Supporting Information for

Stepwise modulation of the electron-donating strength of ancillary ligands: understanding the AIE mechanism of cationic iridium(III) complexes

Yong Wu,^a Hai-Zhu Sun,^a Hong-Tao Cao,^a Hai-Bin Li,^a Guo-Gang Shan,^{*a} Yu-Ai Duan,^a Yun Geng, ^a Zhong-Min Su^{*a} and Yi Liao^{*b}

^aInstitute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Repubic of China. Fax: +86-431-85684009, Tel.: +86-431-85099108. E-mail: <u>shangg187@nenu.edu.cn</u>, <u>zmsu@nenu.edu.cn</u> ^bDepartment of Chemistry, Capital Normal University, Beijing, People's Republic of China. E-mail: <u>liaoy271@nenu.edu.cn</u>

1. Experimental general information

All reagents and solvents employed were commercially available and used as received without further purification. The solvents for syntheses were freshly distilled over appropriate drying reagents. All experiments were performed under a nitrogen atmosphere by using standard Schlenk techniques. ¹H NMR spectra were measured on Bruker Avance 500 MHz with tetramethylsilane as the internal standard. The molecular weights of ligands and complexes were tested by using electrosprayionization mass spectroscopy and matrix-assisted laser desorption-ionization time-offlight (MALDI-TOF) mass spectrometry, respectively. The emission spectra were recorded using the F-4500 FL spectrophotometer. The excited-state lifetime were measured on a transient spectrofluorimeter (Edinburgh FLS920) with time-correlated single-photon counting technique. The photoluminescence quantum yields (PLQYs) of the neat film were measured in an integrating sphere. The doped-PMMA films were prepared by dissolving 5.0 mg of the studied complexes and corresponding concentrations of PMMA in 2 mL of CH₂Cl₂ followed by coating 0.5 mL resulting solution onto the surface of a quartz cell or other substrate. After slow evaporation of the solvent, the film was further dried at 60 °C in a vacuum over for 2 h before it was used for PL measurement.

2. Synthesis and characterization of corresponding ancillary ligand (L1-L3) and cationic Ir(III) complexes 1-3

2.1 Synthesis of 2-(1-(4-bromobutyl)-3-methyl-1*H*-1,2,4-triazol-5-yl)pyridine (M2) A mixture of the precursor 2-(3-methyl-1*H*-1,2,4-triazol-5-yl)pyridine (M1) (0.8 g, 5.0 mmol) prepared according to previous report² was dissolved in acetone (30 mL), and the equivalent KOH was added and the mixture was stirred for 0.5 h. Then, 1,4-dibromobutane (1.18 g, 5.5 mmol) in 5 mL acetone was added into the reaction system and the mixture was heated to reflux for overnight. After cooling to room temperature, the mixture was quenched by water and then extracted by dichloromethane. The organic layer was dried with Na₂SO₄ and the solvent was removed. The obtained residues was purified by column chromatography on silica gel with ethyl acetate/petroleum ether (1:3) as the eluent to yield the white solid (58%). ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.66–8.67 (m, 1H), 8.19 (d, *J* = 8 Hz, 1H), 7.80–7.84 (m, 1H), 7.33–7.35 (m, 1H), 4.81 (t, *J* = 7.0 Hz, 2H), 3.46 (t, *J* = 7.0 Hz, 2H), 2.44 (s, 3H), 2.05–2.11 (m, 2H), 1.89–1.95 (m, 2H).

Scheme S1 Synthetic routes of ancillary ligand and the cationic Ir(III) complexes studied in this work.

2.2 Synthesis of ancillary ligand (L1)

A mixture of M2 (0.99 g 3.36 mmol), pyrrole (0.30 g, 4.5 mmol), 50%NaOH (10mL) and tetrabutyl ammonium bromide (TBAB, 0.8 g) in 25 mL toluene was heated at 60°C for 6 h under argon. After cooling to room temperature, the mixture was extracted with CH_2Cl_2 . After washing with water, drying over anhydrous Na₂SO₄, and evaporating the solvents, we purified the residue by column

chromatography on silica gel using the ethyl acetate/petroleum ether (1:6) as eluent, yielding L1. Yield: 57%. ¹H NMR (500 MHz, CDCl₃, ppm): δ 8.63–8.64 (m, 1H), 8.18 (d, *J* = 8.0 Hz, 1H), 7.80–7.83 (m, 1H), 7.32–7.34 (m, 1H), 6.61 (d, *J* = 2.0 Hz, 2H), 6.11 (d, *J* = 2.0 Hz, 1H), 4.79 (t, *J* = 7.0 Hz, 2H), 3.91 (t, *J* = 7.0 Hz, 2H), 2.44 (s, 3H), 1.90–1.94 (m, 2H), 1.80–1.84 (m, 2H).

