Supporting information

High Sulfur Loading and High Capacity per Area Lithium Sulfur Cathode: Binder -free Carbon Fibers Cloth/sulfur Material

Lixiao Miao,^{a,b} Weikun Wang,^b KeguoYuan^b, Yugheng Yang^b and AnbangWang*^b

Methods

Synthesis of CFC/S. The synthesis of the carbon fibre cloth (CFC) and CFC/S is described in Fig.1S. To prepare the CFC material, some old experimental clothes were cut into 5×15 cm rectangles, and then washed away oil and fat with 1M sodium hydroxide solution, because these clothes are made of cotton fiber, cotton fiber is a hollow fiber with small amount of fat-containing. The carbonization was taken by heating these pieces of cloth at 1000 °C for 4 hours under a flow of N₂ gas. After cooling down, CFC and sulfur (1:5 weight ratios) were heated up to 158 °C and kept for 12 hours to facilitate sulfur diffusion into the carbon fibers cloth. And then, CFC/S was maintained in an oven at 200 °C for 2h to reduce sulfur residue sticking on the outer surface of carbon fibers cloth. Further, the amount of sulfur loading of CFC/S can be controlled by adjusting the heating time at 200 °C. Finally, CFC/S was punched into circular electrode (diameter 14 mm). The sulfur loading (3.8, 5.3, 6.7, 8.0 mg cm⁻²) on the final electrode sample was calculated by weighing the same size CFC/S circular electrode and CFC one, the mass of carbon cloth per area is 4.8 mg cm⁻².

Fig. S1 Schematic illustrations of the structure and fabrication process of CFC/S

Electrode fabrication and electrochemical measurements. The electrochemical performances of the CFC/S cathodes were examined in 2032 button batteries at a current density of 0.3 mA cm⁻² (see Fig. 3), A lithium foil, a polypropylene separator (Celgard 2400), an aluminum foil and a CFC/S cathodes were placed into the cells, the electrolyte is 1 M LiTFSI in DME:DIOX(1:1, v:v) containing 0.4M LiNO₃. A LAND CT2001A galvanostatic charge–discharge instrument was used to perform the measurements. The charge–discharge voltage range was 1.5-2.8 V.

Material Reference	S percentage of material /electrode	Sulfur loading or thickness of cathode	Cycle performance, 1C=1.675A/g	Surface capacity/ mAh cm ⁻²
CNT@S1	53% /45%	0.42mg cm ⁻² / 10~15μm	1C, 1000 cycles, 1053~535mAh g ⁻¹	0.2~0.4
PVP-encapsulated S nanosphere ²	70.4%,/	1mg cm ⁻² /21.3μm	0.5C, 1000 cycles, 990~535mAh g ⁻¹	0.5~1
Sulphur–TiO ₂ yolk– shell nanoarchitecture ³	71%/53%	0.4~0.6mg cm ^{-2/}	0.5C 1000 cycles, 1030~690mAh g ⁻¹	0.4~0.6
S@C NW ⁴	80.85%/	1mg cm ^{-2/}	2C, 1000 cycles, 1138~863mAh g ⁻¹	0.8~1.1
CTAB -S- GO ⁵	80%/56%	0.8 mg cm ^{-2/}	1C 1500 cycles, 740~440 mAh g ⁻¹	0.3~0.6
DTG/S nanocomposites ⁶	64%/-	0.8~1.1 mg cm ^{-2/} -	5C, 200 cycles, 1200~832 mAh g ⁻¹	0.6~1.3
GCC/S+G-separator ⁷	70%/	2~2.8mg cm ⁻² /20~30μm	0.9C, 300 cycles, 1052~ 680mAh g ⁻¹	1.4~2.9
S–Pani yolk–shell structure ⁸	58%/46.4%	2mg cm ⁻² /	2C, 200 cycles, 1100~765 mAh g ⁻¹	1.5~2.2
Mesoporous carbon- sulfur (MCS) ⁹	50%/40%	/	1C 400 cycles, 900~800 mAh g ⁻¹	
PD-coated FLSNS ¹⁰	83%/66%	<1.2mg cm ⁻² / 20µm	0.6C 500 cycles, 715~640 mAh g ⁻¹	<0.8
PD- coated RGO/S ¹¹	74%/56%	<1mg cm ⁻²	0.6C 800 cycles, 715~530 mAh g ⁻¹	<0.72
Amphiphilic surface- modified hollow CNF-S composite ¹²		~1mg cm ⁻²	0.5C 300cycles 828~660 mAh g ⁻¹	0.6~0.8
CFC/S	66%	6.7mg cm ⁻² / ~150μm	0.3mA/cm ⁻² 50 cycles, 1100 mAh g ⁻¹	>7.0

Table 1 Characteristics of various carbon-sulfur composites reported in literatures

Fig. S2 Charge-discharge profile for the CFC/S composite with 6.7 mg cm⁻² sulfur loading on 1st, 2nd, 8th, 50th cycle, current density is 0.3 mA cm⁻²

Fig. S3 Charge-discharge performance of the CFC/S electrode with 7.0mg cm⁻² sulfur loading at a current density of 0.3 mA cm⁻².

References

- 1. X. B. Cheng, J. Q. Huang, H. J. Peng, J. Q. Nie, X. A. Liu, Q. Zhang, F. Wei, J. Power Sources, 2014,253,263-268.
- 2. W. Y. Li, G. Y. Zheng, Y. Yang, Z. W. Seh, N. Liu and Y. Cui, Pnas, 2013,110(18), 7148-7153.
- Z. W. Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P. C. Hsu & Y. Cui, *Nature communications*, 2013, 4, 1331-1337.
- 4. S. Moon, Y. H. Jung, W. K. Jung, D. S. Jung, J. W. Choi, & D. K. Kim, Adv. Mater., 2013, 25, 6547-6553.
- 5. M. K. Song, Y. Zhang, E. J. Cairns, Nano letters, 2013, 13(12): 5891-5899.
- G. M. Zhou, S. F Pei, L. Lu, D. W. Wang, S. G. Wang, K. Huang, L. C. Yin, F. Li, H. M. Cheng, *Adv. Mater.*, 2014, 26(4): 625-631.
- 7. W. Zhou, Y. Yu, H. Chen, F. J. DiSalvo, & H. D. Abruña, J. Am. Chem. Soc. 2013, 135, 16736-16743.
- 8. M. Q. Zhao, Q. Zhang, J. Q. Huang, G. L. Tian, J. Q. Nie, H. J. Peng, & F. Wei, Nat commun. 2014, 5, 3410-3416.

- C. Huang, J. Xiao, Y. Shao, J. Zheng, W. D. Bennett, D. Lu, S. V. Laxmikant, M. Engelhard, L.W. Ji, J. G. Zhang, X. L. Li, G. L. Graff & J. Liu, *Nat commun.* 2014, 5, 3015-3022
- 10. L. Wang, Z. H. Dong, D. Wang, F. X. Zhang, J. Jin, Nano Lett., 2013, 13 (12), 6244-6250.
- 11. L. Wang, Z. H. Dong, D. Wang, F. X. Zhang, J. Jin, Nano Lett., 2013, 13, 4206–4211
- 12. G.Y. Zheng, Q. Zhang, J. J. Cha, Y. Yang, W. Li, Z. W. Seh, & Y Cui, Nano Lett., 2013, 13(3), 1265-1271.