C5-Amino acid functionalized LNA: Positively poised for antisense applications

Dale C. Guenther, Pawan Kumar, Brooke A. Anderson and Patrick J. Hrdlicka*

Electronic Supplementary Information (ESI)

Table of Contents

General experimental section	S 2
Conjugation protocol toward nucleoside 3x/3y/3z	S 3
General phosphitylation protocol for 4x/4y/4z	S 7
General protocol for synthesis of modified ONs	S 9
Protocol - thermal denaturation studies	S10
MALDI-MS of synthesized ONs (Table S1)	S10
Representative thermal denaturation curves (Figure S1)	S11
$T_{\rm m}$'s of duplexes between B1-B4 -series towards DNA (Table S2)	S11
Thermodynamic parameters (Table S3)	S12
Thermostability toward RNA at various ionic strengths (Table S4)	S13
Thermostability toward DNA at various ionic strengths (Table S5, Figure S2)	S14
Discrimination of mismatched DNA by B1 -series (Table S6)	S15
Discrimination of mismatched RNA/DNA by B4 -series (Table S7)	S15
Thermostability of ASO duplexes (Table S8)	S16
References	S16
NMR spectra of novel nucleosides	S17

General experimental section. Analytical grade solvents and reagents were purchased from commercial suppliers and used without further purification. Anhydrous solvents were either purchased (DMF) or dried with activated molecular sieves: CH₃CN (3 Å) and $CH_2Cl_2/1, 2$ -dichloroethane/N,N'-diisopropylethylamine (4 Å). Reactions using these solvents were conducted under an inert atmosphere (argon). All reactions were monitored by thin layer chromatography (TLC) using silica gel coated plates with a fluorescence indicator (SiO₂-60, F-254), which were visualized under UV light and/or by dipping in 5% conc. H_2SO_4 in abs. ethanol (v/v) followed by heating. Purification (>95% purity, assessed by one-dimensional NMR techniques) was accomplished using column chromatography (silica gel 60, particle size 0.040-0.063 mm) using moderate pressure (pressure ball). Evaporation of solvents was carried out under reduced pressure at temperatures below 40 °C. Chemical shifts are reported relative to deuterated solvents or other internal standards (trimethylsilane and 80% phosphoric acid for ¹H and ³¹P NMR, respectively) or external standards (DMSO- d_6 and trifluorochloromethane for ¹³C and ¹⁹F NMR, respectively). Exchangeable protons were detected by disappearance of peaks upon D₂O addition. Assignments of NMR spectra are based on 2D spectra (COSY, HSQC) and DEPT. Quaternary carbons in ¹³C NMR are not assigned, but their presence was verified by HSQC and DEPT spectra (absence of signals). Assignments of ¹H NMR signals of H5'/H5"/CH₂Ph and the corresponding ¹³C NMR signals are interchangeable. MALDI-HRMS spectra were recorded on a Q-TOF mass spectrophotometer using 2,5dihydroxybenzoic acid (DHB) as a matrix.

(1R,3R,4R,7S)-3-[5-(3-Aminopropyn-1-yl)uracil-1-yl]-1-(4,4'-

dimethoxytrityloxymethyl)-7-hydroxy-2,5-dioxabicyclo[2.2.1]heptane (2).

