPP}(\mathbf{3 T P O H})_{2}$ $(0.050 \mathrm{~g}, 0.03 \mathrm{mmol})$, diisocyanate $(0.03 \mathrm{mmol})$, chlorobenzene $(5 \mathrm{~mL})$, and triethylamine $(0.3 \mathrm{~mL})$ was added into a reaction tube and the tube was sealed in a
N_{2}-filled glove box. After the reaction mixture was stirred at $95{ }^{\circ} \mathrm{C}$ for 24 h , 4-ethylphenyl isocyanate and methanol was subsequently added into the reaction system for end-capping the polymer. The crude polymer was separated by the precipitation with 100 mL of methanol and filtration, and further subjected to size-exclusion chromatography using a Bio-beads SX1 (Bio-Rad) column and chloroform as the eluent. The first green fraction was collected, evaporated to dryness, and further dried in vacuum for 1 day to get the final product. For PU4-HW having a large molecular weight, the polymerization reaction was carried out at $135^{\circ} \mathrm{C}$ for 2 days.

PU1. Yield: $87 \% . \quad M_{\mathrm{n}}: 4.12 \mathrm{kDa}$, PDI: $1.08 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$, $\left.110{ }^{\circ} \mathrm{C}\right) \delta(\mathrm{ppm}): 8.76(\mathrm{br}), 7.49-7.47(\mathrm{~m}), 7.28-7.26(\mathrm{~m}), 7.22-7.19(\mathrm{~m}), 7.15-7.08$ (m), 6.91-6.89 (m), 4.03-3.98 (m), 3.63 (s), 3.13-3.09 (m), 1.97 (br), 1.80-1.75 (m), $1.67(\mathrm{~s}), 1.62-1.57(\mathrm{~m}), 1.47$ (br), 1.38-1.23(m), 0.86-0.83 (m). Anal. Calcd for $\left(\mathrm{C}_{122} \mathrm{H}_{160} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{6}\right)_{\mathrm{x}}(\%): \mathrm{C}, 71.58 ; \mathrm{H}, 8.75 ; \mathrm{N}, 2.93$. Found (\%): C, 70.02; H, 8.70; N, 3.46 .

PU2. Yield: 82\%. $\quad M_{\mathrm{n}}: 6.40 \mathrm{kDa}$, PDI: $1.15 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 110{ }^{\circ} \mathrm{C}$) $\delta(\mathrm{ppm}): 8.75$ (br), 7.47 (m), 7.26-7.09 (m), 6.89 (br), 6.38 (s), 4.13 (br), 3.98 (m), 3.73 (s), 1.96 (br), 1.76 (br), $1.66(\mathrm{~m}), 1.41-1.23(\mathrm{~m}), 0.85(\mathrm{~m})$. Anal. Calcd for $\left(\mathrm{C}_{122} \mathrm{H}_{151} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{6}\right)_{\mathrm{x}}(\%): \mathrm{C}, 71.88 ; \mathrm{H}, 8.36$; N, 2.94. Found (\%): C, 71.13; H, 7.91; N, 3.34 .

PU3. Yield: 78\%. $\quad M_{\mathrm{n}}: 6.66 \mathrm{kDa}$, PDI: $1.40 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$, $\left.110{ }^{\circ} \mathrm{C}\right) \delta(\mathrm{ppm}): 8.76(\mathrm{br}), 7.47(\mathrm{~m}), 7.27-7.08(\mathrm{~m}), 7.02(\mathrm{~m}), 6.90(\mathrm{~m}), 6.45(\mathrm{~s}), 4.13$ $(\mathrm{m}), 4.01-3.97(\mathrm{~m}), 3.73(\mathrm{br}), 2.59(\mathrm{~m}), 1.96(\mathrm{br}), 1.77(\mathrm{~m}), 1.66(\mathrm{~m}), 1.45-1.23(\mathrm{~m})$, $0.86-0.83(\mathrm{~m})$. Anal. Calcd for $\left(\mathrm{C}_{112} \mathrm{H}_{151} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{6}\right)_{\mathrm{x}}(\%)$: C, 71.88; H, 8.36; N, 2.94. Found (\%): C, 71.66; H, 8.06; N, 3.37.

