Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Supporting information

for

Chiral Phosphoramide-Catalyzed Enantioselective Synthesis of 2,3'-Diindoylarylmethanes from Indol-2-yl Carbinol and Indole

Shuai Qi,^{a,b} Chao-You Liu,^{a,b} Jin-Ying Ding^a and Fu-She Han^{a,c,*}

 Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
The University of Chinese Academy of Scicences, Beijing 100864, China
Key Lab of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, CAS, China

CONTENTS:

1 General Information	S2
2 Experimental Section	S2
2.1 Preparation and characterization of indol-2-yl carbinos	S2
2.2 General procedure and product characterization of asymmetric reaction.	S8
3 Copies of ¹ H- and ¹³ C-NMR spectra of products	.S22
4 Copies of HPLC spectra and the integration area	.S50

1. General Information

Anhydrous solvents were prepared by distillation according to standard methods. All starting materials were purchased from Alfa or Aldrich and used without further purification. All catalysts were synthesized according to the literatures.¹⁻¹² Unless otherwise noted, the ¹H NMR spectra were recorded at 400 MHz or 300 MHz (Bruker AV) and the ¹³C NMR spectra were recorded at 100 MHz with TMS as internal standard. All shifts are given in ppm. All coupling constants (*J* values) were reported in Hertz (Hz). High resolution mass was measured by using Autoflex III Smartbeam MALDI-TOF, Bruker. HPLC analysis was performed on Waters-Breeze (2487 Dual λ Absorbance Detector and 1525 Binary HPLC Pump, UV detection monitored at 254nm). Chiralpak AD-H and OD-H columns were purchased from Daicel Chemical Industries, LTD. Column chromatography was performed on silica gel with 100–200 mesh.

2. Experimental Section

2.1 Preparation and characterization of indol-2-yl carbinols

The 3-methyl indoles¹³, 3-cyclopentyl indole¹³ and 3-ethyl indoles¹⁴ were prepared according to known procedures. The general procedure for the preparation of indol-2-yl carbinol substrates was represented by the synthesis of **8a**.

To a DMF solution (15 mL) of 3,4-dimethylindole (1.45 g, 10 mmol) was added NaH (60 percent in mineral oil, 0.8 g, 20 mmol) at 0 °C. The slurry thus formed was gradually warmed to room temperature over a 30 min period. Isopropyl iodide (0.26 g, 15 mmol) was added to the reaction mixture at room temperature and the mixture was stirred for an additional 14 hs. The reaction mixture was then treated with H₂O (15 mL) and extracted with EtOAc (3 x 20 mL). The combined organic extracts were washed with H₂O (3 x 20 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the crude material was purified on silica gel (petroleum:AcOEt = 50:1) to provide

N-isopropyl-3,4-dimethylindole as a colorless oil (1.55 g, 83% yield).

To a solution of N-isopropyl-3,4-dimethylindole (2 mmol, 0.38 g) in dried THF (6 ml) was added *n*-BuLi (2.4 mmol, 2.4 M, 1 ml) at 0 °C. The mixture was stirred for 3 hs at room temperature. Then *m*-methylbenzaldehyde (0.24 g, 2 mmol) was added slowly, and the resulting mixture was stirred for 12 hs at room temperature. The mixture was carefully quenched with saturated *aq*. NH₄Cl at 0 °C. The organic layer was separated and aqueous layer was extracted with Et₂O twice. The combined organic layer was washed with brine and dried over anhydrous MgSO₄. The solvent was removed under reduced pressure and the residue was purified by silica-gel column chromatography to give the corresponding alcohol **8a**.

(N-isopropyl-3,4-dimethyl-indol-2-yl)(*m*-tolyl)methanol:¹ H NMR (400 MHz, DMSO) δ 0.87 (d, *J* = 7.2 Hz, 3H), 1.42 (d, *J* = 7.2 Hz, 3H), 2.25 (s, 3H), 2.53 (s, 3H), 2.68 (s, 3H), 4.76 (m, 1H), 6.13 (d, 2H), 6.67 (d, *J* = 7.2 Hz, 1H), 6.88 (t, 1H), 7.05 (m, 3H), 7.17 (d, 1H) 7.25 (d, *J* = 7.8 Hz, 1H); ¹³C

NMR (101 MHz, DMSO) δ 143.71, 137.21, 130.89, 128.15, 128.07, 127.41, 127.28, 126.70, 126.11, 122.80, 120.92, 120.00, 110.22, 108.00, 65.02, 47.19, 21.46, 20.85, 20.76, 19.73, 12.04.

(N-isopropyl-3,5-dimethyl-indol-2-yl)(*m*-tolyl)methanol:¹ H NMR (400 MHz, DMSO) δ 0.88 (d, *J* = 6.8 Hz, 3H), 1.40 (d, *J* = 6.8 Hz, 3H), 2.23 (s, 3H), 2.28 (s, 3H), 2.36 (s, 3H), 4.71 (m, 1H), 6.11 (s, 2H), 6.86 (d, *J* = 8.4 Hz, 1H), 7.04 (m, 3H), 7.17 (m, 1H), 7.28 (s, 1H), 7.30 (d, *J* = 8.4 Hz, 1H); ¹³C

NMR (101 MHz, DMSO) δ 143.25, 137.06, 136.87, 132.35, 128.96, 127.82, 126.99, 126.37, 125.86, 122.51, 122.33, 118.47, 111.57, 106.17, 65.25, 46.87, 21.12, 21.02, 20.67, 19.70, 8.68.

(N-isopropyl-3,6-dimethyl-indol-2-yl)(*m*-tolyl)methanol:¹ H NMR (400 MHz, DMSO) δ 0.91 (d, *J* = 6.8 Hz, 3H), 1.39 (d, *J* = 6.8 Hz, 3H), 2.25 (s, 3H), 2.30 (s, 3H), 2.39 (s, 3H), 4.73 (m, 1H), 6.12 (s, 2H), 6.82 (d, *J* = 8.0 Hz, 1H), 7.06 (m, 3H), 7.18 (t, 1H), 7.24 (s, 1H), 7.39(d, *J* = 8.0 Hz, 1H); ¹³C NMR (101 MHz, DMSO) δ 143.64, 137.19, 136.69, 134.74, 130.07, 128.14, 127.30, 127.07, 126.21, 122.87, 119.86, 118.88, 112.06, 106.92, 65.61, 47.21, 22.00, 21.45, 20.90, 19.97, 9.04.

(N-isopropyl-3,4-dimethyl-indol-2-yl)(3,5-dimethylphenyl) methanol:¹H NMR (600 MHz, DMSO) δ 0.89 (d, *J* = 6.6 Hz, 3H), 1.44 (d, *J* = 6.6 Hz, 3H), 2.20 (s, 6H), 2.52 (s, 3H), 2.67 (s, 3H), 4.74 (m, 1H), 6.08 (d, 2H), 6.66 (d, *J* = 7.2 Hz, 1H), 6.85 (m, 4H), 7.25 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (151 MHz,

DMSO) δ 143.42, 136.83, 136.74, 130.63, 127.82, 127.11, 123.63, 123.12, 120.63, 119.73, 109.98, 107.68, 64.74, 46.93, 21.11, 21.05, 20.61, 20.49, 19.51, 11.80.

(N-isopropyl-3,5-dimethyl-indol-2-yl)(3,5-dimethylphenyl) methanol: ¹H NMR (600 MHz, DMSO) δ 0.92 (d, *J* = 6.6 Hz, 3H), 1.41 (d, *J* = 6.6 Hz, 3H), 2.23 (s, 6H), 2.27 (s, 3H), 2.36 (s, 3H), 4.71 (m, 1H), 6.05 (s, 2H), 6.81 (d, 1H), 6.85 (s, 2H), 6.88 (s, 1H), 7.27 (s, 1H), 7.32 (d, *J* = 8.4 Hz, 1H); ¹³C NMR

(151 MHz, DMSO) δ 143.28, 136.81, 132.41, 127.92, 123.63, 123.18, 122.36, 118.55, 111.66, 106.17, 65.29, 46.94, 21.10, 21.05, 20.73, 19.80, 8.77.