Method A. Nucleoside 1^{S1} (1.28 g, 1.83 mmol) was dissolved in sat. methanolic ammonia (30 mL) and the mixture was stirred for 16 h at rt, at which point the solvents were evaporated. The resulting residue was purified by column chromatography (5-10% MeOH/CH₂Cl₂, v/v) to afford nucleoside 2 (1.11 g, 97%) as a brown foam, which was used in the next step without further purification. $R_f = 0.5$ (10% MeOH in CH₂Cl₂, v/v); MALDI-HRMS m/z 634.2146 ([M+Na]⁺, C₃₄H₃₃N₃O₈·Na⁺, Calcd 634.2160); ¹H NMR (DMSO-d₆, 500.1 MHz) δ 7.78 (s, 1H, H6), 7.43-7.46 (m, 2H, Ar), 7.30-7.36 (m, 6H, Ar), 7.23-7.27 (m, 1H, Ar), 6.91 (d, 4H, J = 9.0 Hz, Ar), 5.73 (br s, 1H, ex, 3'-OH), 5.42 (s, 1H, H1'), 4.25 (s, 1H, H2'), 4.07 (s, 1H, H3'), 3.78-3.80 (d, 1H, J = 8.0 Hz, H5"), 3.75-3.77 (d, 1H, J = 8.0 Hz, H5"), 3.75 (s, 6H, CH₃O), 3.48-3.52 (d, 1H, J = 11.5 Hz, H5'), 3.28-3.33 (m, 3H, $2 \times CH_2NH_2$, H5' - partial overlap with H₂O); ¹³C NMR (DMSOd₆, 125.5 MHz) δ 161.8, 158.1, 149.0, 144.7, 141.1 (C6), 135.3, 135.1, 129.7 (Ar), 129.6 (Ar), 127.9 (Ar), 127.6 (Ar), 126.6 (Ar), 113.2 (Ar), 98.1, 93.6, 87.5, 86.9 (C1'), 85.6, 78.7 (C2'), 74.1, 71.3 (C5"), 69.5 (C3'), 58.9 (C5'), 55.0 (CH₃O), 31.1 (CH₂NH). Minor unidentified impurities were observed in the ¹³ C NMR spectrum below 40 ppm.

Method B. To a flame-dried round-bottomed flask was added 5-iodo-5'-O-(4,4'-dimethoxytrityl)-LNA uridine^{S1} (2.00 g, 2.92 mmol), CuI (111 mg, 0.58 mmol), Pd(PPh₃)₄ (0.34 g, 0.29 mmol) and anhydrous DMF (30 mL). Several degas/argon cycles were performed, followed by addition of propargyl amine (0.47 mL, 7.31 mmol) and anhydrous Et₃N (1.80 mL, 12.90 mmol). The reaction mixture was stirred at room

temperature under argon atmosphere for 15.5 h, at which point the solvent was evaporated off at high vacuum. The resulting residue was diluted with CH_2Cl_2 (60 mL), washed with brine (2 × 100 mL), sat. aq. NaHCO₃ (100 mL), and H₂O (100 mL). The organic layer was evaporated to dryness and the resulting crude was purified via silica gel column chromatography (0-10% MeOH in CH_2Cl_2 , v/v) to give nucleoside **2** (1.27 g, 71%) as a light brown foam.^{S2}

Conjugation protocol for the synthesis of nucleosides 3x/3y/3z. Protected amino acids 2-(2,2,2-trifluoroacetamido)acetic acid and (S)-2,6-bis(2,2,2-trifluoroacetamido)hexanoic acid were prepared according to literature protocols.^{S3} S-2-(2,2,2-Trifluoroacetamido)-4methylpentanoic acid was also prepared essentially as described in the literature, ^{S4} except that sodium in methanol (0 °C), rather than potassium in methanol (40 °C), was used to generate methoxide. A solution of the appropriate protected amino acid, O-(Nsuccinimidyl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TSTU) and N,N'diisopropylethylamine (DIPEA) in anhydrous DMF was stirred at rt for 30 min. After cooling the solution to 0 °C, nucleoside 2 was added and the reaction mixture was warmed to rt over 15 min. Upon completion of the reaction (reaction time specified below) the solvent was evaporated and the resulting residue dissolved in EtOAc (100 mL). The organic phase was sequentially washed with sat. aq. NaHCO₃ (2×50 mL) and brine (50 mL), dried (Na₂SO₄) and evaporated to dryness. The resulting residue was purified by silica gel column chromatography (0-5% MeOH in CH₂Cl₂, v/v) to afford desired nucleoside 3x/y/z (quantities and yields specified below).