PU4-LW. Yield: 95\%. $\quad M_{\mathrm{n}}: 7.90 \mathrm{kDa}$, PDI: $1.39 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$, $\left.110{ }^{\circ} \mathrm{C}\right) \delta(\mathrm{ppm}): 8.75(\mathrm{br}), 7.47(\mathrm{br}), 7.27-7.20(\mathrm{~m}), 7.13-7.06(\mathrm{~m}), 6.89-6.88(\mathrm{~m})$, $6.38(\mathrm{~s}), 4.12(\mathrm{~m}), 4.01-3.96(\mathrm{~m}), 3.86(\mathrm{~s}), 3.72(\mathrm{~s}), 2.59(\mathrm{~m}), 1.96(\mathrm{br}), 1.77(\mathrm{~m}), 1.66$ $(\mathrm{m}), 1.41-1.23(\mathrm{~m}), 0.84(\mathrm{~m})$. Anal. Calcd for $\left(\mathrm{C}_{119} \mathrm{H}_{157} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{6}\right)_{\mathrm{x}}(\%): \mathrm{C}, 72.85 ; \mathrm{H}$, 8.29; N, 2.81. Found (\%): C, 73.18; H, 8.12; N, 3.04.

PU4-HW. Yield: $86 \% . \quad M_{\mathrm{n}}: 16.7 \mathrm{kDa}$, PDI: $1.94 .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$, $\left.110^{\circ} \mathrm{C}\right) \delta(\mathrm{ppm}): 8.75(\mathrm{br}), 7.46(\mathrm{~m}), 7.26-7.06(\mathrm{~m}), 6.89-6.88(\mathrm{~m}), 6.38(\mathrm{~s}), 4.12(\mathrm{~m})$, 3.97 (m), 3.86 (s), 3.72 (s , 2.57 (m), 1.96 (br), 1.76 (m), $1.65(\mathrm{~m}), 1.45-1.23(\mathrm{~m})$, $0.84(\mathrm{~m})$. Anal. Calcd for $\left(\mathrm{C}_{119} \mathrm{H}_{157} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{6}\right)_{\mathrm{x}}$ (\%): C, 72.85; H, 8.29; N, 2.81. Found (\%): C, 72.22; H, 8.08; N, 2.74.

Fabrication and Characterization of Solar Cell Devices

The solar cell devices were fabricated with a structure of ITO/PEDOT:PSS/active
layer/A1. A layer of PEDOT:PSS (Heraeus Clevios P VP. A1 4083) with a thickness around 30 nm was spin-coated on top of well cleaned ITO glass at 6000 rpm for 1 min and baked at $120^{\circ} \mathrm{C}$ for 15 min . After transferred into a N_{2}-filled glove box, the active layer with a thickness between $50-90 \mathrm{~nm}$ was spin-coated from a chloroform, chlorobenzene, or 1,2-dichlorobenzene solution of a mixture of the checked donor and $\mathrm{PC}_{61} \mathrm{BM}$ (Lumitec LT-8905), and then subjected to thermal annealing at $80^{\circ} \mathrm{C}$ for 10 min . Finally, the solar cell was finished by thermally deposition of a 100 nm -thick Al layer on the top of the active layer under a high vacuum $\left(<10^{-5} \mathrm{mbar}\right)$ through a shadow mask. The effective cell area is $7 \mathrm{~mm}^{2}$. Layer thickness was measured on a Veeco Dektak 150 profilometer. Current density-voltage ($J-V$) curves were recorded with a Keithley 2420 source meter. Photocurrent was acquired upon irradiation using an AAA solar simulator (Oriel 94043A, 450 W) with AM 1.5G filter. The intensity was adjusted to be $100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$ under the calibration with a NREL-certified standard silicon cell (Orial reference cell 91150). External quantum efficiency (EQE) was detected with a 75 W Xe lamp, an Oriel monochromator 74125, an optical chopper, a lock-in amplifier and a NREL-calibrated crystalline silicon cell.