2.2 Synthesis of ancillary ligand (L2)

The synthesis of ancillary ligand L2 was similar to that of L1 except that the pyrrole was replaced with indole. ¹H NMR (500 MHz, CDCl₃, ppm): 8.57 (d, J = 4.5 Hz, 1H), 8.17 (d, J = 8.0 Hz, 1H), 7.78–7.81 (m, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.29–7.32 (m, 2H), 7.19 (t, J = 7.5 Hz, 1H), 7.10 (t, J = 7.5 Hz, 1H), 7.05 (d, J = 3.0 Hz, 1H), 6.46 (d, J = 3.0 Hz, 1H), 4.79 (t, J = 7.0 Hz, 2H), 4.16 (t, J = 7.0 Hz, 2H), 2.44 (s, 3H), 1.87–1.96 (m, 4H).

2.3 Synthesis of ancillary ligand (L3)

The synthesis of ancillary ligand L3 was similar to that of L1 except that the pyrrole was replaced with carbazole. The obtained ¹H NMR data is same as our previously one. ¹H NMR (500 MHz, CDC13, ppm): δ 8.52 (d, *J* = 4.0 Hz, 1H), 8.14 (d, J = 8.0 Hz, 1H), 8.07 (d, *J* = 7.5 Hz, 2H), 7.34–7.77 (m, 1H), 7.40–7.43 (m, 2H), 7.34–7.36 (m, 2H), 7.25–7.26 (m, 1H), 7.18–7.24 (m, 2H), 4.77 (t, *J* = 7.0 Hz, 2H), 2.43 (s, 3H), 1.97–2.01 (m, 2H), 1.89–1.92 (m, 2H).

2.4 Synthesis of the chloro-bridged dimer [Ir(dfppz)₂Cl]₂

The organometallated dimer $[Ir(dfppz)_2Cl]_2$ was synthesized from reaction of $IrCl_3 \cdot 3H_2O$ (0.81 g, 2.32 mmol) with 1-(2,4-difluorophenyl)-1*H*-pyrazole (dfppz, 0.92 g, 5.10 mmol) in 2-ethoxyethanol and water mixture (V:V = 3:1, 40 mL) for 24 h. The mixture was treated with water (30 mL) to induce precipitation of the yellow solid. The product was filtered out and washed with diethyl ether followed by ethanol and dried (yield: 70%).

2.5 Synthesis and characterization of [Ir(dfppz)₂(L1)](PF₆) (1)

A solution of ligand L1 (0.59 g, 2.1 mmol) and the dichloro-bridged diiridium

complex [Ir(dfppz)Cl]₂ (1.2 g, 1.0 mmol) in 1,2-ethandiol (30 ml) was heated at 150 °C for 12 h in the dark. After cooling to room temperature, the aqueous solution of NH₄PF₆ (1.8 g in 100 mL of deionized water) was slowly added into the reaction mixture under stirring. The obtained yellow suspension was filtrated, and washed with water and methanol. The crude product was purified by silica gel column chromatography using the ethyl acetate/petroleum ether (1:6) to reduce the excessive ancillary ligand L1, followed by the dichloromethane/ethyl acetate (3:2). The product was then recrystallized from dichloromethane and petroleum ether mixture, yielding a white powder (71%). ¹H NMR (500 MHz, d₆–DMSO, ppm): δ 8.63–8.65 (m, 2H), 8.49 (d, *J* = 8.0 Hz, 1H), 8.34 (t, *J* = 8.0 Hz, 1H), 8.04 (d, *J* = 5.5 Hz, 1H), 7.72 (t, *J* = 6.5 Hz, 1H), 7.26 (d, *J* = 2.0 Hz, 1H), 7.04–7.16 (m, 2H), 6.83 (t, *J* = 2.0 Hz, 1H), 6.72 (s, 2H), 5.95 (t, *J* = 2.0 Hz, 2H), 5.58–5.59 (m, 2H), 4.65–4.73 (m, 2H), 3.92–3.94 (m, 2H), 1.82–1.88 (m, 4H), 1.71 (s, 3H). ¹⁹F NMR (470 MHz, d₆-DMSO, ppm): –66.59 (d, *J* = 711.1 Hz, 6F), –109.63 (q, 1F), –110.16 (q, 1F), –119.93 (q, 1F). –120.13 (q, 1F). MS (MALDI-TOF): m/z 832.20 (M–PF6).

