Supporting Information

# The influence of S-to-S bridge in diiron dithiolate models on the oxidation reaction: A mimic of the $H_{ox}^{air}$ state of [FeFe]-hydrogenases

Dehua Zheng,<sup>*a*</sup> Mei Wang,<sup>*a*</sup> Lin Chen,<sup>*a*</sup> Ning Wang,<sup>*a*,*b*</sup> Minglun Cheng<sup>*a*</sup> and Licheng Sun<sup>*a*,*c*</sup>

 <sup>a</sup>State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China. E-mail: symbueno@dlut.edu.cn
 <sup>b</sup>School of Chemistry and Chemical Engineering, HenanUniversity of Technology, Zhengzhou 450001, China
 <sup>c</sup>Department of Chemistry, KTH Royal Institute of Technology, Stockholm10044, Sweden

### **Experimental Section**

#### Materials and instruments

**Materials.** Preparation of  $(\mu$ -cpdt)Fe<sub>2</sub>(CO)<sub>6</sub>, **1** and **2** was carried out under dry oxygen-free dinitrogen with standard Schlenk techniques. Solvents were dried and distilled prior to use according to the standard methods. The reagents PMe<sub>3</sub> and Cp<sub>2</sub>Co were purchased from Aldrich and LiB(H)Et<sub>3</sub> from Acros. The other reagents such as cyclopentanone, Fe(CO)<sub>5</sub>, FcBF<sub>4</sub>, FcPF<sub>6</sub>, and Cp<sub>2</sub>Fe were purchased from local companies. All reagents were used as received. Compounds *cis*-2,5-dibromocyclopentanone, <sup>S1</sup>Fe<sub>2</sub>(SLi)<sub>2</sub>(CO)<sub>6</sub>, <sup>S2</sup> and FcBAr<sup>F</sup><sub>4</sub> were synthesized according to the literature procedures.<sup>S3,S4</sup>

**Instruments.** Infrared spectra were recorded with a JASCO FT/IR 430 spectrophotometer. <sup>1</sup>H and <sup>31</sup>P NMR spectra were collected with a varian INOVA 400 NMR spectrometer. Mass spectra were recorded on a HP1100LC/MSD. Elemental analyses were performed with a Thermoquest-Flash EA 1112 elemental analyzer.

#### Synthesis

Synthesis of  $(\mu$ -cpdt)Fe<sub>2</sub>(CO)<sub>6</sub> (cpdt = cyclopentanone-2,5-dithiolate). Compound *cis*-2,5-dibromocyclopentanone (0.72 g, 3.0 mmol) was added to a freshly prepared Fe<sub>2</sub>(SLi)<sub>2</sub>(CO)<sub>6</sub> (~3 mmol) in THF (30 mL) at -78 °C with stirring under the protection of nitrogen. The color of the solution immediately turned from dark green to red. The mixture was stirred for 1 h and then the bottle was removed from the cooling bath. After the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel using hexane/CH<sub>2</sub>Cl<sub>2</sub> (1:1, *V/V*) as eluent. Yield of ( $\mu$ -cpdt)Fe<sub>2</sub>(CO)<sub>6</sub>: 35% (0.45 g). IR (CH<sub>2</sub>Cl<sub>2</sub>): *v*(CO) 2076 (m), 2036 (s), 1997 (m), 1731 (w) cm<sup>-1</sup>. MS (API-ESI in CHCl<sub>3</sub>): *m*/*z* 426.3 [M+H]<sup>+</sup> (calcd. for C<sub>11</sub>H<sub>6</sub>Fe<sub>2</sub>O<sub>7</sub>S<sub>2</sub>: *m*/*z* 425.8). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  3.18 (s br, 2H),  $\delta$  2.06 (d br, 2H),  $\delta$  1.50 (d br, 2H).



Synthesis of 1 and 2. The solution of PMe<sub>3</sub> (3.0 M, 1.3 mL, 4.0 mmol) in hexane was added to a toluene solution (20 mL) of  $(\mu$ -cpdt)Fe<sub>2</sub>(CO)<sub>6</sub> (0.43 g, 1.0 mmol) at room temperature. The mixture was refluxed for 8 h. After cooling to room temperature, the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel with hexane/CH<sub>2</sub>Cl<sub>2</sub> (2:3, *V/V*) as eluent. Pure complexes 1 and 2 were obtained as red needle crystals by recrystallization of crude products in hexane/CH<sub>2</sub>Cl<sub>2</sub> (3:2, *V/V*), respectively.