(N-isopropyl-3,6-dimethyl-indol-2-yl)(3,5-dimethylphenyl) methanol: ¹H NMR (600 MHz, DMSO) δ 0.82 (d, *J* = 6.8 Hz, 3H), 1.31 (d, *J* = 6.8 Hz, 3H), 2.10 (s, 6H), 2.19 (s, 3H), 2.28 (s, 3H), 4.60 (m, 1H), 5.96 (s, 2H), 6.72 (m, 3H), 6.78 (s, 1H), 7.13 (s, 1H), 7.28 (d, *J* = 7.8 Hz, 1H); ¹³C NMR (151 MHz,

DMSO) δ 143.33, 136.80, 136.44, 129.77, 127.84, 126.80, 123.63, 123.20, 119.57, 118.62, 111.82, 106.58, 65.31, 46.94, 21.74, 21.10, 21.05, 20.63, 19.74, 8.80.

(N-isopropyl-3-ethyl-4-methyl-indol-2-yl)(m-tolyl)methan ol:¹H NMR (400 MHz, DMSO) δ 0.89 (d, *J* = 6.8 Hz, 3H), 1.23 (t, 3H), 1.42 (d, *J* = 6.8 Hz, 3H), 2.25 (s, 3H), 2.67 (s, 3H), 2.94 (m, 2H), 4.70 (m, 1H), 6.14 (d, *J* = 3.6 Hz, 1H), 6.18 (d, *J* = 3.6 Hz, 1H), 6.71 (d, *J* = 7.2 Hz, 1H), 6.91 (t,

1H), 7.02 (d, J = 7.2 Hz, 1H), 7.07 (d, J = 7.2 Hz, 1H), 7.12 (s, 1H), 7.19 (t, 1H), 7.28

(d, *J* = 8.0 Hz, 1H); ¹³C NMR (101 MHz, DMSO) δ 143.40, 136.91, 136.50, 134.35, 129.92, 127.83, 127.02, 126.06, 125.92, 122.59, 120.46, 120.03, 114.75, 109.97, 64.67, 46.97, 21.15, 20.43, 20.11, 19.34, 18.41, 18.26.

(**N-isopropyl-3-ethyl-5-methyl-indol-2-yl**)(**m-tolyl**)**methan ol:**¹H NMR (600 MHz, DMSO) δ 0.88 (d, *J* = 6.6 Hz, 3H), 1.21 (t, 3H), 1.40 (d, *J* = 6.8 Hz, 3H), 2.24 (s, 3H), 2.35 (s, 3H), 2.77 (m, 2H), 4.65 (m, 1H), 6.09 (d, *J* = 3.6 Hz, 1H),

6.14 (d, J = 3.6 Hz, 1H), 6.86 (d, J = 9.0 Hz, 1H), 7.01 (d, J = 7.2 Hz, 1H), 7.04 (d, J = 7.2 Hz, 1H), 7.08 (s, 1H), 7.17 (t, 1H), 7.32 (m, 2H); ¹³C NMR (151 MHz, DMSO) δ 143.35, 136.92, 136.39, 131.52, 128.70, 127.87, 127.07, 126.34, 126.00, 122.63, 122.32, 118.50, 113.41, 111.79, 65.05, 46.96, 21.21, 21.12, 20.69, 19.66, 17.11, 16.56.

(**N-isopropyl-3-ethyl-indol-2-yl**)(**m-tolyl**)**methanol:**¹H NMR (400 MHz, DMSO) δ 0.91 (d, *J* = 6.8 Hz, 3H), 1.22 (t, 3H), 1.41 (d, *J* = 7.2 Hz, 3H), 2.24 (s, 3H), 2.80 (m, 2H), 4.70 (m, 1H), 6.12 (d, 1H), 6.16 (d, 1H), 7.00 (m, 4H), 7.09 (s, 1H), 7.18 (t, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.55 (d, *J* =

8.0 Hz, 1H); ¹³C NMR (101 MHz, DMSO) δ 143.67, 137.37, 136.75, 134.56, 128.30, 128.22, 127.50, 126.38, 123.03, 121.16, 119.29, 118.31, 114.33, 112.44, 65.51, 47.47, 21.61, 21.03, 20.02, 17.49, 16.95.

(N-methyl-3-cyclopentyl-indol-2-yl)(3,5-dimethylphenyl) methanol:¹H NMR (600 MHz, DMSO) δ 1.66 (m, 4H), 1.95 (m, 4H), 2.23 (s, 6H), 3.42 (m, 1H), 3.47 (s, 3H), 6.09 (d, 1H), 6.17 (d, 1H), 6.85 (s, 1H), 6.93 (s, 2H), 6.99 (t, 1H), 7.10 (t, 1H), 7.30 (d, J = 8.4 Hz, 1H) 7.61 (d, J = 8.4 Hz, 1H); ¹³C

NMR (151 MHz, DMSO) δ 143.26, 137.36, 136.93, 127.93, 125.11, 123.63, 123.27, 120.90, 119.63, 118.15, 115.14, 109.36, 65.28, 36.59, 33.38, 32.65, 30.68, 26.05, 21.13, 21.05.

(N-isopropyl-3-methyl-indol-2-yl)(3,5-dimethylphenyl)me thanol:¹H NMR (400 MHz, DMSO) δ 0.95 (d, J = 7.2 Hz, 3H), 1.44 (d, J = 7.2 Hz, 3H), 2.21 (s, 6H), 2.32 (s, 3H), 4.76 (m, 1H), 6.12 (d, 2H), 6.85 (d, 3H), 7.02 (dt, 2H), 7.46 (d, J = 7.8 Hz, 1H) 7.51 (d, J = 7.8 Hz, 1H); ¹³C NMR (101 MHz,

DMSO) δ 143.47, 137.37, 137.11, 134.29, 129.06, 128.16, 123.43, 121.08, 119.16, 118.13, 112.18, 106.99, 65.54, 47.32, 21.36, 20.91, 20.02, 9.02.

(N-isopropyl-3,4-dimethyl-indol-2-yl)(phenyl)methanol:¹H NMR (400 MHz, DMSO) δ 0.82 (d, *J* = 6.8 Hz, 3H), 1.40 (d, *J* = 6.8 Hz, 3H), 2.55 (s, 3H), 2.67(s, 3H), 4.76 (m, 1H), 6.19 (d, 2H), 6.67 (d, *J* = 7.2 Hz, 1H), 6.86 (t, 1H), 7.25 (m, 6H); ¹³C

NMR (101 MHz, DMSO) δ 143.43, 136.73, 130.57, 127.89, 126.46, 126.28, 125.75, 125.28, 120.63, 119.69, 109.88, 107.74, 64.74, 46.88, 20.52, 20.46, 19.35, 11.70.

Synthesis of 8k: A solution of 3,4-dimethylindole (1.45 g, 10 mmol) in DMF (15 mL) at 0 °C was treated with NaH (60 percent in mineral oil, 0.8 g, 20 mmol) in 4 portions providing a slurry that was gradually warmed to room temperature over a 30 min period. BnBr (1.70 g, 10 mmol) was added to the reaction mixture slowly at 0 °C and the mixture was stirred for 1 h. The reaction mixture was then treated with H₂O (15 mL) and extracted with AcOEt (3 x 20 mL). The combined organic extracts were washed with H₂O (3 x 20 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the crude material was purified on silica gel (petroleum:AcOEt = 25:1) to provide N-Bn-3,4-dimethylindole as a white solid (2.14 g, 91% yield).

A three-necked flask was charged with N-Bn-3,4-dimethylindole (4 mmol) and DMF (30 mmol). The mixture was stirred and cooled to 0 °C, then the freshly distilled POCl₃ (8 mmol) was added dropwise in 10 min. The solution was then heated at 40 °C for 2 hs. Then 2M NaOH aqueous solution (30 mL) was added slowly and the

reaction mixture was heated further at 90 °C for 1 h. AcOEt (20 mL) was added to dissolve the solid, and the aqueous layer was extracted with AcOEt (2×20 mL). The combined organic phase was washed with brine, dried over Na₂SO₄, separated, evaporated under reduced pressure. The crude material was purified on silica gel (petroleum:AcOEt = 10:1) to provide the N-Bn-3,4-dimethylindole-2-carbaldehyde as a white solid (0.74 g, 70% yield).

To a solution of the 3,5-dimethylphenyl magnesium bromide [prepared from magnesium turnings (1.5 equiv), 1-bromo-3,5-dimethyl benzene (1.5 equiv) and a catalytic amount of I_2 in dry THF] was added dropwise the N-Bn-3,4-dimethylindole-2-carbaldehyde (1 mmol) in dried THF at 0 °C through a dropping funnel. The mixture was stirred for 30 min at room temperature. The reaction mixture was then quenched with aq. NH₄Cl solution and extracted with AcOEt. Organic layer was dried over sodium sulfate and the solvent was removed under reduced pressure. The crude material was purified by flash chromatography over silica gel column to provide the indol-2-yl carbinol 8g as a white solid (0.35 g, 95% yield).