2.6 Synthesis and characterization of [Ir(dfppz)₂(L2)](PF₆) (2)

The synthesis of complex **2** was similar to that of complex **1** except that the ancillary ligand **L1** was replaced with **L2**. The crude product was also purified by silica gel column chromatography using the same eluent to yield complex **2** (68%). ¹H NMR (500 MHz, d₆–DMSO, ppm): δ 8.62–8.65 (m, 2H), 8.49 (d, *J* = 8.5 Hz, 1H), 8.30 (t, *J* = 8.0 Hz, 1H), 8.03 (d, *J* = 5.5 Hz, 1H), 7.72 (t, *J* = 7.0 Hz, 1H), 7.63 (d, *J* = 2.0 Hz, 1H), 7.53 (d, *J* = 7.5 Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.36 (d, *J* = 3.0 Hz, 1H), 7.24 (d, *J* = 2.0 Hz, 1H), 7.05–7.14 (m, 3H), 7.02 (t, *J* = 7.0 Hz, 1H), 6.82 (t, *J* = 2.5 Hz, 1H), 6.78 (t, *J* = 2.5 Hz, 1H), 6.42 (d, *J* = 3.5 Hz, 1H), 5.59 (d, *J* = 7.5 Hz, 2H), 4.68–4.75 (m, 2H), 4.23–4.25 (m, 2H), 1.90–1.94 (m, 4H), 1.69 (s, 3H). ¹⁹F NMR (470 MHz, d₆-DMSO, ppm): –66.58 (d, *J* = 711.1 Hz, 6F), –109.62 (q, 1F), –110.15 (q, 1F), –119.91 (q, 1F), –120.11 (q, 1F). MS (MALDI-TOF): m/z 882.23 (M–PF6).

2.7 Synthesis and characterization of [Ir(dfppz)₂(L3)](PF₆) (3)

The synthesis of complex **3** was similar to that of complex **1** except that the ancillary ligand **L1** was replaced with **L3**. The obtained ¹H NMR data is same as our previously one. ¹H NMR (500 MHz, d₆–DMSO, ppm): δ 8.64 (d, *J* = 8 Hz, 1H), 8.60 (d, *J* = 3 Hz, 1H), 8.51 (d, *J* = 8 Hz, 1H), 8.24–8.28 (m, 1H), 8.16 (d, *J* = 8 Hz, 2H), 8.02 (d, *J* = 4.5 Hz, 1H), 7.69–7.72 (m, 1H), 7.59–7.62 (m, 3H), 7.42–7.45 (m, 2H), 7.04–7.21 (m, 5H), 6.79 (t, *J* = 2.5 Hz, 1H), 6.73 (t, *J* = 2.5 Hz, 1H), 5.58 (d, *J* = 8 Hz, 2H), 4.69–4.80 (m, 2H), 4.42–4.47 (m, 2H), 2.01–2.02 (m, 2H), 1.89–1.90 (m, 2H), 1.67 (s, 3H). ¹⁹F NMR (470 MHz, d₆-DMSO, ppm): –66.60 (d, *J* = 711.1 Hz, 6F), – 109.62 (q, 1F), –110.13 (q, 1F), –119.89 (q, 1F), –120.10 (q, 1F). MS (MALDI-TOF): m/z 932.22 (M–PF6).

Fig. S1 Copy of the MALDI-TOF MS spectrum for complex 1.

Fig. S2 Copy of the MALDI-TOF MS spectrum for complex 2.

Fig. S3 Copy of the MALDI-TOF MS spectrum for complex 3.

Table S1. The photoluminescence quantum efficiency (Φ_{PL}) of complexes 1-3 in solutions and in the solid states.

	Photoluminescence quantum efficiency (Φ_{PL})			
	In CH ₃ CN solution In the solid st			
complex 1	9.5%	15.4%		
complex 2	nd ^a	23.6%		
complex 3	nd ^a	45.3%		

^and = not determined because of the weak PL signals.

Fig. S4. Luminescent photograms and emission spectra of complexes 2 and 3 in CH_3CN/H_2O mixtures with different water ratio.

Fig. S5. TEM image of nanoaggregates of complexes 2 (a) and 3 (c) formed in CH_3CN/H_2O mixtures with 90% water fractions. The electron diffraction patterns of the nanoaggregates of complexes 2 (b) and 3 (d).