Measurement of Hole and Electron Mobilities for the Blend Films

Both hole and electron mobilities were measured by space-charge-limited current (SCLC) method. The hole mobility was measured with a device configuration of ITO/PEDPOT:PSS/blend film/Au, whereas that of electron with a device configuration of ITO/PEDPOT:PSS/blend film/Al. According to Mott-Gurney law, SCLC theory can be described by

$$
J=\frac{9}{8} \varepsilon_{0} \varepsilon_{\mathrm{r}} \mu \frac{\left(V_{\mathrm{a}}-V_{\mathrm{bi}}\right)^{2}}{d^{3}}
$$

where J is current density, ε_{0} is permittivity of vacuum, ε_{r} is relative permittivity of the material (for conjugated polymer, ε_{r} is 3 in general), μ is mobility, V_{a} is applied voltage, V_{bi} is built-in voltage, and d is the thickness of the active film.

Supporting Figures and Tables

Fig. S1 ${ }^{1} \mathrm{H}$ NMR of $\operatorname{DPP}(\mathbf{3 T P O H})_{2}\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 110{ }^{\circ} \mathrm{C}\right)$.

JPP- $\mathrm{C} 20-\mathrm{C} 110 \mathrm{H}$

Jata: NAX13-440001.A1[c] 10 Jan 2013 14:49 Cal: 20120427-3 27 Apr 2012 11:06 shimadzu Biotech Axima Performance 2.8.4.20081127: Mode Reflectron, Power: 48, Blanked, P.Ext. @ 1714 (bin 86) Ms \%Int. 143 mV [sum= 1142 mV] Profiles 43-50 Unsmoothed -Baseline 80

紋 + +

Fig. S2 MALDI-TOF mass spectrum of DPP(3TPOH) $\mathbf{2}_{2}$.

Fig. S3 ${ }^{1} \mathrm{H}$ NMR of $\operatorname{DPP}(\mathbf{3 T P})_{2}\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 110{ }^{\circ} \mathrm{C}\right)$.

PP-C20-C12

ata: NAX12-8690001.I14[c] 25 Dec 2012 15:51 Cal: LSH1000-4000 25 Dec 2012 15:41
himadzu Biotech Axima Performance 2.8.4.20081127: Mode Reflectron, Power: 64, Blanked, P.Ext. @ 1710 (bin 86$)(2 \mathrm{MS}$ \%Int. $543 \mathrm{mV}[$ sum $=5426 \mathrm{mV}]$ Profiles 1-10 Unsmoothed -Baseline 80

Fig. S4 MALDI-TOF mass spectrum of DPP(3TP) $\mathbf{2}^{2}$.

Fig. S5 ${ }^{1} \mathrm{H}$ NMR of PU1 $\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 110{ }^{\circ} \mathrm{C}\right)$.

Fig. S6 $\quad{ }^{1} \mathrm{H}$ NMR of PU2 $\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 110{ }^{\circ} \mathrm{C}\right)$.

Fig. S7 $\quad{ }^{1} \mathrm{H}$ NMR of PU3 $\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 110^{\circ} \mathrm{C}\right)$.

Fig. S8 $\quad{ }^{1} \mathrm{H}$ NMR of PU4-LW $\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 110{ }^{\circ} \mathrm{C}\right)$.

Fig. S9 $\quad{ }^{1} \mathrm{H}$ NMR of PU4-HW $\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 110{ }^{\circ} \mathrm{C}\right)$.

Fig. S10 TGA traces of DPP(3TP $\mathbf{2}_{\mathbf{2}}$, PU1, PU2, PU3, PU4-LW and PU4-HW with a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under a N_{2} flow.

Fig. S11 The second (a) heating and (b) cooling DSC traces of DPP(3TP) $\mathbf{2}_{2}$, PU1, PU2, PU3, PU4-LW and PU4-HW under a N_{2} atmosphere. Heating rate: $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$, cooling rate: $15^{\circ} \mathrm{C} \mathrm{min}^{-1}$.

Fig. S12 XRD profiles of DPP(3TP) $\mathbf{2}_{2}$, PU1, PU2, PU3, PU4-LW and PU4-HW films.

Fig. S13 UV-vis absorption spectra of the solutions of $\mathbf{D P P}(\mathbf{3 T P})_{2}$ in o-dichlorobenzene with different concentrations ($\mathrm{mol} / \mathrm{L}$).

