Supporting Information

David A. Ruiz, Mohand Melaimi, and Guy Bertrand*

Joint CNRS-UCSD Research Laboratory (UMI 3555) Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive, La Jolla, California 92093-0358 guybertrand@ucsd.edu

1. General considerations

All manipulations were performed under an argon atmosphere in either an MBraun glovebox or using standard Schlenk techniques. Glassware was flame dried prior to use. Solvents were dried by standard methods and distilled under argon. Additionally, deuterated solvents used for NMR were purchased from Cambridge Isotope Laboratories, and dried over CaH₂. Multinuclear NMR data were recorded on a Varian INOVA 500 MHz, Bruker 300 MHz and Jeol 500 MHz spectrometers. NMR signals are listed in ppm. Coupling constants *J* are given in Hertz. NMR multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, sept = septet, m = multiplet, br = broad. EPR spectra were obtained using an X-band Bruker E500 spectrometer. Field calibration was accomplished by using a standard of solid 2,2-diphenyl-1-picrylhydrazyl (DPPH), g = 2.0036.^[1] Single crystal X-Ray diffraction data were collected on a Bruker Apex II-CCD detector, using Mo-K_a radiation (λ = 0.71073 Å). Crystals were selected under oil, mounted on nylon loops, then immediately placed in a cold stream of N₂. Structures were solved and refined using SHELXTL and Olex2 software.^[2]

2. Synthesis and characterization

1 CAAC-BH₃:

The literature procedure was followed.^[3] ¹H {11B}NMR (300 MHz, C₆D₆): δ 7.25 (m, 2 H), 7.15 (m, 1 H), 2.87 (sept, J = 6.6 Hz, 2 H), 2.05 (m, 2 H); 1.94 (m, 2 H), 1.63 (s, 2 H), 1.58 (s, 3 H, BH₃), 1.49 (d, J = 6.7 Hz, 6 H), 1.24 (d, J = 6.6 Hz, 6 H), 1.02 (s, 6 H), 1.00 (t, J = 7.4 Hz, 6 H); ¹³C NMR (75 MHz, C₆D₆): δ 145.6 (C_q), 134.3 (C_q), 129.3 (CH_{Ar}), 124.7 (CH_{Ar}), 76.1 (C_q), 60.9 (C_q), 41.5 (CH₂), 33.2 (CH₂), 29.7, 28.9, 26.1, 23.4, 9.6, C_{Carb} was not detected; ¹¹B NMR (96 MHz, C₆D₆): δ -28.5 (q, $J_{BH} = 87.5$ Hz).

2 CAAC-BH₂OTf:

To a solution of 1 (4.0 g, 12.2 mmol) in 50 mL of benzene MeOTf (2.0 mL, 18.3 mmol) was added slowly, and some bubbling occurred. The reaction was stirred overnight and the volatiles were removed under vacuum. The residue was washed with 60 mL of hexanes, and after drying under vacuum, **2** was isolated as a white solid (5.5 g, 95% yield). Colorless single crystals were obtained by vapor diffusion of pentane in a saturated chloroform solution. ¹H {11B} NMR (300 MHz, C₆D₆): δ 7.10 (t, *J* = 7.7 Hz, 1 H), 6.95 (d, *J* = 7.7 Hz, 2 H), 3.24 (br s, 2 H, BH₂), 2.53 (sept, *J* = 6.6 Hz, 2 H), 2.01 (m, 2 H), 1.80 (m, 2 H), 1.49 (s, 2 H), 1.27 (d, *J* = 6.6 Hz, 6 H), 1.06 (d, *J* = 6.6 Hz, 6 H), 0.88 (t, *J* = 7.4 Hz, 6 H), 0.82 (s, 6 H); ¹³C NMR (75 MHz, C₆D₆): δ 144.6 (C_q), 132.1 (C_q), 130.3 (CH_{Ar}), 125.4 (CH_{Ar}), 78.6 (C_q), 62.1 (C_q), 42.2 (CH₂), 31.6 (CH₂), 29.4, 28.7, 25.9, 23.9, 9.6, C_{Carb} was not detected; ¹¹B NMR (96 MHz, C₆D₆): δ -6.1 (br s); ¹⁹F NMR (283 MHz, C₆D₆) δ -76.2.

3a [CAAC-BH₂-NHC]OTf:

A Schlenk tube was loaded with **2** (4.9 g, 10.3 mmol), benzimidazolylidene L_a (2.2 g, 10.1 mmol) and 100 mL of benzene. The reaction was stirred at 80 °C overnight. A suspension was formed. The mixture was cooled to room temperature, and hexanes (60 mL) was added to further induce precipitation. The solid residue obtained by filtration was washed with hexanes (40 mL), and dried under vacuum to give **3a** (6.7 g, 95% yield). ¹H {¹¹B} NMR (300 MHz, CDCl₃): δ 7.83 (m, 2 H), 7.47 (m, 3 H), 7.35 (d, *J* = 8 Hz, 2 H), 4.98 (sept, *J* = 6.5 Hz, 2 H), 2.72 (sept, *J* = 6.6 Hz, 2 H), 2.21 (s, 2 H), 1.90 (br s, 2 H, BH₂), 1.62 (m, 16 H), 1.45 (s, 6 H), 1.39 (d, *J* = 6.6 Hz, 6 H), 1.37 (d, *J* = 6.5 Hz, 6 H), 1.10 (t, *J* = 7.4 Hz, 6 H); ¹³C NMR (125 MHz, CDCl₃): δ 144.3 (C_q), 132.1 (C_q), 131.7 (C_q), 130.4 (CH_{ar}), 126.0 (CH_{ar}), 125.2 (CH_{ar}), 114.8 (CH_{ar}), 80.4 (C_q), 61.6 (C_q), 52.4, 40.4 (CH₂), 31.0 (CH₂), 29.9, 29.6, 26.6, 24.8, 20.9 10.0, C_{Carb CAAC} and C_{carb NHC} were not detected; ¹¹B NMR (96 MHz, CDCl₃): δ -28.6 (t, *J_{BH}* = 82.9 Hz); ¹⁹F NMR (283 MHz, CDCl₃) δ -78.0.