(**N-Bn-3,4-dimethyl-indol-2-yl**)(**3,5-dimethylphenyl**)**metha nol:**¹H NMR (400 MHz, DMSO) δ 2.11 (s, 6H), 2.55 (s, 3H), 2.67 (s, 3H), 5.72 (dd, 2H), 6.05 (d, *J* = 4.0 Hz, 1H), 6.14 (d, *J* = 4.0 Hz, 1H), 6.67 (m, 2H), 6.80 (m, 6H), 7.08 (m, 3H);

¹³C NMR (101 MHz, DMSO) δ 143.45, 138.88, 137.81, 137.09, 136.86, 130.63, 128.06, 126.64, 126.44, 123.52, 121.50, 120.70, 108.54, 108.33, 65.50, 47.42, 21.30, 20.56, 12.04.

(N-PMB-3,4-dimethyl-indol-2-yl)(3,5-dimethylphenyl)methanol: ¹H NMR (400 MHz, DMSO) δ 2.13 (s, 6H), 2.53 (s, 3H), 2.66 (s, 3H), 3.64 (s, 3H), 5.18 (s, 2H), 6.07 (d, *J* = 4.0 Hz, 1H), 6.13 (d, *J* = 4.0 Hz, 1H), 6.67 (m, 3H), 6.72 (s, 1H), 6.79 (m, 6H); ¹³C NMR (101 MHz, Acetone) δ 158.29, 143.67,

137.87, 137.21, 136.92, 130.92, 130.69, 128.19, 127.91, 126.78, 123.63, 121.53, 120.73, 113.67, 108.56, 65.63, 55.35, 47.01, 21.42, 20.67, 12.14.

2.3 General procedure and product characterization of the asymmetric reaction

A 10 ml Schlenck tube equipped with a magnetic bar was charged with alcohol **8** (0.1 mmol), indole **9** (0.1 mmol, 1 eq) and catalyst **11a** (4.8 mg, 0.01 mmol) at -60 $^{\circ}$ C. Then toluene solvent (4 ml) was added and the solution was stirred until the alcohol **8** had disappeared as monitored by TLC. Then one drop of pyridine was added to quench the reaction. The solvent was removed under reduced pressure and the crude mixture was purified by silical gel chromatography to afford the products **10**.

Structures of catalysts

Table S1. Screening of Catalysts.^a

Ma			Me	H /Me N	
Me Me	ОН				
	+	Catalyst (1	$\frac{0 \text{ mol}\%)}{=} Pr^{i}$		
ipr Me					
8a		9a 10a ^{Me}			
Entry	Catalyst	T (°C)/t (h)	Yield (%) ^b	Ee (%) ^c	
1	11a	-60/3	92	91	
2	11b	-60/3	91	-7	
3	11c	-60/12	77	-12	
4	11d	-60/12	79	9	
5	11e	-60/12	82	-6	
6	11f	-60/12	69	-26	
7	11g	-60/12	75	-14	
8	11h	-60/6	94	-15	
9	11i	-60/12	90	9	
10	12a	r.t/10	80	2 ^d	
11	12b	r.t/10	85	25	
12	12c	r.t/10	85	12	
13	12d	r.t/10	80	3	
14	12e	r.t/10	55	1	
15	12f	r.t/10	88	18	
16	12g	r.t/10	83	17	
17	12h	r.t/10	84	2	
18	12i	r.t/10	Trace		
19	12j	r.t/10	N.R		
20	13	r.t/10	89	10	

^a Reaction reactions: Indol-2-yl carbinol **8a** (0.05 mmol), indole **9a** (0.05 mmol), catalyst (10 mol%) in toluene (2 mL). ^b Isolated yield. ^c The ee value was determined by HPLC on AD-H column. ^d The reaction almost did not proceed at 0 ^oC for catalysts **12** and **13**.

(10a): yield: 92%; ee: 91%; (purifoed by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm) 1.15 (m, 6H), 2.24 (s, 3H), 2.33 (s, 3H), 2.63 (s, 3H), 4.74 (m, 1H), 6.13 (s, 1H), 6.66 (d, J = 6.9 Hz, 1H), 6.80 (s,

1H), 6.88 (m, 2H), 7.05 (m, 5H), 7.20 (t, 1H), 7.28 (d, J = 8.1 Hz, 1H), 7.38 (d, J =

8.1 Hz, 1H), 10.96 (s, 1H); ¹³C NMR (151 MHz, d₆-Acetone) δ 141.67, 137.04, 136.72, 136.22, 134.33, 129.97, 129.02, 127.67, 127.56, 127.00, 126.39, 125.54, 123.74, 121.13, 119.72, 118.92, 118.35, 115.35, 111.02, 109.57, 46.88, 38.86, 20.23, 19.95, 19.48, 11.31. HRMS calcd. for C₂₉H₃₀N₂ (M⁺): 406.2409, found: 406.2417; The enantiomeric excess of 91% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 95/5, flow rate 1 mL/min, T = 30 °C, 254 nm, tR(minor) 6.866 min, tR(major) 9.745 min].

(10b): yield: 90%; ee: 9%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 4/1); ¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm) 1.15 (m, 6H), 2.23 (s, 3H), 2.33 (s, 3H), 2.63 (s, 3H), 3.71 (s, 3H), 4.71 (m, 1H), 6.12 (s, 1H), 6.66 (d, J = 6.9 Hz, 1H),

6.93 (m, 6H), 7.17 (m, 3H), 7.29 (d, J = 8.4 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H); ¹³C NMR (101 MHz, d₆-Acetone) δ 141.88, 137.45, 137.30, 136.51, 130.23, 129.82, 129.26, 128.39, 127.82, 127.62, 126.65, 125.79, 123.73, 122.45, 121.34, 119.99, 119.42, 118.51, 114.52, 109.79, 109.44, 109.26, 47.13, 38.98, 31.74, 20.48, 20.18, 19.70, 11.60. HRMS calcd. for C₃₀H₃₂N₂ (M⁺): 420.2565, found: 420.2544; The enantiomeric excess of 9% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 95/5, flow rate 0.5 mL/min, T = 30 °C, 254 nm, tR(minor) 5.418 min, tR(major) 6.249 min].

(10c): yield: 93%; ee: 87%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm) 1.20 (m, 6H), 1.85 (s, 3H), 2.24 (s, 3H), 2.35 (s, 3H), 4.70 (m, 1H), 6.05 (s, 1H), 6.68 (s, 1H), 6.86 (t, 2H), 7.05 (m, 5H),

7.19 (t, 2H),7.37 (m, 2H), 10.93 (s, 1H); ¹³C NMR (151 MHz, d₆-Acetone) δ 141.72, 137.07, 136.75, 136.20, 132.30, 129.87, 129.10, 127.60, 126.98, 126.49, 126.21, 125.60, 123.77, 121.42, 121.12, 118.73, 118.34, 117.66, 115.85, 111.00, 106.31, 46.62, 39.68, 20.24, 20.18, 20.06, 8.01. HRMS calcd. for C₂₉H₃₀N₂ (M⁺): 406.2409, found: 406.2397; The enantiomeric excess of 87% ee was determined by HPLC [Daicel Chirapak OD-H, hexane/isopropanol = 95/5, flow rate 0.5 mL/min, T = 30 °C, 254 nm, tR(minor) 7.556 min, tR(major) 13.387 min].

(10d): yield: 91%; ee: 90%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (CDCl₃, 400 MHz) δ (ppm) 1.30 (m, 6H), 1.94 (s, 3H), 2.26 (s, 3H), 2.48 (s, 3H), 4.66 (m, 1H), 6.01 (s, 1H), 6.66 (s, 1H), 6.91 (d, J = 8.0 Hz, 1H),

7.01 (m, 3H), 7.06 (s, 1H), 7.16 (m, 2H), 7.28 (m, 2H), 7.35 (d, J = 8.0 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.94 (s, 1H); ¹³C NMR (101 MHz, d₆-Acetone) δ 142.03, 137.32, 137.01, 135.65, 134.57, 129.35, 127.84, 127.24, 126.73, 125.86, 124.03, 121.36, 119.44, 118.99, 118.59, 117.84, 116.16, 111.55, 111.25, 106.93, 46.85, 39.95, 21.05, 20.49, 20.24, 8.28. HRMS calcd. for C₂₉H₃₀N₂ (M⁺): 406.2409, found: 406.2413; The enantiomeric excess of 89% ee was determined by HPLC [Daicel Chirapak OJ-H, hexane/isopropanol = 97/3, flow rate 0.3 mL/min, T = 30 °C, 254 nm, tR(minor) 25.029 min, tR(major) 26.567 min].