Fig. S14 CV profiles of DPP(3TP) $\mathbf{2}_{\mathbf{2}}$, PU1, PU2, PU3, PU4-LW and PU4-HW. All the polymers and $\operatorname{DPP}(3 T P) 2$ have been found to have the onset oxidation peak around 0.65 V versus $\mathrm{Ag} / \mathrm{Ag}^{+}$, giving their HOMO energy level of -5.3 eV .

Fig. S15 TEM images of the blend films based on (a) DPP(3TP) $\mathbf{2}_{2}$, (b) PU1, (c) PU2, (d) PU3, (e) PU4-LW, or (f) PU4-HW with $\mathrm{PC}_{61} \mathrm{BM}$.

Table S1. Device parameters for the BHJ solar cells fabricated with $\mathbf{D P P}(\mathbf{3 T P})_{2}$ and $\mathrm{PC}_{61} \mathrm{BM}$ under different conditions.

DPP(3TP) $)_{2}$: $\mathrm{PC}_{61} \mathrm{BM}$ (w/w)	Solvent	Concentration ($\mathrm{mg} / \mathrm{mL}$)	Spin-coating Speed (rpm)	Annealing ${ }^{[a]}$ ($\left.{ }^{\circ} \mathrm{C}\right)$	Voc (V)	$\begin{gathered} J_{\mathrm{Sc}} \\ (\mathrm{~mA} \mathrm{~cm} \end{gathered}$	FF (\%)	PCE ${ }^{[b]}$ (\%)
1:1	CHCl_{3}	20	3000	-	0.71	0.95	46.0	0.31 (0.29)
1:2	CHCl_{3}	20	3000	-	0.71	0.97	48.4	0.33 (0.32)
1:3	CHCl_{3}	20	3000	-	0.70	0.57	51.8	0.21 (0.19)
1:2	CHCl_{3}	20	3000	80	0.72	1.46	47.6	0.50 (0.49)
1:2	CHCl_{3}	20	3000	100	0.68	1.64	39.3	0.44 (0.43)
1:2	CHCl_{3}	20	3000	120	0.22	0.51	31.4	0.04 (0.03)
1:2	CHCl_{3}	20	2500	-	0.67	0.88	53.2	0.32 (0.31)
1:2	CHCl_{3}	20	3500	-	0.67	1.06	55.5	0.39 (0.38)
1:2	CHCl_{3}	20	4000	-	0.69	0.93	54.3	0.35 (0.33)
1:2	CHCl_{3}	20	3500	80	0.76	1.82	43.2	0.59 (0.55)

[^0]Table S2. Device parameters for the BHJ solar cells fabricated with PU1 and $\mathrm{PC}_{61} \mathrm{BM}$ under different conditions.

$\begin{gathered} \text { PU1: } \mathrm{PC}_{61} \mathrm{BM} \\ (\mathrm{w} / \mathrm{w}) \end{gathered}$	Solvent ${ }^{[a]}$	Concentration (mg/mL)	Spin-coating Speed (rpm)		Annealing ${ }^{[c]}$ $\left({ }^{\circ} \mathrm{C}\right)$	$V_{\text {oc }}$ (V)	$\begin{gathered} J_{\mathrm{sc}} \\ \left(\mathrm{~mA} \mathrm{~cm}^{-2}\right) \end{gathered}$	FF (\%)	PCE ${ }^{[d]}$ (\%)
1:1	CB	10	800		80	0.68	0.99	44.2	0.30 (0.28)
1:2	CB	10	800		80	0.69	1.40	51.8	0.50 (0.47)
1:3	CB	10	800		80	0.69	1.60	56.0	0.62 (0.59)
1:4	CB	10	800		80	0.68	1.92	57.0	0.75 (0.71)
1:5	CB	10	800		80	0.68	1.69	59.4	0.68 (0.63)
1:4	o-DCB	10	500		80	0.65	1.37	57.7	0.51 (0.48)
1:4	CHCl_{3}	10	1500		80	0.69	1.06	56.8	0.42 (0.37)
1:4	CB	10	500		80	0.70	1.64	56.3	0.65 (0.61)
1:4	CB	10	1000		80	0.68	1.66	55.1	0.62 (0.60)
1:4	CB	10	1200		80	0.65	1.54	54.3	0.54 (0.53)
1:4	CB	10	800		115	0.69	1.52	50.0	0.52 (0.51)
1:4	CB	10	800		120	0.72	1.38	52.6	0.52 (0.49)
1:4	CB	10	800	1\%	80	0.67	1.54	55.2	0.57 (0.55)
1:4	CB	10	800	2\%	80	0.66	1.05	53.9	0.38 (0.31)
1:4	CB	10	800	3\%	80	0.65	0.79	53.1	0.27 (0.23)

[a] CB: chlorobenzene; o-DCB: o-dichlorobenzene. [b] DIO: 1,8-diiodooctane. [c] for 10 min . [d] Data in parentheses are the average values.