Yield of **1**: 37% (0.19 g). IR (CH<sub>2</sub>Cl<sub>2</sub>): v(CO) 1986 (m), 1958 (s), 1913 (m), 1718 (w) cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  3.00 (s br, 2H), 1.90 (d br, 2H),  $\delta$  1.50–1.56 (m, 20H). <sup>31</sup>P NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  24.20, 27.78. Anal. calcd. for C<sub>15</sub>H<sub>24</sub>Fe<sub>2</sub>O<sub>5</sub>S<sub>2</sub>P<sub>2</sub>: C, 35.51%; H, 4.63%; Found: C, 35.40%; H, 4.59%.

Yield of **2**: 52% (0.25 g). IR (CH<sub>2</sub>Cl<sub>2</sub>): v(CO) 2043 (m), 1986 (s), 1967 (m), 1715 (w) cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  3.11 (s br, 2H), 1.96 (d br, 2H),  $\delta$  1.50–1.55 (m, 11H). <sup>31</sup>P NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  25.17. Anal. calcd. for C<sub>13</sub>H<sub>15</sub>Fe<sub>2</sub>O<sub>6</sub>S<sub>2</sub>P: C, 32.94%; H, 3.19%; Found: C, 33.11%; H, 3.14%.

Synthesis of [1(OH)]BAr<sup>F</sup><sub>4</sub>. Ferricinium salt [Cp<sub>2</sub>Fe](BAr<sup>F</sup><sub>4</sub>) (Ar<sup>F</sup> = 3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>) (420 mg, 0.4 mmol) and H<sub>2</sub>O (10 µL) were added to the solution of 1 (100 mg, 0.2 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) under nitrogen. The solution changed immediately from red to dark green. After the mixture was stirred for 15 min, 90 mL of hexane was added. The suspension was stirred for 5 min and the green precipitate was filtered. The solid was washed with hexane (2 × 10 mL) and dried under vacuum. Yield of [1(OH)]BAr<sup>F</sup><sub>4</sub>: 88% (0.25 g). The single crystal was obtained from a saturated solution of [1(OH)]BAr<sup>F</sup><sub>4</sub> in CH<sub>2</sub>Cl<sub>2</sub>/C<sub>6</sub>H<sub>14</sub> (1/4, *V/V*) at room temperature. IR (CH<sub>2</sub>Cl<sub>2</sub>): *v*(CO) 2053 (m), 2014 (s), 1959 (m) cm<sup>-1</sup>. <sup>31</sup>P NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  31.07, 11.54. API-ESI-MS (in CH<sub>2</sub>Cl<sub>2</sub>): *m*/*z* 538.9282 [M–BAr<sup>F</sup><sub>4</sub>]<sup>+</sup> (calcd. for C<sub>15</sub>H<sub>25</sub>Fe<sub>2</sub>O<sub>6</sub>P<sub>2</sub>S<sub>2</sub>: *m*/*z* 538.9267). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  3.75 (s, 1H), 3.32 (s, 1H), 2.95 (s, 1H), 2.32 (s, 2H), 2.01 (s, 1H),  $\delta$  1.64–1.73 (2s, 18H).

## X-Ray structure determination of 1, 2 and [1(OH)]BAr<sup>F</sup><sub>4</sub>

The single crystal X-ray diffraction data were collected with an Bruker Smart Apex II

CCD diffractometer with agraphite-monochromated Mo- $K_{\alpha}$  radiation ( $\lambda = 0.071073$  Å) at 298 K using the  $\omega$ -2 $\theta$  scan mode. Data processing was accomplished with the SAINT processing program.<sup>S5</sup> Intensity data were corrected for absorption by the SADABS program.<sup>S6</sup> All structures were solved by direct methods and refined on  $F^2$  against full-matrix least-squares methods by using the SHELXTL 97 program package.<sup>S7</sup>All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were located by geometrical calculation. Details of crystal data, data collections and structure refinements are summarized in Tables S1 and S2. CCDC-798238 (1), 798239 (2) and -926091 ([1(OH)]BAr<sup>F</sup><sub>4</sub>) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data\_request/cif.