3b [CAAC-BH₂-BAC]OTf:

A Schlenk tube was loaded with **2** (2.6 g, 5.5 mmol), cyclopropenylidene L_b (1.1 g, 4.7 mmol) and 80 mL of benzene. The reaction was stirred at 80 °C overnight. A suspension was formed. The mixture was cooled to room temperature, and hexanes (40 mL) was added to further induce precipitation. The solid obtained by filtration was washed with hexanes (40 mL). The resulting off white solid was dried under vacuum to give **3b** (2.7 g, 80% yield). ¹H NMR (300 MHz, CD₃CN): δ 7.45 (t, *J* = 8 Hz, 1 H), 7.45 (m, 2 H), 4.00 (br s, 4 H), 2.71 (sept, *J* = 6.5 Hz, 2 H), 2.13 (s, 2 H), 1.74 (br s, 2 H, BH₂), 1.68 (m, 2 H), 1.60 (m, 2 H), 1.36 (s, 6 H), 1.32 (m, 36 H), 1.03 (t, *J* = 7.4 Hz, 6 H); ¹³C NMR (CDCl₃, 75 MHz): δ 144.4 (C_q), 141.4 (C_q), 132.5 (C_q), 130.0 (CH_{ar}), 125.6 (CH_{ar}), 79.5 (C_q), 61.3 (C_q), 40.6 (CH₂), 30.8 (CH₂), 29.9, 29.5, 26.6, 24.5, 21.8, 10.0, C_{Carb CAAC} and C_{carb BAC} were not detected; ¹¹B NMR (96 MHz, CDCl₃): δ -27.7 (t, *J_{BH}* = 87.9 Hz); ¹⁹F NMR (283 MHz, CDCl₃) δ -79.3.

4a [CAAC-BH(OTf)-NHC]OTf:

3a (3.0 g, 4.3 mmol) was dissolved in 40 mL of CH₂Cl₂. An excess of triflic acid was added (2-5 eqs.). The solution was stirred and the reaction monitored by ¹¹B NMR. In some cases the process was complete overnight, and in others several days elapsed before completion. Then, the mixture was open to air and cooled in an ice bath. Excess triethylamine (6 eq.) was added to neutralize the excess of triflic acid. The mixture was washed with water (4 x 50 mL). The organic phase was collected, dried with MgSO₄, filtered, and the volatiles were removed, giving an oily residue. 60 mL of ether was added and the emulsion stirred vigorously for several hours, which induced the formation of a powder. After filtration, the solid was dried under vacuum, and 4a was obtained as a white solid (2.6 g, 70 % yield). ¹H NMR (500 MHz, CDCl₃): δ 8.0 (m, 2 H), 7.9 (m, 2 H), 7.87 (d, J = 8.4 Hz, 1 H), 7.69 (d, J = 8.4 Hz, 2 H), 7.62 (m, 4 H), 7.58 (d, J = 7.8 Hz, 1 H), 7.54 (t, J = 7.0 Hz, 1 H), 7.50 (m, 4 H), 7.35 (m, 3 H), 7.17 (d, J = 7.8 Hz, 1 H), 5.48 (sept, J = 7.0 Hz, 2 H), 5.06 (sept, J = 7.0 Hz, 1 H), 4.59 (sept, J = 6.7 Hz, 2 H), 4.01 (sept, J = 6.7 Hz, 1 H), 2.84 (sept, J = 6.5 Hz, 2 H), 2.71 (sept, J = 6.5 Hz, 1 H), 2.59 (sept, J = 6.5 Hz, 2 H), 2.46-2.36 (m, 6 H), 2.21 (m, 4 H), 2.12 (m, 1 H), 1.94 (d, J = 6.8 Hz, 6 H), 1.91 (d, J = 7.0Hz, 6 H), 1.83 (d, J = 7.0 Hz, 6 H), 1.77 (d, J = 6.8 Hz, 6 H), 1.73 (s, 6 H) 1.71 (d, J = 3.0 Hz, 6 H), 1.70 (d, J = 2.7 Hz, 6 H), 1.67 (s, 3 H), 1.54 (d, J = 6.5 Hz, 6 H), 1.43 (m, 16 H), 1.37 (m, 18 H), 1.30 (s, 6 H), 1.25 (s, 3 H), 1.21 (d, J = 6.5 Hz, 6 H), 1.17 (m, 8 H), 1.00 (t, J = 7.3 Hz, 6 H), 0.88 (d, J = 7.0 Hz, 6 H), -0.26 (d, J = 6.6 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ 145.2, 144.2, 144.1, 143.1, 132.5, 132.4, 131.9, 131.6, 131.2, 131.1, 130.9, 127.6, 127.3, 126.8, 126.6, 126.5, 126.2, 122.3, 119.8, 118.9, 116.2, 115.9, 115.8, 115.3, 83.9, 83.2, 64.5, 61.4, 53.6, 53.1, 52.7, 52.6, 46.3, 42.2, 40.5, 32.2, 32.0, 31.6, 31.5, 30.3, 30.0, 29.9, 29.4, 29.2, 27.4, 27.3, 26.5, 26.3, 25.8, 25.6, 25.4, 25.3, 24.7, 22.5, 22.2, 22.1, 21.3, 21.2, 21.1, 20.8, 20.7, 11.0, 10.7, 10.0, 9.6, 8.9; ¹¹B NMR (96 MHz, CDCl₃): δ -7.5 (br s); ¹⁹F NMR (283 MHz, CDCl₃) δ -75.4, -78.1. 4a and NaBPh₄ were stirred for 2 hours at room temperature in CH₂Cl₂. After filtration, the solution was evaporated to give the corresponding BPh_4 salt, which was crystallized by slow diffusion of pentane in a saturated CH₂Cl₂ solution.