3. Computational details

Geometry optimizations were performed for the singlet ground state (S₀), the lowest emitting triple excited state (T₁), the lowest ³MC excited state and the transition states for T₁ \rightarrow ³MC conversions using density functional theory (DFT) at the hybrid functional B3LYP level within the Gaussian 09 software package.¹ The 6-31G* basis sets for C, H, N atoms and the LANL2DZ for Ir atom were selected for the geometry optimization. An effective core potential (ECP) replaces the inner core electrons of iridium leaving the outer core (5s)²(5p)⁶ electrons and the (5d)⁶ valence electrons of Ir(III). The nature of the stationary points was confirmed by computing the Hessian at the same level of theory. Intrinsic reaction coordinate (IRC) calculations were also carried out to confirm the transition states connecting two relevant minima. The minimum energy crossing point (MECP) between the S₀ and the ³MC potential energy surface was optimized using Harvey's algorithm, as implemented in the ORCA software.² For MECP optimizations, the B3LYP functional was employed in combination with the def2-svp basis set and the def2-SD(60,MWB) of StuttgartDresden scalar relativistic pseudopotential for (C, N, H) and Ir, respectively. To get relative energies for S₀, T₁, ³MC, Ts (T₁ \rightarrow ³MC) and MECP, single-point calculations with the 6-31G* basis set for C, H, N and LANL2DZ for Ir atom were performed.

Fig. S6. Spin-density distributions (0.003 e·bohr⁻³) calculated for the ³MC states of complexes **1-3**.

 Table S2.
 Selected bond lengths (in angstroms) calculated for complexes 1-3 in different states.

complex 1							
	S_0	T_1	T_1 - ³ MC	³ MC	$^{3}MC/S_{0}$		
Ir-C1	2.02747	2.01682	2.01219	1.99816	1.99272		
Ir-C2	2.02721	2.01513	2.00836	2.01202	2.01707		
Ir-N1	2.05449	2.04678	2.35401	2.50454	2.78535		
Ir-N2	2.05344	2.04825	2.20527	2.51223	2.73894		
Ir-N3	2.23694	2.19144	2.25344	2.25924	2.28271		
Ir-N4	2.20875	2.17594	2.19598	2.20411	2.19204		

complex 2							
	S_0	T_1	T_1 - ³ MC	³ MC	$^{3}MC/S_{0}$		
Ir-C1	2.02765	2.02023	2.01232	1.99946	1.99536		
Ir-C2	2.02740	2.01836	2.01140	2.01271	2.01689		
Ir-N1	2.05406	2.04662	2.37613	2.50368	2.78757		
Ir-N2	2.05431	2.04809	2.21887	2.51709	2.74265		
Ir-N3	2.23671	2.19156	2.24647	2.25508	2.27548		
Ir-N4	2.20741	2.17701	2.19545	2.20327	2.19779		
complex 3							
	S ₀	T_1	T_1 - ³ MC	³ MC	$^{3}MC/S_{0}$		
Ir-C1	2.02796	2.02132	2.01271	1.99979	1.99539		
Ir-C2	2.02712	2.01904	2.01152	2.01295	2.01776		
Ir-N1	2.05545	2.04732	2.37880	2.50382	2.78413		
Ir-N2	2.05348	2.04693	2.21903	2.51183	2.74414		
Ir-N3	2.23575	2.19170	2.24258	2.25745	2.27692		
Ir-N4	2.21030	2.18016	2.19555	2.20376	2.19476		

Electronic Supplementary Information (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 20XX

Fig. S7. Schematic potential energy profiles of the deactivation pathway via the ³MC states for complex **1** (a), **2** (b) and **3** (c).

Fig. S8. Calculated Huang-Rhys factors versus the normal mode wave numbers for complexes **1-3**.

Fig. S9. Emission spectra of complexes 2 (a) and 3 (b) doped PMMA films with different doping ratio (wt%).

Fig. S10. Luminescent photograms of complexes 2 and 3 in CH_3CN with the concentration of 1×10^{-5} M at room temperature (a) and 77 K (b).

Fig. S11. Chemical structure (a) and HOMO and LUMO orbitals of complex $[Ir(dfppz)_2(TRZK)]PF_6$ in solution (b) and in crystal state (c), respectively.

References

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09W, Revision A.02; Gaussian, Inc., Wallingford CT, 2009.

2012, 2, 73.