| Complex                                  | <b>[1]</b> <sub>2</sub>          | 2                         | [1(OH)]BAr <sup>F</sup> <sub>4</sub> CH <sub>2</sub> Cl <sub>2</sub> |
|------------------------------------------|----------------------------------|---------------------------|----------------------------------------------------------------------|
| Formula                                  | $C_{30}H_{48}Fe_4O_{10}P_4S_4\\$ | $C_{13}H_{15}Fe_2O_6PS_2$ | $C_{48}H_{39}BCl_2F_{24}Fe_2O_6P_2S_2$                               |
| $F_{ m w}$                               | 1044.20                          | 474.04                    | 1487.26                                                              |
| Crystal system                           | triclinic                        | triclinic                 | Monoclinic                                                           |
| Space group                              | P-1                              | P-1                       | P2(1)/c                                                              |
| <i>a</i> (Å)                             | 10.158(4)                        | 8.9553(15                 | 12.6932(8                                                            |
| <i>b</i> (Å)                             | 12.393(5)                        | 10.2137(16)               | 18.5417(14)                                                          |
| <i>c</i> (Å)                             | 17.576(6)                        | 11.056(3)                 | 25.8275(18)                                                          |
| $\alpha$ (deg)                           | 92.450(6)                        | 105.403(3)                | 90.00                                                                |
| $\beta$ (deg)                            | 92.727(6)                        | 93.507(3)                 | 91.440(4)                                                            |
| γ (deg)                                  | 95.945(6)                        | 112.215(2)                | 90.00                                                                |
| $V(\text{\AA}^3)$                        | 2195.7(14)                       | 887.6(3)                  | 6076.7(7)                                                            |
| Ζ                                        | 2                                | 4                         | 4                                                                    |
| $D_{\text{calcd}}$ (g cm <sup>-3</sup> ) | 1.579                            | 1.774                     | 1.626                                                                |
| Crystal size (mm)                        | 0.3/ 0.3 / 0.2                   | 0.32/ 0.29 / 0.2          | 0.25/ 0.18 / 0.12                                                    |
| $\mu$ (mm <sup>-1</sup> )                | 1.697                            | 1.985                     | 0.805                                                                |
| $\theta$ Range (deg)                     | 2.02 / 24.69                     | 1.94 / 25.0               | 2.08 / 25.0                                                          |
| Reflns collected                         | 10766                            | 3080                      | 23223                                                                |
| Independent reflns                       | 7730                             | 3028                      | 10260                                                                |
| Parameters refined                       | 469                              | 217                       | 788                                                                  |
| <i>F</i> (000)                           | 1072                             | 480                       | 2976                                                                 |
| GOF on $F^2$                             | 0.96                             | 1.011                     | 1.087                                                                |
| R <sub>int</sub>                         | 0.049                            | 0.0250                    | 0.0677                                                               |
| $R_1\left[I > 2\sigma(I)\right]^a$       | 0.0686                           | 0.0390                    | 0.0935                                                               |
| $wR_2 \left[I > 2\sigma(I)\right]^b$     | 0.1733                           | 0.1078                    | 0.2370                                                               |
| Residual electron density (e $Å^{-3}$ )  | 0.899 / 0.459                    | 1.125 / 0.629             | 0.918 / 0.737                                                        |

Table S1Crystallographic data processing parameters for 1, 2, and  $[1(OH)]BAr_{4}^{F}$ 

<sup>*a*</sup>  $R_1 = \Sigma ||F_0| - |F_c||$ . <sup>*b*</sup>  $wR_2 = [\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma w(F_0^2)^2]^{1/2}$ .

| Complex         | 1          | 2          | $[1(OH)]BAr_4^{F}$ |
|-----------------|------------|------------|--------------------|
| Bond lengths    |            |            |                    |
| Fe1–Fe2         | 2.5748(18) | 2.5369(7)  | 2.6202(18)         |
| Fe1–S1          | 2.252 (3)  | 2.2438(11) | 2.216(2)           |
| Fe1–S2          | 2.251 (3)  | 2.2552(10) | 2.194(2)           |
| Fe2–S1          | 2.260 (3)  | 2.2688(10) | 2.292(2)           |
| Fe2–S2          | 2.264 (3)  | 2.2678(9)  | 2.333(2)           |
| Fe1–P1          | 2.237 (3)  | 2.2300(10) | 2.272(3)           |
| Fe2–P2          | 2.225 (3)  | _          | 2.264(2)           |
| Fe1–C6          | 1.784 (10) | 1.770(4)   | 1.760(12)          |
| Fe1–C7          | 1.759 (10) | 1.770(4)   | 1.804(11)          |
| Fe1–C9          | _          | _          | 2.609              |
| Fe2–C8          | 1.755(10)  | 1.189(4)   | 1.828(10)          |
| Fe2–C9          | 1.734(10)  | 1.797(4)   | 1.769(10)          |
| Fe2–O1          | 3.717      | 3.715      | 1.928(5)           |
| SS              | 3.019      | 3.3035     | 3.114              |
| 01…08           | 3.023      | 3.027      | 3.530              |
| Bond angles     |            |            |                    |
| S1–Fe1–S2       | 84.02(9)   | 84.85(3)   | 89.83(9)           |
| Fe1–S1–Fe2      | 69.60(8)   | 68.41(3)   | 71.05(7)           |
| S1–Fe2–O1       | _          | _          | 85.31(18)          |
| S2–Fe2–O1       | _          | _          | 84.39(16)          |
| Fe1–C9–Fe2      | _          | _          | 70.6               |
| S1–Fe2–C8       | 104.4(3)   | _          | 171.0(2)           |
| S2–Fe2–C8       | 108.2(3)   | _          | 87.1(2)            |
| S1–Fe2–C9       | 90.3(3)    | _          | 95.7(3)            |
| Torsional angle |            |            |                    |
| C6–Fe1–Fe2–C8   | 34.1       | 28.3       | 0                  |
| S1–Fe1–Fe2–S2   | 108.4      | 107.5      | 115.7              |