4b [CAAC-BH(OTf)-BAC]OTf:

3b (2.0 g, 2.8 mmol) was dissolved in 30 mL of CH₂Cl₂, and an excess of triflic acid was added (2-5 eqs.). The solution was stirred and the reaction monitored by ¹¹B NMR. In some cases the process was complete overnight, and in others several days elapsed before completion. Then, the mixture was open to air and cooled in an ice bath. Excess triethylamine (6 eq.) was added to neutralize the excess of triflic acid. The mixture was washed with water (4 x 50 mL). The organic phase was collected, dried with MgSO₄, filtered, and the volatiles were removed, giving an oily residue. 60 mL of ether was added and the emulsion stirred vigorously for several hours, which induced the formation of a powder. After filtration, the solid was dried under vacuum, and 4b was obtained as an off white solid (1.6 g, 67 % yield). ¹H NMR (300 MHz, CDCl₃): δ 7.45 (t, J = 7.8 Hz, 1H), 7.29 (m, 2H), 4.19 (br, 1 H), 4.04 (sept, J = 6.5 Hz, 2 H), 3.80 (br, 1 H, BH), 2.66 (sept, J = 6.5 Hz, 1 H), 2.52 (sept, J = 6.5 Hz, 1 H), 2.24 (m, 2 H), 1.93 (m, 1 H), 1.71 (m, 2 H), 1.45-1.21 (m, 43 H), 1.08 (m, 6 H); ¹³C NMR (CDCl₃, 75 MHz): δ 143.9 (C_q), 143.8 (C_q), 141.0 (Cq), 140.5 (Cq), 131.7 (Cq), 130.8 (CHAr), 126.2 (CHAr), 126.1 (CHAr), 82.9 (Cq), 62.1 (C_a), 52.3, 41.0 (CH₂), 31.8 (CH₂), 29.9 (CH₂), 29.5, 29.1, 25.6, 25.4, 25.3, 25.2, 22.7, 22.2, 22.1, 22.0, 21.7, 21.0, 10.0, 9.7, C_{Carb CAAC} and C_{carb BAC} were not detected; ¹¹B NMR (96 MHz, CDCl₃): δ -5.1 (br s); ¹⁹F NMR (283 MHz, CDCl₃) δ -76.2, -78.0. 4b and NaBPh₄ were stirred for 2 hours at room temperature in CH₂Cl₂. After filtration, the solution was evaporated to give the corresponding BPh₄ salt, which was crystallized by slow diffusion of pentane in a saturated CH₂Cl₂ solution.

5a CAAC-BH-NHC:

4a (2.0 g, 2.4 mmol) and KC₈ (800 mg, 5.9 mmol) were loaded into a Schlenk tube. 20 mL of THF was added, which induces an immediate deep blue color. The mixture was stirred for 3 hours. The volatiles were removed, and the residue was extracted with 40 mL of pentane. The solution was evaporated to dryness, which gave **5a** as a blue solid (1.1 g, 87 % yield). Single crystals were obtained by slow evaporation of a saturated pentane solution. M.p.: 112 °C (dec.); ¹H {¹¹B} NMR (300 MHz, C₆D₆): δ 6.99 (br s, 3 H), 6.94 (m, 2 H), 6.71 (m, 2 H), 5.47 (sept, *J* = 6.7 Hz, 2 H), 3.63 (sept, *J* = 6.5 Hz, 2 H), 2.51 (s, 1 H, B*H*), 1.86 (s, 2 H), 1.51 (m, 2 H), 1.49 (m, 2 H), 1.40 (d, *J* = 6.6 Hz, 6 H), 1.35 (d, *J* = 6.6 Hz, 6 H), 1.20 (s, 6 H), 1.07 (d, *J* = 7.0, 12 H), 0.97 (t, *J* = 7.4, 6 H); ¹³C NMR (75 MHz, C₆D₆): δ 151.4 (C_q), 140.0 (C_q), 133.1 (C_q), 126.6 (CH_{ar}), 124.3 (CH_{ar}), 122.2 (CH_{ar}), 112.7 (CH_{ar}), 63.7 (C_q), 52.1 (C_q), 51.2, 47.3 (CH₂), 35.6 (CH₂), 31.0, 28.8, 28.0, 24.4, 20.5, 10.7, C_{Carb_CAAC} and C_{carb_NHC} were not detected; ¹¹B NMR (96 MHz, CDCl₃): δ -1.3 (d, *J_{BH}* = 82.4 Hz).

