Supporting Information

A hybrid polyoxometalate-organic molecular catalyst for visible light driven water oxidation

C. Zhang,^a X. Lin,^a Z. Zhang,^{a,b} L.-S. Long,^c C. Wang,^b and W. Lin^{a,b,c}*

^{*a*}Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China

China ^bDepartment of Chemistry, University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA.

^cState Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

Materials and methods

All reagents were commercially available and used without further purification. $[Co(bpy)_3](ClO_4)_2$ was synthesized according to the literature.¹ The mixture of $[Co(bpy)_3]^{2+}$, $[Co(bpy)_2]^{2+}$ and $[Co(bpy)]^{2+}$ was synthesized according the literature,² and the stoichiometric ratio was validated by the ¹H NMR spectrum ($[Co(bpy)_3]^{2+}$: $[Co(bpy)_2]^{2+}$: $[Co(bpy)_2]^{2+}$ = 1:9:1, See **Fig. S12**).

Elemental analyses of Co, Mo were performed on a PLASMA-SPEC (I) inductively coupled plasma (ICP) atomic emission spectrometer. Thermogravimetric analyses were performed on a SHIMADZU TGA-50 instrument in air atmosphere with a heating rate of 10 °C·min⁻¹. IR spectra were recorded in the range of 400–4000 cm⁻¹ on a Nicolet 330 FT-IR Spectrophotometer with pressed KBr pellets. Cyclic voltammograms were obtained at room temperature in buffered solutions using CHI-660e electrochemistry workstation. Reference electrode: Ag/AgCl (saturated KCl), work electrode: glassy carbon disk electrode (dia 5mm) Single crystal data were collected on a Rigaku R-AXIS RAPID IP diffractometer with graphite-monochromated Mo-Ka radiation ($\lambda = 0.71073$ Å). Suitable crystals were mounted in a thin-glass tube and transferred to the goniostat. The structure of 1 was solved by direct methods and refined by the full-matrix least-squares fit on F^2 using the SHEL-97 and olex2 GUI crystallographic software package.^{3, 4} The photocatalytic water oxidation was carried out in 20 mL 80mM pH=9.0 borate buffer with 300 W Xe lamp equipped with a long-pass filter (420 nm cutoff). The sample was treated by supersonication before illumination. The reaction solution was first degassed by ultrasonication and added to

the photosensitizer, sacrificial electron acceptor and then evacuated to ensure complete air removal. The generated O_2 was analyzed by gas chromatography with a GC-D7900P instrument with a thermal conductivity detector and a 5 Å molecular sieve column (3mm × 2m) using Ar gas as carrier gas.

Syntheses of **1**: A mixture of Na₂MoO₄·2H₂O (0.5 g, 2.07 mmol), Co(Ac)₂·4H₂O (0.05g, 0.201 mmol), 2,2'-bipyridine (0.05g, 0.31mmol), 4, 4'-bis(phosphonomethyl) biphenyl (0.05 g, 0.15 mmol), Na₂HPO₄·4H₂O (0.2 g, 0.56 mmol), and 85% H₃PO₄ (150 μ L) in 12 mL of distilled water was stirred for 30 min. The mixture was then transferred to a 25 mL Teflon-lined stainless steel autoclave and kept at 220 °C for 3days and then slowly cooled to ambient temperature at 8 °C/ h. Black block crystals of **1** were collected by filtering, washing with distilled water, and drying in air. Yield: 0.43g (35% based on 2, 2'-bipyridine). Anal. Calcd. (%) for **1**: C 25.81, H 2.00, N 6.02, Mo 36.65, Co 6.10; found C 25.93, H 2.08, N 5.98, Mo 36.78, Co 6.14. Selected FT-IR data (KBr pellets, **Fig. S8**, ESI): \tilde{v} = 3489 (S, Br), 1637 (m), 1569 (m), 1412 (w), 1057 (s), 1010 (w), 921 (s), 884 (w), 821 (s), and 748(s) cm⁻¹.

