Well-defined nano-sunflowers formed by self-assembly of a rod-coil amphiphile in water and their morphology transformation based on a water-soluble pillar[5]arene

Yujuan Zhou, Yong Yao,* and Min Xue

Department of Chemistry, Zhejiang University, 310027 Hangzhou, P. R. China; Fax: +86-571-8795-3189; Tel: +86-571-8795-3189; E-mail: yaoyong@zju.edu.cn

Electronic Supplementary Information (5 pages)

1.	Materials and methods	S2
2.	Self-assembly of rod-coil amphiphilie in water	S 3
3.	References	S5

1. Materials and methods

Hydroquinone, 1,10-dibromodecane, Ag₂O, K₂CO₃, CH₃CN, I₂, HIO₃, H₂SO₄, CH₃COOH, 4biphenylboronic acid, tetrakis(triphenylphosphine)palladium(0), 3-ethyl-1-methyl-1H-imidazol-3-ium hexafluorophosphate (V) **M**, and 1-methylimidazole were reagent grade and used as received. Solvents were either employed as purchased or dried according to procedures described in the literatures. Watersoluble pillar[5]arene **WP5** and rod-coil amphiphile were **RCA** prepared according to the literature.^{S1,S2} ¹H NMR spectra were collected on a Varian Unity INOVA-400 spectrometer (Bruker) with internal standard TMS. The TEM images were obtained using a HITACHI instrument with an accelerating voltage of 80 kV. Dynamic light scattering (DLS) was carried out on a Malvern Nanosizer S instrument at room temperature. The fluorescence titration experiments were conducted on a RF-5301 spectrofluorophotometer (Shimadzu Corporation, Japan). EDX was examined by TEM (JEM-1200EX) instrument.

2. Self-assembly of rod-coil amphiphilie in water

Fig. S1 (*a*) ¹ HNMR spectrum (400 Hz, CDCl₃/CD₃CN, rt) of **M**. (*b*) ¹ HNMR spectrum (400 Hz, CD₃COCD₃, rt) of **M** after addition of Ag₂O ^{S3}.

In an aqueous solution of **RCA** (2.00×10^{-5} M, 10.0 mL) which prepared more than 12 hours, 0.10g Ag₂O power was added, after stirring 1h, the excess unsoluble Ag₂O power was removed and the solution was used for further investigated.

Fig. S2 TEM image of nano-sunflowers self-assembled from RCA after addition of Ag_2O and stirred for 1 hour.

Fig. S3 EDX study of nano-sunflowers self-assembled from **RCA** after addition of Ag₂O and stirred for 1 hour.

Fig. S4 (*a*) Fluorescent photographs of RCA after addition of Ag₂O (I) and further addition of WP5 (II). (*b*) TEM image of nano-sunflowers self-assembled from RCA after addition of Ag₂O and stirred for 1 hour and futher addition of WP5.

Fig. S5 TEM image of nano-sunflowers which self-assembled from nanosheets react with Ag_2O first, and then stay for 10 hours.

3. References:

- S1. T. Ogoshi, M. Hashizume, T. Yamagishi and Y. Nakamoto, Chem. Commun., 2010, 46, 3708–3710.
- S2. Y. Yao, X. Chi, Y. Zhou and F. Huang, Chem. Sci., 2014, DOI: 10.1039/C4SC00585F.
- S3. J. C. Garrison and W. J. Youngs, Chem. Rev., 2005, 105, 3978-4008.