5b CAAC-BH-BAC:

4b (1.5 g, 1.7 mmol) and KC₈ (600 mg, 4.4 mmol) were loaded into a Schlenk flask. 20 mL of THF was added which induced an immediate deep red color. The mixture was stirred for 3 hours. The volatiles were evaporated, and the residue was extracted with 40 mL of pentane. The solution was evaporated to dryness, which gave **5b** as a red solid (0.8 g, 82 % yield). Single crystals were obtained by slow evaporation of a saturated pentane solution. M.p.: 135 °C (dec.); ¹H {¹¹B} NMR (300 MHz, C₆D₆): δ 7.16 (br, 1 H), 7.00 (br, 2 H), 3.59-3.38 (m, 6 H), 2.73 (s, 1 H, B*H*), 1.98 (q, *J* = 7.4 Hz, 4 H), 1.91 (s, 2 H), 1.49 (d, *J* = 6.6 Hz, 6 H), 1.30 (d, *J* = 6.8 Hz, 6 H), 1.22 (s, 6 H), 1.09 (t, *J* = 7.4 Hz, 6 H), 0.86 (d, *J* = 6.8 Hz, 24 H); ¹³C NMR (75 MHz, C₆D₆): δ 150.7 (C_q), 140.0 (C_q), 135.1 (C_q), 126.7 (CH_{ar}), 124.2 (CH_{ar}), 64.7 (C_q), 52.2 (C_q), 50.0, 48.3 (CH₂), 34.9 (CH₂), 30.8, 29.0, 27.9, 24.5, 22.3, 10.5, C_{Carb_CAAC} and C_{carb_BAC} were not detected; ¹¹B NMR (96 MHz, C₆D₆): δ 0.8 (d, *J_{BH}* = 89.7 Hz).

Figure S30 UV-Vis spectra of 5a and 5b in THF (1 mg/mL)

Protonation of **5a,b**:

TfOH (1.2 eq) was added at room temperature to a benzene solution (5 mL) of **5a,b** (100 mg, 0.19 mmol; 100 mg, 0.18 mmol). The solution immediately turned colorless. After stirring for 30 minutes, the volatiles were removed under vacuum, and the residue was extracted with 10 mL of dichloromethane. The solvent was removed and the residue was washed with hexanes. ¹H, ¹³C, ¹¹B, and ¹⁹F NMR were identical to those of **3a,b**. **3a:** 110 mg, 86 % yield; **3b**: 107 mg, 85 % yield). Further TfOH addition lead to compounds **4a,b** as described above.

Observation of **6b**:

4b (100 mg, 0.116 mmol) was dissolved in 5 mL of DME. To the stirred solution, one equivalent of KC₈ was added. The colorless solution became red immediately. An aliquot was taken and checked by NMR and EPR. The ¹H, ¹³C and ¹¹B NMR were silent, but one fluorine signal corresponding to a free triflate group was observed (-78.1 ppm).

3. Crystal structure parameters

Figure S31 Molecular structure of 2 in the solid state. Hydrogen atoms, except the B-H, are omitted for clarity

2 CCDC (1001687)

Empirical formula Formula weight Temperature/K Crystal system Space group a/Å b/Å C₂₃H₃₇BF₃NO₃S 475.41 100 monoclinic P2₁/n 11.1389(6) 13.5546(7)

c/Å	16.2662(9)
α/°	90.00
β/°	95.4560(10)
$\gamma/^{\circ}$	90.00
Volume/Å ³	2444.8(2)
Ζ	4
$\rho_{calc} mg/mm^3$	1.292
m/mm ⁻¹	0.180
F(000)	1016.0
Crystal size/mm ³	$0.32 \times 0.17 \times 0.15$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection	4.26 to 58.72°
Index ranges	$-15 \le h \le 14, -18 \le k \le 13, -21 \le l \le 22$
Reflections collected	19841
Independent reflections	$6162 [R_{int} = 0.0132, R_{sigma} = 0.0121]$
Data/restraints/parameters	6162/0/401
Goodness-of-fit on F^2	1.053
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0326$, $wR_2 = 0.0872$
Final R indexes [all data]	$R_1 = 0.0346$, $wR_2 = 0.0889$
Largest diff. peak/hole / e Å ⁻³	0.44/-0.32

Figure S32 Molecular structure of 4a(BPh₄) in the solid state. Hydrogen atoms, except the B-H, and the BPh₄ anion are omitted for clarity.

4a(BPh₄) CCDC (1001686)

Empirical formula	$C_{60}H_{74}B_2F_3N_3O_3S$
Formula weight	995.90
Temperature/K	100
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	14.2524(5)
b/Å	13.4771(5)
c/Å	28.1965(9)
α/°	90
β/°	91.7220(10)
$\gamma^{\prime \circ}$	90
Volume/Å ³	5413.6(3)
Z	4
$\rho_{calc} mg/mm^3$	1.222
m/mm ⁻¹	0.118
F(000)	2128.0
Crystal size/mm ³	0.25 imes 0.22 imes 0.18
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection	5.018 to 52.78°
Index ranges	$-17 \le h \le 17, -16 \le k \le 16, -33 \le l \le 34$
Reflections collected	34655
Independent reflections	$10835 [R_{int} = 0.0671, R_{sigma} = 0.0686]$
Data/restraints/parameters	10835/0/661
Goodness-of-fit on F ²	1.021
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0479, wR_2 = 0.1248$
Final R indexes [all data]	$R_1 = 0.0620, wR_2 = 0.1350$
Largest diff. peak/hole / e Å ⁻³	0.56/-0.49

Figure S33 Molecular structure of **4b(BPh₄)** in the solid state. Hydrogen atoms, except the B-H, and the BPh₄ anion are omitted for clarity.