Table S3. Device parameters for the BHJ solar cells fabricated with PU2 and $\mathrm{PC}_{61} \mathrm{BM}$ under different conditions.

$\begin{gathered} \text { PU2 }: \mathrm{PC}_{61} \mathrm{BM} \\ (\mathrm{w} / \mathrm{w}) \end{gathered}$	Solvent ${ }^{[a]}$	Concentration ($\mathrm{mg} / \mathrm{mL}$)	Spin-coating Speed (rpm)	DIO ${ }^{[b]}$	Voc (V)	$\begin{gathered} J_{\mathrm{Sc}} \\ (\mathrm{~mA} \mathrm{~cm} \end{gathered}$	FF (\%)	PCE ${ }^{[c]}$ (\%)
1:1	CHCl_{3}	10	1000	-	0.77	0.64	39.1	0.19(0.18)
1:2	CHCl_{3}	10	1000	-	0.80	1.31	50.8	0.54(0.52)
1:3	CHCl_{3}	10	1000	-	0.82	1.80	51.2	0.75(0.72)
1:4	CHCl_{3}	10	1000	-	0.80	2.09	58.8	0.98(0.95)
1:5	CHCl_{3}	10	1000	-	0.80	1.94	54.7	0.85(0.82)
1:4	o-DCB	10	800	-	0.68	3.39	41.1	0.94(0.93)
1:4	CB	10	800	-	0.70	1.37	54.7	0.52(0.47)
1:4	CHCl_{3}	10	1500	-	0.82	1.76	54.1	$0.78(0.75)$
1:4	CHCl_{3}	15	1000	-	0.80	1.18	53.4	0.50(0.48)
1:4	CHCl_{3}	15	2000	-	0.80	1.52	53.9	0.65(0.63)
1:4	CHCl_{3}	10	1000	1\%	0.78	2.01	59.2	0.93(0.89)
1:4	CHCl_{3}	10	1000	2\%	0.71	2.05	49.6	0.72(0.70)
1:4	CHCl_{3}	10	1000	3\%	0.68	2.76	44.6	0.83(0.80)
1:4	CHCl_{3}	10	1000	4\%	0.67	1.79	46.6	0.56(0.52)

[^1]Table S4. Device parameters for the BHJ solar cells fabricated with PU3 and $\mathrm{PC}_{61} \mathrm{BM}$ under different conditions

PU3:PCBM (w/w)	Solvent ${ }^{[a]}$	Concentration ($\mathrm{mg} / \mathrm{mL}$)	Spin-coating Speed (rpm)	$\begin{aligned} & V_{\mathrm{OC}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{gathered} J_{\mathrm{sc}} \\ \left(\mathrm{~mA} \mathrm{~cm}^{-2}\right) \end{gathered}$	FF (\%)	PCE ${ }^{[b]}$ (\%)
1:1	o-DCB	30	800	0.75	1.22	51.8	0.48 (0.46)
1:2	o-DCB	30	800	0.76	1.49	53.7	0.61 (0.58)
1:3	o-DCB	30	800	0.77	1.67	55.1	0.71 (0.68)
1:4	o-DCB	30	800	0.75	1.57	57.9	0.68 (0.67)
1:5	o-DCB	30	800	0.73	1.50	61.5	0.67 (0.66)
1:4	CB	20	500	0.76	1.08	60.6	0.50 (0.48)
1:4	CHCl_{3}	20	1000	0.75	1.19	56.7	0.50 (0.47)
1:4	o-DCB	20	500	0.73	1.62	58.9	0.70 (0.68)
1:4	o-DCB	20	800	0.70	1.40	57.4	0.57 (0.54)
1:4	o-DCB	20	1000	0.69	1.15	58.5	0.47 (0.45)
1:4	o-DCB	30	1000	0.75	1.61	57.3	0.69 (0.67)
1:4	o-DCB	40	800	0.73	1.30	61.1	0.58 (0.54)
1:4	o-DCB	40	1000	0.75	1.46	60.7	0.66 (0.64)

[a] CB: chlorobenzene; o-DCB: o-dichlorobenzene. [b] Data in parentheses are the average values.