(10e): yield: 92%; ee: 96%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm) 1.11 (m, 6H), 2.19 (s, 3H), 2.35 (s, 6H), 2.63 (s, 3H), 4.74 (m, 1H), 6.09 (s, 1H), 6.66 (d, J = 6.2 Hz, 1H), 6.85 (m, 6H),

7.08 (m, 2H), 7.28 (d, J = 8.4 Hz, 1H), 7.37 (d, J = 7.8 Hz, 1H), 10.95 (s, 1H); ¹³C NMR (151 MHz, d₆-Acetone) δ 141.54, 136.88, 136.69, 136.23, 134.34, 129.96, 127.68, 127.24, 127.05, 126.80, 126.21, 123.70, 121.10, 119.70, 118.91, 118.33, 115.53, 111.00, 109.57, 107.50, 46.89, 38.80, 20.15, 19.96, 19.80, 19.54, 11.35. HRMS calcd. for C₃₀H₃₂N₂ (M⁺): 420.2565, found: 420.2551; The enantiomeric excess of 96% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 95/5, flow rate 0.5 mL/min, T = 30 °C, 254 nm, tR(minor) 10.586 min, tR(major) 13.643 min].

(10f): yield: 92%; ee: 89%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm) 1.19 (m, 6H), 1.87 (s, 3H), 2.19 (s, 6H), 2.35 (s, 3H), 4.70 (m, 1H), 6.01 (s, 1H), 6.70 (s, 1H), 6.85 (m, 5H), 7.06 (m,

2H), 7.20 (s, 1H), 7.36 (d, J = 5.1 Hz, 2H), 10.92 (s, 1H); ¹³C NMR (151 MHz,

d₆-Acetone) δ 141.61, 136.90, 136.71, 136.24, 132.28, 129.86, 127.30, 127.01, 126.25, 126.16, 123.74, 121.35, 121.06, 118.70, 118.29, 117.65, 115.96, 110.96, 46.61, 39.60, 20.13, 19.99, 8.00. HRMS calcd. for $C_{30}H_{32}N_2$ (M⁺): 420.2565, found: 420.2552; The enantiomeric excess of 89% ee was determined by HPLC [Daicel Chirapak OD-H, hexane/isopropanol = 9/1, flow rate 0.5 mL/min, T = 30 °C, 254 nm, tR(minor) 8.520 min, tR(major) 12.907 min].

(10g): yield: 94%; ee: 91%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm) 1.21 (m, 6H), 1.87 (s, 3H), 2.19 (s, 6H), 2.38 (s, 3H), 4.70 (m, 1H), 6.00 (s, 1H), 6.70 (s, 1H), 6.81 (m, 5H), 7.06 (m,

2H), 7.28 (m, 2H), 7.37 (d, J = 8.1 Hz, 1H), 10.92 (s, 1H); ¹³C NMR (101 MHz, d₆-Acetone) δ 141.92, 137.15, 136.97, 135.75, 134.31, 129.30, 127.86, 127.56, 127.28, 126.52, 124.01, 121.32, 119.41, 118.97, 118.55, 117.84, 116.28, 111.55, 111.22, 106.67, 46.86, 39.88, 21.04, 20.39, 20.21, 8.30. HRMS calcd. for C₃₀H₃₂N₂ (M⁺): 420.2565, found: 420.2551; The enantiomeric excess of 91% ee was determined by HPLC [Daicel Chirapak OD-H, hexane/isopropanol = 95/5, flow rate 0.5 mL/min, T = 30 °C, 254 nm, tR(minor) 22.115 min, tR(major) 18.284 min].

(10h): yield: 91%; ee: 82%; (purifoed by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm) 0.97 (m, 6H), 1.17 (d, J = 6.0 Hz, 3H), 2.22 (s, 3H), 2.64 (s, 3H), 2.84 (m, 2H), 4.67 (m, 1H), 6.14 (s, 1H), 6.71 (d, J = 6.9 Hz, 1H), 6.81 (s, 1H), 6.90 (m, 2H), 7.08 (m, 6H),

7.30 (d, J = 8.1 Hz, 1H), 7.39 (d, J = 8.1 Hz, 1H), 10.97 (s, 1H); ¹³C NMR (101 MHz, Acetone) δ 141.56, 136.94, 136.66, 136.32, 134.36, 129.34, 129.10, 127.45, 126.92, 126.62, 126.31, 125.59, 123.77, 121.08, 119.97, 119.54, 119.07, 118.29, 114.98, 114.28, 111.01, 109.58, 47.10, 38.58, 20.15, 19.77, 19.42, 19.18, 18.39, 16.74. HRMS calcd. for C₃₀H₃₂N₂ (M⁺): 420.2565, found: 420.2552; The enantiomeric excess of 82% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 95/5, flow rate 0.5 mL/min, T = 30 °C, 254 nm, tR(minor) 12.093 min, tR(major) 16.363 min].

(10i): yield: 88%; ee: 85%; (purifoed by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm) 0.84 (m, 3H), 1.17 (m, 6H), 2.23 (s, 3H), 2.36 (s, 3H), 2.45 (m, 2H), 4.65 (m, 1H), 6.07 (s, 1H), 6.73 (s, 1H), 6.86 (t, 2H), 6.98 (d, J = 7.5 Hz, 1H), 7.08 (m, 4H), 7.19 (t,

1H), 7.25 (s, 1H), 7.37 (t, 2H), 10.94 (s, 1H); ¹³C NMR (101 MHz, Acetone) δ 141.62, 136.92, 136.67, 135.83, 132.25, 129.11, 128.82, 127.45, 126.88, 126.37, 126.18, 125.56, 123.76, 121.31, 121.07, 118.90, 118.24, 117.78, 115.37, 113.14, 111.12, 110.97, 46.73, 39.29, 20.14, 19.97, 19.70, 16.97, 14.72. HRMS calcd. for C₃₀H₃₂N₂ (M⁺): 420.2565, found: 420.2557; The enantiomeric excess of 85% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 95/5, flow rate 0.5 mL/min, T = 30 °C, 254 nm, tR(minor) 11.580 min, tR(major) 16.663 min].

(10j): yield: 94%; ee: 84%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm) 0.85 (t, 3H), 1.19 (m, 6H), 2.23 (s, 3H), 2.51 (m, 2H), 4.69 (m, 1H), 6.10 (s, 1H), 6.74 (d, J = 6.2 Hz, 1H), 6.87

(t, 1H), 7.05 (m, 8H), 7.38 (d, J = 8.1 Hz, 1H), 7.48 (m, 2H), 10.96 (s, 1H); ¹³C NMR (101 MHz, d₆-Acetone) δ 141.55, 136.97, 136.68, 135.80, 134.08, 129.13, 128.57, 127.49, 126.86, 126.42, 125.58, 123.83, 121.10, 119.78, 118.88, 118.27, 118.00, 117.51, 115.29, 113.66, 111.41, 111.00, 46.83, 39.31, 20.15, 19.93, 19.67, 16.96, 14.71. HRMS calcd. for C₂₉H₃₀N₂ (M⁺): 406.2409, found: 406.2398; The enantiomeric excess of 84% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 95/5, flow rate 0.5 mL/min, T = 30 °C, 254 nm, tR(minor) 13.091 min, tR(major) 22.664 min].

(10k): yield: 95%; ee: 80%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm) 1.34 (m,4H), 1.73 (m, 4H), 2.19 (s, 6H), 3.07 (m, 1H), 3.57 (s, 3H), 6.04 (s, 1H), 6.64 (s, 1H), 6.85 (m, 4H),

6.94 (t, 1H), 7.07 (m, 3H), 7.36 (t, 2H), 7.48 (d, J = 7.8 Hz, 1H), 10.89 (s, 1H); ¹³C NMR (101 MHz, Acetone) δ 141.98, 137.52, 137.18, 137.04, 127.55, 127.13, 126.47, 126.22, 123.97, 121.38, 120.22, 119.47, 119.18, 118.48, 117.87, 116.26, 115.22, 111.21, 109.41, 109.06, 39.35, 36.89, 32.19, 32.03, 29.76, 25.99, 25.95, 20.39. HRMS calcd. for C₃₁H₃₂N₂ (M⁺): 432.2565, found: 432.2555; The enantiomeric excess of 80% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 95/5, flow rate 0.5 mL/min, T = 30 °C, 254 nm, tR(minor) 13.748 min, tR(major) 15.763 min].