4b(BPh₄) CCDC (1001685)

Empirical formula	$C_{62}H_{84}B_{2}F_{3}N_{3}O_{3}S$
Formula weight	1030.00
Temperature/K	100
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	22.260(12)
b/Å	13.788(7)
c/Å	19.769(10)
$\alpha/^{\circ}$	90.00
β/°	106.570(7)
$\gamma/^{\circ}$	90.00
Volume/Å ³	5816(5)
Ζ	4
$\rho_{calc} mg/mm^3$	1.176
m/mm ⁻¹	0.112
F(000)	2216.0
Crystal size/mm ³	0.28 imes 0.14 imes 0.11
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection	4.82 to 46.56°
Index ranges	$-24 \le h \le 24, -15 \le k \le 13, -21 \le l \le 20$
Reflections collected	24181

Independent reflections	$8342 [R_{int} = 0.1417, R_{sigma} = 0.2426]$
Data/restraints/parameters	8342/79/763
Goodness-of-fit on F^2	0.787
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0522$, $wR_2 = 0.0744$
Final R indexes [all data]	$R_1 = 0.1833, wR_2 = 0.0995$
Largest diff. peak/hole / e Å ⁻³	0.35/-0.30
- CCDC (1001/04)	
5a CCDC (1001684)	
Empirical formula	$C_{35}H_{54}BN_3$
Formula weight	527.62
Temperature/K	100.0
Crystal system	monoclinic
Space group	$P2_1/n$
a/A	16.2182(7)
b/A	9.3515(4)
c/Å	21.6436(10)
$\alpha/^{\circ}$	90
β/°	104.492(2)
$\gamma/^{\circ}$	90
Volume/Å ³	3178.1(2)
Z	4
$\rho_{calc} mg/mm^3$	1.103
m/mm ⁻¹	0.063
F(000)	1160.0
Crystal size/mm ³	0.2 imes 0.18 imes 0.16
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection	2.826 to 52.794°
Index ranges	$-19 \le h \le 20, -11 \le k \le 11, -24 \le l \le 27$
Reflections collected	22614
Independent reflections	$6500 [R_{int} = 0.0372, R_{sigma} = 0.0422]$
Data/restraints/parameters	6500/0/359
Goodness-of-fit on F ²	1.111
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0492$, $wR_2 = 0.1318$
Final R indexes [all data]	$R_1 = 0.0786$, $wR_2 = 0.1654$
Largest diff. peak/hole / e Å ⁻³	0.39/-0.58
~ i	

5b CCDC (1001683) Empirical formula Formula weight Temperature/K Crystal system Space group a/Å

 $\begin{array}{c} C_{39.5}H_{70}BN_{3}\\ 597.80\end{array}$ 100 monoclinic C2/c 27.415(5)

b/Å	18.243(4)
c/Å	17.305(3)
α/°	90.00
β/°	114.471(2)
γ/°	90.00
Volume/Å ³	7877(3)
Z	8
$\rho_{calc}mg/mm^3$	1.008
m/mm ⁻¹	0.057
F(000)	2664.0
Crystal size/mm ³	$0.20\times0.18\times0.15$
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection	4.22 to 68.72°
Index ranges	$-43 \le h \le 39, -28 \le k \le 28, -19 \le l \le 27$
Reflections collected	32951
Independent reflections	15374 [$R_{int} = 0.0609, R_{sigma} = 0.0878$]
Data/restraints/parameters	15374/0/587
Goodness-of-fit on F^2	1.020
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0629, wR_2 = 0.1547$
Final R indexes [all data]	$R_1 = 0.1173, wR_2 = 0.1813$
Largest diff. peak/hole / e Å ⁻³	0.93/-0.46

4. Computational details

Calculations were performed with the Gaussian 09 program package^[4] using the BVP86/6-311+g(2d,p) and (U)BVP86/6- $311+g(2d,p)^{[5]}$ level of theory. All energies were corrected for (unscaled) zero-point vibrational energy contributions with this method. The structures represented here correspond to energetic minima indicated by the absence of negative frequencies. The cartesian coordinates are as follows:

5a

ZPE = -1555.016793 a.u.

Atomic Number	Coordinates (Angstroms)		
	Λ	1	<i>L</i>
7	-2.760659	-0.857173	-0.265591
7	-2.580762	1.353835	-0.179798
6	-6.431988	-0.107274	-0.614238
1	-7.417805	-0.560432	-0.731193
6	-5.306048	-0.936664	-0.525217
1	-5.421102	-2.017437	-0.566294
6	-4.052987	-0.332354	-0.377258
6	-1.827142	0.180578	-0.154761
6	0.737070	-0.471513	0.696495