Table S5. Device parameters for the BHJ solar cells fabricated with PU4-LW and $\mathrm{PC}_{61} \mathrm{BM}$ under different conditions

PU4-LW:PCBM $(\mathrm{w} / \mathrm{w})$	Solvent $^{[\mathrm{ab}]}$	Concentration $(\mathrm{mg} / \mathrm{mL})$	Spin-coating Speed (rpm)	V_{oc} (V)	J_{SC} $(\mathrm{mA} \mathrm{cm}$		
$1: 1$	$\left.\mathrm{CHCl}_{3}\right)$	10	1500	0.72	1.13	49.4	$0.40(0.39)$
$1: 2$	CHCl_{3}	10	1500	0.73	1.39	52.8	$0.54(0.52)$
$1: 3$	CHCl_{3}	10	1500	0.75	1.59	56.4	$0.67(0.63)$
$1: 4$	CHCl_{3}	10	1500	0.78	1.80	53.3	$0.75(0.70)$
$1: 5$	CHCl_{3}	10	1500	0.75	1.75	58.4	$0.77(0.76)$
$1: 4$	$\mathrm{o-DCB}^{[b]}$	10	800	0.78	1.47	52.7	$0.60(0.56)$
$1: 4$	CB	10	800	0.74	1.37	51.3	$0.52(0.50)$
$1: 4$	CHCl_{3}	10	1000	0.77	1.39	52.1	$0.56(0.55)$
$1: 4$	CHCl_{3}	10	2000	0.75	1.53	50.7	$0.58(0.53)$
$1: 4$	CHCl_{3}	20	1000	0.75	0.73	50.7	$0.28(0.27)$
$1: 4$	CHCl_{3}	20	1500	0.75	0.89	52.3	$0.35(0.34)$
$1: 4$	CHCl_{3}	20	2000	0.77	1.02	51.5	$0.40(0.39)$

[a] CB: chlorobenzene; o-DCB: o-dichlorobenzene. [b] Data in parentheses are the average values.

Table S6. Device parameters for the BHJ solar cells fabricated with PU4-HW and $\mathrm{PC}_{61} \mathrm{BM}$ under different conditions

PU4-HW:PC ${ }_{61} \mathrm{BM}$ (w/w)	Solvent ${ }^{\text {a] }}$	Concentration ($\mathrm{mg} / \mathrm{mL}$)	Spin-coating Speed (rpm)	Voc (V)	$\begin{gathered} J_{\mathrm{sc}} \\ (\mathrm{~mA} \mathrm{~cm} \end{gathered}$	FF (\%)	PCE ${ }^{[b]}$ (\%)
1:2	CHCl_{3}	20	1500	0.75	0.53	33.8	0.13 (0.12)
1:3	CHCl_{3}	20	1500	0.73	0.73	43.0	0.23 (0.22)
1:4	CHCl_{3}	20	1500	0.74	0.92	45.7	0.31 (0.26)
1:5	CHCl_{3}	20	1500	0.74	0.76	50.7	0.29 (0.26)
1:4	CHCl_{3}	20	2500	0.75	1.61	52.4	0.63 (0.60)
1:4	CHCl_{3}	10	1000	0.75	1.76	51.6	0.68 (0.63)
1:4	CHCl_{3}	10	2000	0.76	1.71	57.6	0.75 (0.73)
1:4	o-DCB	20	1000	0.78	1.99	53.0	0.82 (0.77)
1:4	CB	10	500	0.77	1.78	56.6	0.78 (0.73)

[a] CB: chlorobenzene; o-DCB: o-dichlorobenzene. [b] Data in parentheses are the average values.

[^0]: [a] for 10 min . [b] Data in parentheses are the average values.

[^1]: [a] CB: chlorobenzene; o-DCB: o-dichlorobenzene. [b] DIO: 1,8-diiodooctane. [c] Data in parentheses are the average values