(101): yield: 95%; ee: 83%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm) 2.11 (s, 3H), 2.12 (s, 6H), 2.61 (s, 3H), 5.32 (s, 2H), 5.81 (s, 1H), 6.60 (s, 1H), 6.70 (m, 3H), 6.85 (m, 6H), 7.05 (m, 2H), 7.18 (m, 3H), 7.34 (d, J = 8.1 Hz, 1H)), 10.88 (s,

1H); ¹³C NMR (101 MHz, d₆-Acetone) δ 141.85, 138.70, 137.28, 137.13, 136.78, 130.29, 128.16, 127.67, 127.24, 126.71, 126.53, 126.06, 124.31, 121.43, 121.00, 120.81, 119.02, 118.67, 116.04, 111.33, 109.17, 107.48, 46.72, 39.69, 20.49, 20.02, 11.40. HRMS calcd. for C₃₄H₃₂N₂ (M⁺): 468.2565, found: 468.2543; The enantiomeric excess of 83% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 95/5, flow rate 0.5 mL/min, T = 30 °C, 254 nm, tR(minor) 14.259 min, tR(major) 17.174 min].

(10m): yield: 91%; ee: 81%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 1.5/1); ¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm) 2.09 (s, 3H), 2.13 (s, 6H), 2.60 (s, 3H), 3.66 (s, 3H), 5.24 (s, 2H), 5.82 (s, 1H), 6.59 (s, 1H), 6.73 (m, 9H), 6.89 (m, 2H),

7.04 (t, 1H), 7.11 (d, J = 8.1 Hz, 1H), 7.34 (d, J = 8.1 Hz, 1H)), 10.86 (s, 1H); ¹³C NMR (101 MHz, Acetone) δ 158.81, 141.93, 137.24, 137.14, 136.81, 130.58, 130.22, 127.60, 127.27, 126.52, 124.26, 121.38, 120.89, 120.71, 119.02, 118.63, 116.15, 113.62, 111.26, 109.14, 107.48, 54.54, 46.20, 39.69, 20.43, 19.93, 11.38. HRMS calcd. for C₃₅H₃₄N₂O (M⁺): 498.2671, found: 498.2627; The enantiomeric excess of 81% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 95/5, flow

rate 1 mL/min, T = 30 °C, 254 nm, tR(minor) 10.111 min, tR(major) 12.127 min].

(10n): yield: 91%; ee: 90%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-Acetone, 400 MHz) δ (ppm) 1.24 (m, 6H), 2.26 (s, 3H), 2.39 (s, 3H), 2.68 (s, 3H), 4.83 (m, 1H), 6.17 (s, 1H), 6.69 (d, J = 6.8 Hz, 1H), 6.92 (m, 4H), 7.07 (t, 2H), 7.15 (s, 1H), 7.19 (t, 1H), 7.32 (d, J =

8.4 Hz, 1H), 7.44 (m, 1H), 10.26 (s, 1H); ¹³C NMR (101 MHz, d₆-Acetone) δ 158.28, 155.96, 141.56, 137.40, 136.09, 133.55, 130.28, 129.23, 127.89, 126.76, 126.07, 125.71, 120.09, 120.04, 115.89, 112.29, 112.19, 109.60, 109.34, 103.88, 103.64, 47.13, 39.01, 20.47, 20.18, 19.86, 11.55. HRMS calcd. for C₂₉H₂₉FN₂ (M⁺): 424.2315, found: 424.2309; The enantiomeric excess of 90% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 30 °C, 254 nm, tR(minor) 6.869 min, tR(major) 8.879 min].

(10o): yield: 93%; ee: 88%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm) 1.16 (m, 6H), 2.24 (s, 3H), 2.30 (s, 3H), 2.63 (s, 3H), 4.71 (m, 1H), 6.14 (s, 1H), 6.67 (d, J = 7.2 Hz, 1H), 6.87 (m, 2H), 6.95 (d, 1H), 7.07 (m, 4H), 7.20 (t, 1H), 7.30 (d, J = 7.2 Hz, 1H), 6.95 (d, 1H), 7.07 (m, 4H), 7.20 (t, 1H), 7.30 (d, J = 7.2 Hz, 1H), 6.95 (d, 1H), 7.07 (m, 4H), 7.20 (t, 1H), 7.30 (d, J = 7.2 Hz, 1H), 6.95 (d, 1H), 7.07 (m, 4H), 7.20 (t, 1H), 7.30 (d, J = 7.2 Hz, 1H), 6.95 (d, 1H), 7.07 (m, 4H), 7.20 (t, 1H), 7.30 (d, J = 7.2 Hz, 1H), 6.95 (d, 1H), 7.07 (m, 4H), 7.20 (t, 1H), 7.30 (d, J = 7.2 Hz, 1H), 6.95 (d, 1H), 7.07 (m, 4H), 7.20 (t, 1H), 7.30 (d, J = 7.2 Hz, 1H), 6.95 (d, 1H), 7.07 (m, 4H), 7.20 (t, 1H), 7.30 (d, J = 7.2 Hz, 1H), 6.95 (d, 1H), 7.07 (m, 4H), 7.20 (t, 1H), 7.30 (d, J = 7.2 Hz, 1H), 6.95 (d, 1H), 7.07 (m, 4H), 7.20 (t, 1H), 7.30 (d, J = 7.2 Hz, 1H), 6.95 (d, 1H), 7.07 (m, 4H), 7.20 (t, 1H), 7.30 (d, J = 7.2 Hz, 1H), 6.95 (d, 1H), 7.07 (m, 4H), 7.20 (t, 1H), 7.30 (d, J = 7.2 Hz, 1H), 6.95 (d, 1H), 7.07 (m, 4H), 7.20 (t, 1H), 7.30 (d, J = 7.2 Hz, 1H), 6.95 (d, 1H), 7.07 (m, 4H), 7.20 (t, 1H), 7.30 (d, J = 7.2 Hz, 1H), 6.95 (d, 1H), 7.07 (m, 4H), 7.20 (t, 1H), 7.30 (d, J = 7.2 Hz, 1H), 6.95 (d, 1H), 7.07 (m, 4H), 7.20 (t, 1H), 7.30 (d, J = 7.2 Hz, 1H), 6.87 (m, 1H), 7.80 (d, J = 7.2 Hz, 1H), 7.80 (

8.1 Hz, 1H), 7.41 (d, J = 8.4 Hz, 1H), 11.19 (s, 1H); ¹³C NMR (151 MHz, d₆-Acetone) δ 141.35, 137.17, 135.83, 135.14, 134.40, 130.03, 129.57, 128.98, 128.09, 127.64, 126.53, 125.65, 125.43, 123.68, 121.23, 119.86, 119.80, 118.22, 115.25, 112.51, 109.58, 107.75, 46.87, 38.62, 20.23, 19.94, 19.49, 11.31. HRMS calcd. for C₂₉H₂₉ClN₂ (M⁺): 440.2019, found: 440.2006; The enantiomeric excess of 88% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 30 °C, 254 nm, tR(minor) 6.433 min, tR(major) 8.383 min].

(10p): yield: 93%; ee: 90%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm) 1.17 (m, 6H), 2.24 (s, 3H), 2.30 (s, 3H), 2.63 (s, 3H), 4.70 (m,

1H), 6.14 (s, 1H), 6.67 (d, J = 7.2 Hz, 1H), 6.95 (m, 5H), 7.18 (m, 2H), 7.29 (m, 2H), 7.37 (d, J = 8.4 Hz, 1H), 11.20 (s, 1H); ¹³C NMR (151 MHz, d₆-Acetone) δ 141.35, 137.17, 135.86, 135.39, 134.40, 130.04, 128.99, 128.78, 127.64, 126.54, 125.52, 125.42, 123.83, 121.36, 119.88, 119.81, 115.14, 112.98, 111.33, 109.56, 107.76, 46.88, 38.58, 20.25, 19.97, 19.50, 11.35. HRMS calcd. for C₂₉H₂₉BrN₂ (M⁺): 484.1514, found: 484.1531; The enantiomeric excess of 90% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 95/5, flow rate 1 mL/min, T = 30 °C, 254 nm, tR(minor) 6.918 min, tR(major) 9.108 min].