6	2.700331	0.346806	-0.646261
6	3.109515	1.708896	-0.580058
6	2.737818	2.643597	0.569805
1	2.228910	2.039839	1.335354
6	1.736394	3.711162	0.077114
1	2.216539	4.406133	-0.630019
1	1.357756	4.304707	0.924503
1	0.886042	3.244597	-0.436134
6	-6.312163	1.286928	-0.555191
1	-7.205726	1.909634	-0.624704
6	-2.373278	-2.199003	-0.767137
1	-1.290994	-2.234018	-0.582590
6	-2.601163	-2.291612	-2.283309
1	-3.665712	-2.194611	-2.540941
1	-2.249093	-3.265787	-2.653377
1	-2.040983	-1.503865	-2.805553
6	-3.049732	-3.350627	-0.011988
1	-3.043844	-3.190006	1.074317
1	-2.507541	-4.283828	-0.222094
1	-4.090068	-3.504755	-0.329145
6	-1.993030	2.683880	0.066198
1	-0.931651	2.455643	0.243548
6	-2.093856	3.577711	-1.174720
1	-1.627167	3.087977	-2.040822
1	-1.568126	4.526379	-0.992520
1	-3.135863	3.815114	-1.434652
6	-2.553503	3.329942	1.340700
1	-3.619779	3.580723	1.259057
1	-2.004637	4.260442	1.546614
1	-2.423498	2.660175	2.202504
6	-3.933879	1.074633	-0.323305
6	-5.061390	1.899994	-0.413189
1	-4.981084	2.985309	-0.384809
6	0.542209	-1.163138	2.065742
6	1.982120	-1.342697	2.628223
1	2.121823	-0.699822	3.509922
1	2.169221	-2.373820	2.962450
6	3.759728	-2.143896	0.962400
1	3.080182	-2.900739	0.552348
1	4.361238	-2.615093	1.755489
1	4.449292	-1.826876	0.166561
6	2.901760	-0.387395	-1.847837
6	3.597398	0.218379	-2.904964
1	3.764902	-0.348294	-3.823963
6	4.073114	1.523148	-2.812797
1	4.626093	1.969809	-3.642291

6	3.808352	2.261912	-1.663869
1	4.138302	3.301909	-1.608130
6	3.948886	3.350466	1.210877
1	4.708981	2.643052	1.566673
1	3.622735	3.961468	2.067373
1	4.436106	4.030251	0.494735
6	2.336648	-1.785570	-2.079794
1	1.897440	-2.124199	-1.131728
6	1.198410	-1.729433	-3.119590
1	0.419389	-1.023419	-2.799989
1	0.741333	-2.724020	-3.244591
1	1.575993	-1.408230	-4.103266
6	3.400737	-2.809497	-2.521574
1	3.821578	-2.553808	-3.506290
1	2.950444	-3.810695	-2.610766
1	4.235405	-2.875390	-1.809921
6	4.049671	0.027805	2.118327
1	4.739845	0.386492	1.341441
1	4.645708	-0.505039	2.875336
1	3.580774	0.891983	2.605830
6	-0.211515	-2.515117	1.999081
1	-0.302035	-2.903026	3.027901
1	-1.239306	-2.306315	1.669427
6	0.400294	-3.613378	1.126764
1	0.539511	-3.277815	0.087551
1	-0.246428	-4.503937	1.112825
1	1.380678	-3.937135	1.506431
6	-0.268846	-0.199338	2.991913
1	0.251909	0.772894	2.988963
1	-1.245832	-0.016903	2.518192
6	-0.482857	-0.656711	4.443067
1	-1.136498	-1.538492	4.512327
1	-0.959795	0.145443	5.026820
1	0.464969	-0.904581	4.946336
5	-0.282899	0.182652	-0.177492
1	0.137025	1.025567	-0.941961
7	2.116572	-0.287318	0.510741
6	2.998402	-0.932590	1.538171

5b

ZPE = -1637.070368 a.u.

Atomic	Coordin	ates (Angs	troms)	
Number	Х	Y	Z	

7	2.573481	-0.529452	-0.288128
7	-3.116079	2.168925	-0.099532
7	-3.294795	-1.591727	0.338662
5	0.159875	0.239096	-0.053507
6	-1.364320	0.169519	-0.087023
6	-2.644290	-0.427759	0.090209
6	-2.563973	0.943602	-0.028665
6	1.203408	-0.690494	-0.581087
6	1.129503	-1.757570	-1.689491
6	2.452724	-2.541227	-1.501529
6	3.477599	-1.573404	-0.873535
6	3.066453	0.426608	0.668173
6	3.622436	1.656015	0.220022
6	4.199158	2.524867	1.159456
6	4.201901	2.225130	2.518542
6	3.587743	1.055451	2.959158
6	3.005020	0.147956	2.062160
6	-0.070845	-2.715027	-1.560337
6	-0.143117	-3.813308	-2.632599
6	1.127203	-1.058764	-3.094714
6	-0.186009	-0.404300	-3.531418
6	4.316488	-2.292524	0.199668
6	4.466402	-1.014490	-1.918248
6	3.531759	2.124285	-1.229871
6	4.888206	2.552235	-1.821523
6	2.517398	3.280814	-1.353062
6	2.282137	-1.064929	2.643399
6	3.175320	-1.907500	3.576072
6	1.008198	-0.624151	3.395284
6	-2.254135	3.362007	-0.324546
6	-1.342254	3.642007	0.877788
6	-1.476426	3.250658	-1.640442
6	-4.572459	2.368484	0.058164
6	-5.214724	2.964472	-1.204733
6	-4.919573	3.180443	1.315249
6	-2.489300	-2.678808	0.959388
6	-2.753955	-4.044352	0.313914
6	-2.648431	-2.743477	2.487333
6	-4.770684	-1.701442	0.333373
6	-5.351215	-1.260854	-1.017392
6	-5.455849	-1.017792	1.531868
1	2.278372	-3.375464	-0.801755
1	2.831399	-2.973653	-2.439546
1	4.641526	3.463413	0.816826
1	4.661363	2.910604	3.234673
1	3.554684	0.840031	4.030063