**Table S2** Selected bond lengths (Å) and angles (°) for 1, 2, and [1(OH)]BAr<sup>F</sup><sub>4</sub>

# Electrochemistry studies of 1 and [1(OH)]BAr<sup>F</sup><sub>4</sub>

Cyclic voltammograms were carried out in a three-electrode cell under Ar using CHI 630D electrochemical work station. The working electrode was a glassy carbon disc (diameter 3 mm) polished with 3 and 1  $\mu$ m diamond pastes and sonicated in ion-free water for 15 min prior to use. The reference electrode was a non-aqueous Ag<sup>+</sup>/Ag (0.01 M AgNO<sub>3</sub> in CH<sub>3</sub>CN) electrode and the counter electrode was platinum wire. A solution of 0.1 M *n*Bu<sub>4</sub>NPF<sub>6</sub> (Fluka, electrochemical grade) in CH<sub>2</sub>Cl<sub>2</sub> was used as supporting electrolyte, which was degassed by bubbling with dry argon for 10 min before measurement. The ferricinium/ferrocene (Fc<sup>+</sup>/Fc) couple was used as an internal reference and all potentials given in this work are referred to the Fc<sup>+/0</sup> potential.

## Chemical reduction of [1(OH)]BAr<sup>F</sup><sub>4</sub>

The process of chemical reduction of  $[1(OH)]BAr_{4}^{F}$  was monitored by in situ IR spectroscopy using a Mettler-Toledo ReactIR<sup>TM</sup> 15 System equipped with an MCT detector and a DsubAgXSiComp<sup>TM</sup> in situ probe. Two equiv. of Cp<sub>2</sub>Co was added to the solution of  $[1(OH)]BAr_{4}^{F}$  (14 mg, 0.01 mmol), which was in situ generated in CH<sub>2</sub>Cl<sub>2</sub> (2 mL). All typical  $\nu$ (CO) absorptions of  $[1(OH)]BAr_{4}^{F}$  disappeared within 15 min and in the meantime, the  $\nu$ (CO) bands of 1 almost completely recovered in the IR spectra (Fig. S4<sup>†</sup>).

### References

- S2 P. A. Eldredge, K. S. Bos, D. E. Barber, R. F. Bryan, E. Sinn, A. Rheingold and B. A. Averillm, *Inorg. Chem.*, 1991, **30**, 2365–2375.
- S3 M. Brookhart, B. Grant and Jr. A. F. Volpe, Organometallics, 1992, 11, 3920–3922.
- S4 J. L. Bras, H. Jiao, W. E. Meyer, F. Hampel and J. A. Gladysz, J. Organomet. Chem., 2000,

S1 M. Boelens, N. De Kimpe, M. Keppens and J.-P. Declercq, J. Org. Chem., 1994, 59, 4170–4171.

**616**, 54–66

- S5 G. M. Sheldrick, *SHELXTL97 Program for the Refinement of Crystal Structure*, University of Göttingen, Germany, 1997.
- S6 Software packages SMART and SAINT, Siemens Energy & Automation Inc., Madison, Wisconsin, 1996.
- S7 G. M. Sheldrick, SADABS Absorption Correction Program, University of Gätingen, Germany, 1996.



Fig. S1 ORTEP drawing of 2 with thermal ellipsoids at the 30% probability level. Hydrogen atoms have been omitted for clarity except the hydrogen atoms at the C(11) and C(12).



**Fig. S2** Cyclic voltammograms of (a)  $[1(OH)]BAr_{4}^{F}$  (1.0 mM) in CH<sub>2</sub>Cl<sub>2</sub> and (b)  $[1(OH)]BAr_{4}^{F} + 1$  equiv. of CF<sub>3</sub>COOH in the presence of ferrocene as an internal standard, with 0.1 M *n*Bu<sub>4</sub>NPF<sub>6</sub> as electrolyte, scan rate 100 mV s<sup>-1</sup>.



**Fig. S3** A view of the O–H  $\cdot$ O bonds between two molecules of  $[1(OH)]^+$ . The structure is represented as standard ball and stick mode (O, red, small ball; H, sky-blue; C, grey; P, purple; S, yellow; Fe, red). Hydrogen atoms not involving in H-bond are omitted for clarity.



Fig. S4 Sample-stacked IR spectra for the reduction of the in situ generated [1(OH)]BAr<sup>F</sup><sub>4</sub> (5 mM in CH<sub>2</sub>Cl<sub>2</sub>) by 2 equiv. of Cp<sub>2</sub>Co.