(10q): yield: 90%; ee: 87%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-Acetone, 400 MHz) δ (ppm) 1.15 (s, 3H), 1.33 (d, 3H), 2.25 (s, 3H), 2.30 (s, 3H), 2.39 (s, 3H), 2.68 (s, 3H), 4.85 (m, 1H), 6.18 (s, 1H), 6.70 (d, *J* = 8.4 Hz, 1H), 6.89 (m, 2H), 6.96 (d, 1H), 7.06 (m, 3H),

7.16 (m, 2H), 7.33 (m, 2H), 10.01 (s, 1H); ¹³C NMR (101 MHz, d₆-Acetone) δ 142.14, 137.24, 136.74, 135.35, 130.21, 129.28, 127.77, 127.54, 127.37, 126.59, 125.76, 124.21, 123.05, 119.97, 118.75, 114.86, 111.04, 109.75, 47.12, 39.00, 20.67, 20.50, 20.22, 19.75, 11.62. HRMS calcd. for C₃₀H₃₂N₂ (M⁺): 420.2565, found: 420.2544; The enantiomeric excess of 87% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 95/5, flow rate 0.5 mL/min, T = 30 °C, 254 nm, tR(minor) 12.115 min, tR(major) 15.994 min].

(10r): yield: 92%; ee: 83%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-Acetone, 400 MHz) δ (ppm) 1.20 (m, 6H), 2.15 (s, 3H), 2.22 (s, 3H), 2.59 (s, 3H), 4.72 (m, 1H), 6.21 (s, 1H), 6.65 (m, 3H), 6.88 (m, 2H), 7.03 (m, 3H), 7.19 (m, 2H), 7.31 (d, J = 8.4 Hz, 1H), 11.24 (s,

1H); ¹³C NMR (151 MHz, d₆-Acetone) δ 157.51, 155.88, 142.72, 139.62, 139.55, 137.00, 129.92, 128.68, 127.73, 126.30, 125.11, 124.53, 121.80, 121.75, 119.74, 115.70, 115.57, 114.17, 109.57, 107.52, 103.66, 103.53, 46.68, 39.87, 20.23, 19.99, 19.37, 11.19. HRMS calcd. for C₂₉H₂₉FN₂ (M⁺): 424.2315, found: 424.2321; The enantiomeric excess of 83% ee was determined by HPLC [Daicel Chirapak AD-H,

hexane/isopropanol = 98/2, flow rate 1.0 mL/min, T = 30 $^{\circ}$ C, 254 nm, tR(minor) 8.798min, tR(major) 12.316 min].

(10s): yield: 96%; ee: 95%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (CDCl₃, 400 MHz) δ (ppm) 1.12 (s, 3H), 1.32 (d, 3H), 2.21 (s, 6H), 2.37 (s, 3H), 2.74 (s, 3H), 4.66 (m, 1H), 6.00 (s, 1H), 6.75 (s, 1H), 6.80 (m, 3H), 6.84 (s, 1H), 6.98 (t, 1H), 7.22 (m, 1H), 7.27 (m, 1H),

7.32 (d, J = 8.4 Hz, 1H), 7.47 (s, 1H), 7.98 (s, 1H); ¹³C NMR (101 MHz, d₆-Acetone) δ 141.49, 137.25, 136.12, 135.61, 134.67, 130.28, 129.09, 127.91, 127.63, 126.39, 125.74, 124.05, 121.59, 120.09, 120.05, 115.58, 113.20, 111.55, 109.80, 107.94, 47.13, 38.78, 20.41, 20.22, 19.84, 11.62. HRMS calcd. for C₃₀H₃₁BrN₂ (M⁺): 498.1671, found: 498.1656; The enantiomeric excess of 95% ee was determined by HPLC [Daicel Chirapak OD-H, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 30 °C, 254 nm, tR(minor) 10.962 min, tR(major) 13.471 min].

(10t): yield: 87%; ee: 93%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (CDCl₃, 400 MHz) δ (ppm) 1.12 (s, 3H), 1.31 (d, 3H), 2.21 (s, 6H), 2.37 (d, 6H), 2.74 (s, 3H), 4.70 (m, 1H), 6.04 (s, 1H), 6.71 (s, 1H), 6.78 (d, *J* = 6.8 Hz, 1H), 6.85 (m, 3H), 6.99 (m, 2H), 7.13 (s, 1H), 7.24 (d,

J = 8.4 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.86 (s, 1H); ¹³C NMR (101 MHz, d₆-Acetone) δ 142.00, 137.07, 136.71, 135.31, 134.71, 130.19, 127.96, 127.59, 127.43, 127.18, 127.04, 126.44, 124.17, 123.02, 119.93, 118.72, 115.04, 111.00, 109.76, 47.12, 38.92, 20.66, 20.40, 20.21, 19.73, 11.63. HRMS calcd. for C₃₁H₃₄N₂ (M⁺): 434.2722, found: 434.2708; The enantiomeric excess of 93% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 97/3, flow rate 1.0 mL/min, T = 30 °C, 254 nm, tR(minor) 12.911 min, tR(major) 16.557 min].

(10u): yield: 95%; ee: 91%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm) 1.22 (m, 6H), 1.90 (s, 3H), 2.20 (s, 6H), 4.73 (m, 1H), 6.03 (s, 1H), 6.75 (m, 1H), 6.93 (m, 7H), 7.40 (m, 3H), 11.06 (s, 1H); ¹³C NMR (151 MHz, d₆-Acetone) δ 157.64,

156.10, 141.20, 137.05, 135.80, 133.30, 129.57, 127.47, 127.30, 127.23, 126.21, 125.89, 119.95, 117.88, 117.56, 116.09, 112.00, 111.94, 111.29, 109.27, 109.09, 103.36, 103.20, 46.73, 39.51, 20.13, 19.96, 8.00. HRMS calcd. for $C_{29}H_{29}FN_2$ (M⁺): 424.2315, found: 424.2303; The enantiomeric excess of 91% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 30 °C, 254 nm, tR(minor) 6.745 min, tR(major) 10.297 min].

(10v): yield: 91%; ee: 92%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (CDCl₃, 400 MHz) δ (ppm) 1.35 (m, 6H), 2.00 (s, 3H), 2.26 (d, 6H), 4.70 (m, 1H), 5.98 (s, 1H), 6.72 (s, 1H), 6.86 (s, 2H), 6.90 (s, 1H), 7.15 (m, 3H),

7.28 (d, J = 8.4 Hz, 1H), 7.31 (s, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.98 (s, 1H); ¹³C NMR (101 MHz, d₆-Acetone) δ 141.48, 137.33, 136.03, 135.41, 134.22, 129.85, 128.35, 127.77, 126.48, 125.98, 123.92, 121.48, 120.25, 118.26, 118.16, 117.85, 116.08, 112.76, 111.54, 106.95, 46.97, 39.66, 20.41, 20.28, 8.29. HRMS calcd. for C₂₉H₂₉ClN₂ (M⁺): 440.2019, found: 440.2008; The enantiomeric excess of 92% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 30 °C, 254 nm, tR(minor) 5.882 min, tR(major) 9.031 min].

(10w): yield: 93%; ee: 92%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm) 1.23 (m, 6H), 1.88 (s, 3H), 2.20 (s, 6H), 4.73 (m, 1H), 6.06 (s, 1H), 6.81 (m, 3H), 6.89 (s, 1H), 6.99 (m, 2H), 7.18 (m, 1H), 7.27 (s, 1H), 7.36 (d, 1H), 7.43 (d, 1H),

7.47 (d, J = 8.1 Hz, 1H), 11.17 (s, 1H); ¹³C NMR (151 MHz, d₆-Acetone) δ 141.22,

137.06, 135.77, 135.39, 133.93, 129.58, 128.76, 127.50, 126.21, 125.58, 123.79, 121.11, 119.98, 117.89, 117.58, 115.71, 112.95, 111.28, 106.84, 46.70, 39.35, 20.14, 20.01, 8.02. HRMS calcd. for $C_{29}H_{29}BrN_2$ (M⁺): 484.1514, found: 484.1508; The enantiomeric excess of 92% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 30 °C, 254 nm, tR(minor) 5.945 min, tR(major) 9.933 min].

d₆-Acetone) δ 157.63, 156.09, 141.26, 137.02, 135.82, 133.29, 129.83, 127.44, 127.33, 127.26, 126.27, 126.20, 125.83, 121.50, 117.70, 116.21, 111.98, 111.91, 111.03, 109.25, 109.08, 103.38, 103.22, 46.64, 39.50, 20.15, 20.01, 8.03. HRMS calcd. for $C_{30}H_{31}FN_2$ (M⁺): 438.2471, found: 438.2466; The enantiomeric excess of 89% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 95/5, flow rate 0.5 mL/min, T = 30 °C, 254 nm, tR(minor) 11.807 min, tR(major) 19.702 min].