1	-0.008412	-3.189925	-0.567961
1	-1.004297	-2.131743	-1.571137
1	-0.267983	-3.396813	-3.643218
1	-0.996345	-4.483994	-2.448083
1	0.763659	-4.437497	-2.641105
1	1.916023	-0.291811	-3.090360
1	1.431105	-1.804854	-3.851008
1	-0.974513	-1.146310	-3.730875
1	-0.037933	0.172785	-4.457395
1	-0.551341	0.280940	-2.752561
1	4.991720	-1.594915	0.716784
1	4.934710	-3.067787	-0.279107
1	3.677448	-2.782647	0.945040
1	3.960204	-0.519962	-2.756813
1	5.069320	-1.840057	-2.327851
1	5.158074	-0.298391	-1.453542
1	3.140079	1.284841	-1.819778
1	5.283950	3.445935	-1.314093
1	4.777379	2.805318	-2.887679
1	5.647190	1.761375	-1.738581
1	1.539541	2.981155	-0.954665
1	2.390988	3.570891	-2.408462
1	2.860484	4.168418	-0.797641
1	1.955867	-1.690362	1.799726
1	4.110577	-2.216747	3.088761
1	2.640310	-2.814937	3.898322
1	3.444896	-1.348903	4.485849
1	1.255205	0.024549	4.251233
1	0.471859	-1.504499	3.785391
1	0.335826	-0.075692	2.720869
1	-2.960866	4.201692	-0.415937
1	-1.928748	3.756667	1.800878
1	-0.777922	4.572482	0.713011
1	-0.619516	2.825877	1.018922
1	-0.754223	2.421890	-1.596976
1	-0.918444	4.180086	-1.828221
1	-2.157252	3.078505	-2.486799
1	-4.980947	1.358384	0.186665
1	-4.876681	3.994741	-1.390330
1	-6.308770	2.994398	-1.090263
1	-4.977242	2.360656	-2.092023
1	-4.494193	2.716237	2.216286
1	-6.011832	3.238084	1.438948
1	-4.540924	4.211551	1.249166
1	-1.450060	-2.389118	0.749072
1	-3.741858	-4.449656	0.583077

1	-2.005201	-4.768557	0.667127
1	-2.684908	-3.988619	-0.780685
1	-2.471316	-1.760992	2.946554
1	-1.914918	-3.449502	2.906220
1	-3.648515	-3.098315	2.781177
1	-4.967379	-2.780352	0.425027
1	-5.151734	-0.199932	-1.223681
1	-6.441406	-1.406905	-1.029732
1	-4.912193	-1.847711	-1.836212
1	-5.119091	-1.450949	2.482317
1	-6.547476	-1.144998	1.467719
1	-5.244060	0.058952	1.568647
1	0.562126	1.258127	0.466208

6b

ZPE = -1636.908744 a.u.

Atomic Number	Coordinates (Angstroms) $X \qquad V \qquad 7$		
		*	-
7	-2.554550	-0.425371	0.394967
7	3.169476	2.092631	-0.051597
7	3.195151	-1.650754	-0.452065
5	-0.174242	0.282383	-0.007859
6	1.372791	0.172330	0.015961
6	2.593185	-0.493820	-0.190644
6	2.572120	0.907680	-0.071076
6	-1.243321	-0.502304	0.754141
6	-1.134734	-1.332922	2.042986
6	-2.488206	-2.091008	2.069223
6	-3.496114	-1.272890	1.238316
6	-3.051083	0.316978	-0.754244
6	-3.559200	1.629807	-0.578200
6	-4.123189	2.272120	-1.690796
6	-4.166962	1.662825	-2.940732
6	-3.609194	0.398363	-3.106854
6	-3.036743	-0.298688	-2.032947
6	0.040246	-2.335499	2.022259
6	0.127578	-3.239639	3.260317
6	-1.034817	-0.375264	3.280183
6	0.313916	0.305050	3.524613
6	-4.375379	-2.178849	0.365678
6	-4.428251	-0.417589	2.114120
6	-3.442099	2.424181	0.721404
6	-4.786733	3.006947	1.199471

6	-2.412748	3.563435	0.561069
6	-2.374727	-1.644846	-2.322859
6	-3.311498	-2.630091	-3.049964
6	-1.084840	-1.441130	-3.145538
6	2.358774	3.351009	0.012915
6	1.538122	3.549022	-1.266323
6	1.514779	3.427642	1.287311
6	4.655124	2.221334	-0.080926
6	5.189849	2.816633	1.228174
6	5.138044	2.991484	-1.315921
6	2.347012	-2.862669	-0.676134
6	2.697805	-3.987586	0.303387
6	2.414223	-3.327039	-2.136618
6	4.668481	-1.782590	-0.657320
6	5.445312	-1.464310	0.625676
6	5.154207	-1.026426	-1.900028
1	-2.358865	-3.080706	1.603113
1	-2.856632	-2.256867	3.090329
1	-4.525985	3.279850	-1.573019
1	-4.618717	2.180068	-3.789337
1	-3.614166	-0.062297	-4.096595
1	-0.072514	-2.967977	1.126063
1	0.987058	-1.786526	1.902365
1	0.302630	-2.665840	4.181553
1	0.956314	-3.955393	3.159598
1	-0.790793	-3.827608	3.403617
1	-1.813260	0.396952	3.183337
1	-1.307345	-0.962682	4.172242
1	1.103275	-0.419244	3.773093
1	0.235808	1.004598	4.369718
1	0.646631	0.878670	2.648378
1	-5.045253	-1.595806	-0.281777
1	-5.001401	-2.796353	1.025958
1	-3.777312	-2.855634	-0.256735
1	-3.886539	0.238146	2.807062
1	-5.055724	-1.092474	2.714204
1	-5.099364	0.194760	1.498573
1	-3.061125	1.750427	1.501202
1	-5.154888	3.780934	0.509742
1	-4.665937	3.481686	2.184703
1	-5.570787	2.242131	1.284564
1	-1.435725	3.175772	0.243113
1	-2.283154	4.098175	1.514538
1	-2.748096	4.294061	-0.190549
1	-2.082321	-2.096030	-1.362982
1	-4.261229	-2.769842	-2.515884