	1
Empirical formula	$C_{130}H_{97}Co_{6.5}Mo_{24}N_{26}O_{88}P_2$
Formula weight	6178.88
Temperature/K	173(2)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	29.607(4)
b/Å	26.660(3)
c/Å	24.133(3)
α/°	90.00
β/°	108.178(2)
$\gamma/^{\circ}$	90.00
Volume/Å ³	18097(4)
Ζ	4
$\rho_{calc}mg/mm^3$	2.268
m/mm ⁻¹	2.294
F(000)	11906.0
Crystal size/mm ³	0.3 imes 0.3 imes 0.2
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection	1.44 to 50°

Table S1 Crystal data for 1.

Index ranges	$-21 \le h \le 35, -31 \le k \le 31, -28 \le l \le 28$
Reflections collected	91307
Independent reflections	$31824 [R_{int} = 0.0654, R_{sigma} = 0.0896]$
Data/restraints/parameters	31824/52/2497
Goodness-of-fit on F ²	1.033
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0690, wR_2 = 0.1732$
Final R indexes [all data]	$R_1 = 0.1007, wR_2 = 0.1866$
Largest diff. peak/hole / e Å ⁻³	1.89/-1.32

	BVS	
Mo1	5.786124	Mo ^{VI}
Mo2	5.876053	Mo^{VI}
Mo3	5.320183	Mo ^V
Mo4	5.75744	Mo ^{VI}
Mo5	5.368372	Mo ^V
M06	5.778328	Mo ^{VI}
Mo7	5.275168	Mo^V
M08	5.368472	Mo^V
Mo9	5.81212	Mo ^{VI}
Mo10	5.714077	Mo ^{VI}
Mo11	5.896063	Mo ^{VI}
Mo12	5.937218	Mo ^{VI}
Mo13	5.830258	Mo ^{VI}
Mo14	5.781164	Mo ^{VI}
Mo15	5.86393	Mo ^{VI}
Mo16	5.904925	Mo ^{VI}
Mo17	5.329022	Mo ^V
Mo18	5.277404	Mo ^V
Mo19	5.319688	Mo ^V
Mo20	5.375735	Mo ^V
Mo21	5.846347	Mo ^{VI}
Mo22	5.890628	Mo ^{VI}

Table S2 Bond valence sum (BVS) results.

Mo23	5.781774	Mo ^{VI}
Mo24	5.91979	$\mathrm{Mo}^{\mathrm{VI}}$
Co1	1.836536	Co ^{II}
Co2	1.822622	Co ^{II}
Co3	1.911072	Co ^{II}
Co4	1.846738	Co ^{II}
Co5	1.745866	Co ^{II}
Co6	1.64087	Co ^{II}
Co7	2.145588	Co ^{II}

Fig. S1 XPS spectra of a) Mo 3d region and b) Co 2p region for 1.

Fig. S3 Comparison of the simulated and experimental XRPD patterns of 1.

Fig. S4 The photocatalytic water oxidation activity of 5 μ M **1** (black) and 20 μ M Co(bpy)₃(ClO₄)₂. Other conditions: pH=9 borate buffer solutions, 5 μ M **1**, 1.0 mM [Ru(bpy)₃]Cl₂ and 5.0 mM Na₂S₂O₈; 300W Xe lamp, 420-800 nm; total reaction volume 20mL; vigorous stirring (1.5 × 10³ rpm).

Fig. S5 Photochemical O₂ production in borate buffer solutions at pH=8.5 and pH=9. Other conditions: 5 μ M **1**, 1.0 mM [Ru(bpy)₃]Cl₂ and 5.0 mM Na₂S₂O₈; 300W Xe lamp, 420-800 nm; total reaction volume 20mL; vigorous stirring (1.5 × 10³ rpm).

Fig. S6 FT-IR spectrum of **1** and extractions from the WOC system before and after light illumination.

Cm ⁻¹	Assignment
1598,1571	v (C=C)
1490, 1471, 1440	v (C=C, C=N)
1058, 1020	v (P-O)
944, 856, 800, 760	v (Mo-O)

Table S3 FT-IR assignment for 1.