(10y): yield: 94%; ee: 92%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm) 1.20 (m, 6H), 1.84 (s, 3H), 2.19 (s, 6H), 2.35 (s, 3H), 4.68 (m, 1H), 6.02 (s, 1H), 6.84 (m, 5H), 7.06 (m, 2H), 7.20 (s, 1H), 7.38 (t, 2H), 11.14 (s, 1H); ¹³C NMR (101

MHz, d₆-Acetone) δ 141.54, 137.29, 136.03, 135.40, 132.58, 130.10, 128.36, 127.73, 127.05, 126.45, 125.91, 123.89, 121.78, 121.44, 118.26, 117.96, 116.20, 112.72, 111.27, 106.60, 46.87, 39.64, 20.40, 20.32, 8.29. HRMS calcd. for C₃₀H₃₁ClN₂ (M⁺): 454.2176, found: 454.2164; The enantiomeric excess of 92% ee was determined by HPLC [Daicel Chirapak OD-H, hexane/isopropanol = 95/5, flow rate 0.5 mL/min, T = 30 °C, 254 nm, tR(minor) 11.627 min, tR(major) 19.563 min].

(10z): yield: 97%; ee: 92%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm) 1.20 (m, 6H), 1.84 (s, 3H), 2.19 (s, 6H), 2.35 (s, 3H), 4.68 (m, 1H), 6.02 (s, 1H), 6.82 (m, 5H), 7.18 (m, 2H), 7.25 (s, 1H), 7.36 (t, 2H), 11.15 (s, 1H); ¹³C NMR (151

MHz, d₆-Acetone) δ 141.28, 137.02, 135.77, 135.38, 132.31, 129.84, 128.79, 127.47, 126.27, 126.19, 125.52, 123.77, 121.52, 121.12, 117.71, 115.83, 112.93, 111.26, 111.01, 106.32, 46.61, 39.34, 20.15, 20.07, 8.04. HRMS calcd. for C₃₀H₃₁BrN₂ (M⁺): 498.1671, found: 498.1652; The enantiomeric excess of 92% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 95/5, flow rate 0.5 mL/min, T = 30 °C, 254 nm, tR(minor) 11.418 min, tR(major) 20.633 min].

(10aa): yield: 94%; ee: 86%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm) 1.19 (m, 6H), 2.28 (s, 3H), 2.62 (s, 3H), 4.71 (m, 1H), 6.19 (s, 1H), 6.67 (d, J = 7.2 Hz, 1H), 6.88 (t, 2H), 7.20 (m, 4H), 7.30 (m, 4H), 7.38 (d, J = 8.7 Hz, 1H), 11.21 (s,

1H); ¹³C NMR (151 MHz, d₆-Acetone) δ 141.49, 135.86, 135.42, 134.41, 130.05, 128.75, 128.34, 127.77, 127.64, 125.81, 125.56, 123.87, 121.37, 119.93, 119.83, 114.95, 113.01, 111.36, 109.58, 107.85, 46.89, 38.64, 19.97, 19.50, 11.32. HRMS calcd. for C₂₈H₂₇BrN₂ (M⁺): 470.1358, found: 470.1340; The enantiomeric excess of 86% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 30 °C, 254 nm, tR(minor) 8.715 min, tR(major) 12.133 min].

(10bb): yield: 92%; ee: 87%; (purified by flash column chromatography with petroleum ether and DCM eluents, v/v = 2.5/1); ¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm) 1.21 (m, 6H), 1.83 (s, 3H), 2.24 (s, 3H), 2.35 (s, 3H), 4.69 (m, 1H), 6.07 (s, 1H), 6.76 (s, 1H), 6.85 (d, J = 8.1 Hz, 1H), 6.94 (d, J = 8.1 Hz, 1H), 7.04 (m, 2H), 7.19 (m,

3H),7.26 (s, 1H), 7.37 (d, J = 8.7 Hz, 2H), 11.16 (s, 1H); ¹³C NMR (101 MHz,

d₆-Acetone) δ 142.10, 137.92, 136.47, 136.13, 133.04, 130.55, 129.78, 129.46, 128.39, 127.36, 127.02, 126.23, 124.53, 122.29, 121.87, 118.42, 116.41, 113.67, 112.02, 111.72, 107.15, 47.32, 40.12, 20.96, 20.89, 20.84, 8.75. HRMS calcd. for C₂₉H₂₉BrN₂ (M^+): 484.1514, found: 484.1501; The enantiomeric excess of 87% ee was determined by HPLC [Daicel Chirapak AD-H, hexane/isopropanol = 95/5, flow rate 1.0 mL/min, T = 30 °C, 254 nm, tR(minor) 7.396 min, tR(major) 12.071 min].

References:

- (1) D. Uraguchi, M. Terada, J. Am. Chem. Soc. 2004, 126, 5356.
- (2) T. Akiyama, H. Morita, J. Itoh, K. Fuchibe, Org. Lett. 2005, 7, 2583.
- (3) R. I. Storer, D. E. Carrera, Y. Ni, D. W. C. MacMillan, J. Am. Chem. Soc. 2006, **128**, 84.
- (4) Q.-X. Guo, H. Liu, C. Guo, S.-W. Luo, Y. Gu, L.-Z. Gong, J. Am. Chem. Soc. 2007, **129**, 3790.
- (5) X.-H. Chen, W.-Q. Zhang, L.-Z. Gong, J. Am. Chem. Soc. 2008, 130, 5652.
- (6) G. Pousse, A. Devineau, J. Blanchet, Tetrahedron. 2009, 65, 10617.
- (7) D. Fabbri, G. Delogu, O.-D. Lucchi, Tetrahedron: Asymmetry. 1993, 4, 1591.
- (8) D. Nakashima, H. Yamamoto, J. Am. Chem. Soc. 2006, 128, 9626.
- (9) A. Berkessel, M. Frauenkron, Tetrahedron: Asymmetry. 1996, 7, 671.
- (10) M. Rueping, B.-J. Nachtsheim, W. Ieawsuwan, Chem. Eur. J. 2010, 16, 13116.
- (11) M. Rueping, U. Uria, M.-Y. Lin, I. Atodiresei, J. Am. Chem. Soc. 2011, 133, 3732.
- (12) K. Wu, Y.-J. Jiang, S.-Q. Zhang, Chem. Eur. J. 2013, 19, 474.
- (13) Q. Cai, C. Zheng, S.-L. You, Angew. Chem. Int. Ed. 2010, 49, 8666.
- (14) J. F. Quinn, M. E. Bos, W. D. Wulff, Org. Lett. 1999, 1, 161.