1	-2.826481	-3.612998	-3.149747
1	-3.550837	-2.282387	-4.065734
1	-1.308696	-0.986714	-4.122465
1	-0.592618	-2.408128	-3.331683
1	-0.377564	-0.781021	-2.622163
1	3.111365	4.150480	0.060874
1	2.181002	3.541983	-2.157564
1	1.021010	4.518551	-1.228413
1	0.776857	2.764318	-1.378092
1	0.718223	2.670647	1.290757
1	1.034015	4.414208	1.349561
1	2.133256	3.291029	2.185241
1	5.023260	1.191011	-0.156720
1	4.869771	3.859369	1.369199
1	6.289177	2.813653	1.211675
1	4.858473	2.232334	2.098116
1	4.763858	2.539117	-2.245174
1	6.236923	2.980694	-1.348166
1	4.824037	4.045291	-1.294186
1	1.323049	-2.522391	-0.470101
1	3.696145	-4.408146	0.110587
1	1.976782	-4.810013	0.191745
1	2.662305	-3.639970	1.344354
1	2.132939	-2.521217	-2.828073
1	1.716788	-4.163824	-2.286055
1	3.416730	-3.690041	-2.408333
1	4.812039	-2.853430	-0.858322
1	5.290136	-0.430058	0.962585
1	6.522678	-1.604544	0.458108
1	5.137099	-2.131111	1.442780
1	4.642402	-1.386201	-2.802829
1	6.233728	-1.184317	-2.035759
1	4.980858	0.055078	-1.826787
1	-0.563007	1.146233	-0.749704

Mulliken atomic spin densities:

1 N 0.285080	11 C -0.062436	21 C	0.003746
2 N 0.036522	12 C -0.022417	22 C	0.005529
3 N 0.026285	13 C 0.009536	23 C	0.027897
4 B 0.490116	14 C -0.011296	24 C	-0.005013
5 C -0.066068	15 C 0.001992	25 C	-0.003431
6 C 0.026394	16 C 0.004946	26 C	0.008604
7 C 0.035665	17 C -0.004610	27 C	0.010823
8 C 0.224405	18 C 0.037741	28 C	-0.006462
9 C -0.050901	19 C 0.003077	29 C	0.002006
10 C 0.007482	20 C 0.003531	30 C	-0.017270

31 C 0.008947	77 H 0.000212
32 C 0.006278	77 H -0.000212 78 H -0.000020
33 C -0.002930	79 H 0.000142
34 C 0.001730	80 H 0.000566
35 C 0.002345	81 H 0.001529
36 C 0.006848	82 H 0.000799
37 C 0.006286	83 H 0.000183
38 C 0.000200	84 H -0.000136
39 C -0.003662	85 H -0.000110
40 C 0.001757	86 H 0 000005
40 C 0.001737 41 C 0.001625	87 H -0.000078
42 H -0.000096	88 H -0.000076
42 H -0.000513	89 H 0.000592
45 H -0.000315 44 H 0.000778	90 H _0.0000392
44 II 0.000778	01 H 0.001685
46 H 0 000680	92 H _0 000090
40 H 0.000000 47 H -0.003730	93 H _0.000050
47 H -0.003750 48 H -0.001569	94 H _0.000183
48 H -0.001305	95 H 0.000105
50 H 0.000389	96 H 0.000595
50 H 0.000589	97 H 0.000011
52 H 0.000461	98 H 0.000179
52 H 0.001710	98 H 0.000179
54 H 0.000842	100 H 0 000076
54 II 0.000842	100 II 0.000070
56 H 0.002077	101 H -0.000039 102 H -0.000056
57 H 0.002577	102 H - 0.000030
57 H -0.000555	103 H -0.000129
50 H 0.000020	104 H -0.000028
59 H 0.00009	103 H -0.03/112
61 H = 0.002248	Sum of Mullikon atomia
62 H 0.000602	sum of Mulliken atomic
62 H -0.000095	spin densities – 1.00
64 H 0.000939	
64 H -0.000031	
65 H 0.000001	
60 H 0.000000	
6/ H -0.0010//	
68 H 0.000040	
09 H U.UUU839	
/U H U.UUU861	
/1 H -0.000041	
72 H -0.000055	
/3 H -U.UUUU86	
/4 H 0.001330	
/5 H -0.000032	
76 H -0.002004	

References:

- 1. J. Krzystek, A. Sienkiewicz, L. Pardi and L. C. Brunel, J. Magn. Reson., 1997, 125, 207.
- 2. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
- 3. G. D. Frey, J. D. Masuda, B. Donnadieu and G. Bertrand, Angew. Chem., Int. Ed., 2010, 49, 9444.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision B.01, Gaussian Inc. Wallingford CT, 2009.
- (a) R. Krishan, J. S. Binkley, R. Seeger and J. A. J. Pople, *Chem. Phys.*, 1980, **72**, 650;
 (b) A. D. McLean and G. S. J. Chandler, *Chem. Phys.*, 1980, **72**, 5639; (c) T. Clark, J. Chandrasekhar, G. W. Spitznagel and P. v. R. Schleyer, *J. Comput. Chem.*, 1983, **4**, 294;
 (d) J. P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822.