Fig. S7 DLS measurements of (a) 5μ M **1** before irradiation; (b) 5μ M **1** after irradiation; (c) 20μ M Co(NO)₃•6H₂O after irradiation; (d) 2.7μ M Co(NO)₃•6H₂O after irradiation; (e) 35μ M mixture of $[Co(bpy)]^{2+}$ and $[Co(bpy)_2]^{2+}$ after irradiation. Other condition: 80mM borate buffer solution (pH 9.0, 20 mL); 1mM irradiation time $[Ru(bpy)_3]^{2+}$; 5mM Na₂S₂O₈; 300W Xe lamp (420-800nm); Irradiation time: 1h.

Fig. S8 Photochemical O₂ production of 1.76 μ M mixture of Co(bpy)₃²⁺, Co(bpy)₂²⁺ and Co(bpy)²⁺ (contains 1.6 μ M Co(bpy)²⁺ and Co(bpy)₂²⁺, red), 38.5 μ M mixture of Co(bpy)₃²⁺, Co(bpy)₂²⁺ and Co(bpy)²⁺ (contains 35 μ M Co(bpy)²⁺ and Co(bpy)₂²⁺, blue) and 5 μ M **1** (black). Other conditions: 80 mM borate buffer solution (pH 9.0, 80 mL); 1 mM irradiation time [Ru(bpy)₃]²⁺; 5mM Na₂S₂O₈; 300W Xe lamp (420-800 nm); Irradiation time: 1h.

Fig. S9 The photocatalytic water oxidation activity of 5 μ M **1** after being aged for 0 h, 5 h and 24 h. Other conditions: 80 mM borate buffer solution (pH 9.0, 80 mL); 1 mM irradiation time [Ru(bpy)₃]²⁺; 5mM Na₂S₂O₈; 300W Xe lamp (420-800 nm); Irradiation time: 1h.

Fig. S10 UV-Vis curves of **1** after being aged for 0h (black curve) and 5h (red curve). Other conditions: 80 mM pH 9.0 borate buffer solution.

Fig. S11 CV curves of 1.25 μ M **1** (red curve) and its control experiments in 80 mM pH 9.0 borate buffer. The oxidation onset potential was determined from the intersection of the two tangents drown at the current decrease and background charging current of the CV.⁵ The CV curve of 1 showed large, irreversible oxidative waves that correspond to catalytic water oxidation with an onset potential of ~0.98 V (vs. Ag/AgCl). Meanwhile, the reversible redox potential of [Ru(bpy)₃]³⁺ / [Ru(bpy)₃]²⁺ are located at +1.25V (pH 9.0, vs. Ag/AgCl).⁶ Our proposed mechanism of [Ru(bpy)₃]³⁺ oxidizing cobalt(II) in compound 1 into cobalt(III) is thus thermodynamically feasible.

Fig. S12 ¹H NMR of the mixture of $[Co(bpy)_3]^{2+}$, $[Co(bpy)_2]^{2+}$ and $[Co(bpy)]^{2+}$ in CD₃OD solutions.

References

- 1. F. H. Burstall and R. S. Nyholm, J. Chem. Soc., 1952, 3570-3579.
- 2. F. Qu, T. Q. Nguyen, and A. F. Janzen, J. Fluor. Chem., 1999, 94, 15-26
- 3. G.M. Seldrick, Acta Crystallogr. A, 1990, 64, 467-473
- 4. Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. J. *Appl. Cryst.*, **42**, 339-341.
- 5. W. Alhalash and R. Holze, J. Solid State Electrochem., 2007, 11, 1605.
- 6. (a) W. W. Brandt and G. F. Smith, *Anal. Chem.*, 1949, 21, 1313–1319. (b) X. Chen, C. Q. Yi, M. J. Li, Z. Li, X. R. Wang, *Acta Chim. Sin.*, 2002, 60, 1662–1667.