3 Copies of ¹H- and ¹³C-NMR spectra of products

Figure S1. ¹H- (upper) and ¹³C-NMR (bottom) of 10a

Figure S2. ¹H- (upper) and ¹³C-NMR (bottom) of **10b**

Figure S3. 1 H- (upper) and 13 C-NMR (bottom) of 10c

Figure S4. ¹H- (upper) and ¹³C-NMR (bottom) of 10d

Figure S5. ¹H- (upper) and ¹³C-NMR (bottom) of **10e**

Figure S6. ¹H- (upper) and ¹³C-NMR (bottom) of **10f**

Figure S7. 1 H- (upper) and 13 C-NMR (bottom) of **10g**

Figure S8. ¹H- (upper) and ¹³C-NMR (bottom) of **10h**

Figure S9. ¹H- (upper) and ¹³C-NMR (bottom) of 10i

Figure S10. ¹H- (upper) and ¹³C-NMR (bottom) of 10j

Figure S11. 1 H- (upper) and 13 C-NMR (bottom) of 10k

Figure S12. 1 H- (upper) and 13 C-NMR (bottom) of 10l

Figure S13. ¹H- (upper) and ¹³C-NMR (bottom) of 10m

$$\begin{array}{c} -10.26 \\ -10.26 \\ -10.26 \\ -2.26 \\ -2.28 \\ -1.27 \\ -1.23 \\ -1.22 \\ -1.22 \\ -1.22 \\ -1.22 \\ -1.22 \\ -1.22 \\ -1.22 \\ -1.22 \\ -1.22 \\ -1.22 \\ -1.22 \\ -2.$$

Figure S14. 1 H- (upper) and 13 C-NMR (bottom) of 10n

Figure S15. ¹H- (upper) and ¹³C-NMR (bottom) of 100

Figure S16. 1 H- (upper) and 13 C-NMR (bottom) of 10p

$$\begin{array}{c} -10.01 \\ -10.01 \\ -10.01 \\ -10.01 \\ -10.02 \\ -10.02 \\ -10.02 \\ -10.02 \\ -10.02 \\ -10.02 \\ -10.02 \\ -10.02 \\ -10.02 \\ -10.02 \\ -10.02 \\ -10.01 \\ -10.$$

Figure S17. 1 H- (upper) and 13 C-NMR (bottom) of 10q

Figure S18. ¹H- (upper) and ¹³C-NMR (bottom) of 10r

Figure S19. ¹H- (upper) and ¹³C-NMR (bottom) of 10s

Figure S20. ¹H- (upper) and ¹³C-NMR (bottom) of 10t

Figure S21. 1 H- (upper) and 13 C-NMR (bottom) of 10u

Figure S22. ¹H- (upper) and ¹³C-NMR (bottom) of 10v

Figure S23. ¹H- (upper) and ¹³C-NMR (bottom) of 10w

Figure S24. ¹H- (upper) and ¹³C-NMR (bottom) of 10x

Figure S25. ¹H- (upper) and ¹³C-NMR (bottom) of 10y

Figure S26. ¹H- (upper) and ¹³C-NMR (bottom) of 10z

Figure S27. ¹H- (upper) and ¹³C-NMR (bottom) of 10aa

Figure S28. ¹H- (upper) and ¹³C-NMR (bottom) of 10bb

4. Copies of HPLC and integration area

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	6.804	3340329	50.24	127891	56.36
2	9.621	3307836	49.76	99039	43.64

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	6.866	44633	4.27	1547	5.23
2	9.745	1001268	95.73	28023	94.77

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	7.542	5097802	49.74	196901	59.00
2	13.381	5150500	50.26	136778	41.00

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	7.556	203028	6.64	9048	10.28
2	13.387	2855285	93.36	78936	89.72

Peak	RT	Area	Area %	Height	Height %
	(min)	(V*sec)		(V)	
1	24.781	1241689	49.68	40980	56.09
2	26.278	1257920	50.32	32075	43.91

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	25.029	66091	5.65	2375	7.74
2	26.567	1104281	94.35	28316	92.26

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	10.614	2107905	51.16	49757	55.33
2	13.691	2012341	48.84	40173	44.67

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	10.586	93292	2.05	2650	2.43
2	13.643	4468305	97.95	106595	97.57

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	8.429	7158409	49.28	337628	60.78
2	11.962	7367088	50.72	217823	39.22

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	8.520	1051394	5.48	34616	7.22
2	12.907	18127975	94.52	444844	92.78

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	17.732	3920907	50.30	51161	59.75
2	21.655	3873538	49.70	34461	40.25c

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	18.284	4910811	95.60	58695	95.85
2	22.115	226004	4.40	2540	4.15

Peak	RT	Area	Area %	Height	Height %
	(min)	(V*sec)		(V)	
1	11.588	5336205	50	119379	56.03
2	16.710	5334533	50	93698	43.97

Peak	RT	Area	Area %	Height	Height %
	(min)	(V*sec)		(V)	
1	12.093	1399710	9.21	28707	10.93
2	16.363	13797070	90.79	233965	89.07

Peak	RT	Area	Area %	Height	Height %
	(min)	(V*sec)		(V)	
1	11.529	5838800	50.29	124155	55.78
2	16.615	5759997	49.71	98471	44.22

Peak	RT	Area	Area %	Height	Height %
	(min)	(V*sec)		(V)	
1	11.580	1801671	7.67	40327	10.01
2	16.663	21699262	92.33	362831	89.99

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	11.433	5655267	50.53	130186	65.41
2	20.132	5536943	49.47	69042	34.59

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	13.091	726223	8.08	15324	13.58
2	22.664	7931997	91.92	97522	86.42

Peak	RT	Area	Area %	Height	Height %
	(min)	(V*sec)		(V)	
1	14.438	3756953	49.50	130242	52.41
2	15.648	3832944	50.50	118286	47.59

Peak	RT	Area	Area %	Height	Height %
	(min)	(V*sec)		(V)	
1	13.748	404326	10.20	9561	11.23
2	15.763	3559065	89.80	75579	88.77

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	13.645	5553044	50.45	112058	54.08
2	16.526	5433344	49.55	94040	45.92

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	14.259	1561685	8.63	28792	9.94
2	17.174	16527045	91.37	260758	90.06

Peak	RT	Area	Area %	Height	Height %
	(min)	(V*sec)		(V)	
1	10.116	3250995	50.77	83077	55.02
2	12.143	3152313	49.23	67906	44.98

Peak	RT	Area	Area %	Height	Height %
	(min)	(V*sec)		(V)	
1	10.111	1150780	9.52	25106	10.99
2	12.127	10933386	90.48	203310	89.01

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	6.874	1578044	50.09	63164	54.78
2	8.861	1568737	49.91	52.021	45.22

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	6.869	222416	4.95	8280	5.72
2	8.879	4268602	95.05	136393	94.28

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	6.618	666328	50.30	27634	55.40
2	8.623	657562	49.70	22206	44.60

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	6.433	283602	6.23	11114	7.62
2	8.383	4268602	93.77	134679	92.38

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	6.658	5173634	50.96	127083	53.93
2	8.846	4978259	49.04	108573	46.07

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	6.918	83532	5.20	2908	6.08
2	9.108	1523685	94.80	44893	93.92

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	11.660	3764516	50.27	84262	57.99
2	15.290	3723998	49.73	61032	42.01

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	12.115	592047	6.30	11585	7.15
2	15.994	8808823	93.70	150346	92.85

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	9.824	286322	49.63	11070	58.58
2	13.263	290558	50.37	7828	41.42

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	8.798	308107	8.49	7312	11.02
2	12.316	3196123	91.51	59063	88.98

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	11.022	898573	51.59	26318	53.87
2	13.573	843023	48.41	22537	46.13

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	10.962	175861	2.43	3940	2.64
2	13.471	7067869	97.57	145388	97.36

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	11.913	316025	51.78	7128	59.10
2	15.177	294250	48.22	4933	40.90

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	6.486	7233718	50.03	272810	56.69
2	9.507	7224270	49.97	208406	43.31

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	5.809	4279950	50.73	183428	61.58
2	8.594	4156263	49.27	114418	38.42

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	6.486	10561589	51.45	260000	60.00
2	9.830	9964604	48.55	173224	40.00

 (min)
 (V*sec)
 (V)

 1
 5.945
 125563
 3.94
 3658
 5.96

 2
 9.933
 3060191
 96.06
 57772
 94.04

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	10.467	10302661	49.99	320844	67.46
2	17.543	10306443	50.01	154795	32.54

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	11.807	675106	5.75	13657	7.50
2	19.702	11056829	94.25	168427	92.50

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	10.426	4136150	50.48	119179	66.44
2	17.054	4057745	49.52	60205	33.56

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	11.627	509765	4.11	8086	5.06
2	19.563	11697732	95.89	151832	94.94

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	11.740	1446553	49.59	37224	59.27
2	19.711	1470709	50.41	25581	40.73

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	11.418	697866	4.05	13740	6.83
2	20.633	16540791	95.95	187359	93.17

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	8.746	2678658	50.22	79461	50.98
2	12.120	2655137	49.78	76421	49.02

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	8.715	288623	6.89	8120	7.42
2	12.133	3901444	93.11	101276	92.58

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	7.383	1067932	50.58	36472	60.05
2	12.068	1043341	49.42	24263	39.95

Peak	RT (min)	Area (V*sec)	Area %	Height (V)	Height %
1	7.396	177703	6.42	6185	9.42
2	12.071	2589930	93.58	59507	90.58