5-(TFA-glycyl-aminopropynyl)-5'-O-(4,4'-dimethoxytrityl) LNA uridine (3x). A solution of 2-(2,2,2-trifluoroacetamido)acetic acid (90 mg, 0.58 mmol), nucleoside 2 (0.30 g, 0.49 mmol), TSTU (190 mg, 0.63 mmol) and DIPEA (0.25 mL, 1.47 mmol) in anhydrous DMF (10 mL) was reacted (2 h), worked up and purified as described in the representative protocol to afford nucleoside 3x (180 mg, 48%) as a slightly brown solid material. $R_{\rm f} = 0.4$ (5% MeOH in CH₂Cl₂, v/v); MALDI-HRMS *m/z* 787.2200 ([M + Na]⁺, $C_{38}H_{35}F_{3}N_{4}O_{10}Na^{+}$, Calcd 787.2203); ¹H NMR (DMSO- d_{6} , 500.1 MHz) δ 11.68 (s, 1H, ex, NH(U)), 9.62 (t, 1H, ex, J = 5.5 Hz, NHCOCF₃), 8.49 (t, 1H, ex, J = 5.2 Hz, NHCH₂C=C), 7.78 (s, 1H, H6), 7.42-7.45 (m, 2H, Ar), 7.28-7.35 (m, 6H, Ar), 7.23-7.27 (m, 1H, Ar), 6.91-6.92 (2d, 4H, J = 9.0 Hz, Ar), 5.73 (d, 1H, ex, J = 5.0 Hz, 3'-OH), 5.43 (s, 1H, H1'), 4.25 (s, 1H, H2'), 4.04 (d, 1H, J = 5.0 Hz, H3'), 3.94-3.99 (dd, 1H, J = 17.7Hz, 5.2 Hz, $CH_2C\equiv C$), 3.86-3.91 (dd, 2H, J = 17.7, 5.2 Hz, $CH_2C\equiv C$), 3.79-3.83 (m, 4H, H5", CH₂NHCOCF₃), 3.75 (s, 6H, CH₃O), 3.55-3.58 (d, 1H, *J* = 11.0 Hz, H5'), 3.26-3.30 (d, 1H, J = 11.0 Hz, H5', partial overlap with H₂O); ¹³C NMR (DMSO- d_6 , 125.5 MHz) δ 166.6, 161.7, 158.12, 158.08, 156.7 (q, J_{CF} = 36 Hz, COCF₃), 149.0, 144.7, 141.8 (C6), 135.4, 134.9, 129.8 (Ar), 129.6 (Ar), 127.9 (Ar), 127.5 (Ar), 126.7 (Ar), 115.9 (q, $J_{CF} =$ 287 Hz, CF₃), 113.3 (Ar), 113.2 (Ar), 97.5, 88.8, 87.6, 86.9 (C1'), 85.6, 78.8 (C2'), 74.7, 71.4 (C5"), 69.6 (C3'), 59.1 (C5'), 55.0 (CH₃O), 41.7 (CH₂NHCOCF₃), 28.8 (CH₂C=C); ¹⁹F NMR (DMSO- d_6 , 470.6 MHz) δ -74.8 (CF₃).

5-(TFA-leucyl-aminopropynyl)-5'-O-(4,4'-dimethoxytrityl) LNA uridine (3y). A solution of *S*-2-(2,2,2-trifluoroacetamido)-4-methylpentanoic acid (100 mg, 0.44 mmol), nucleoside **2** (0.25 g, 0.40 mmol), TSTU (160 mg, 0.53 mmol) and DIPEA (0.21 mL, 1.20 mmol) in anhydrous DMF (5 mL) was reacted (2 h), worked up and purified as

described in the representative protocol to afford nucleoside 3y (170 mg, 49%) as a brown solid material. $R_f = 0.5$ (5% MeOH in CH₂Cl₂, v/v); MALDI-HRMS *m/z* 843.2797 $([M + Na]^{+}, C_{42}H_{43}F_{3}N_{4}O_{10}Na^{+}, Calcd 843.2829);$ ¹H NMR (DMSO- d_{6} , 500.1 MHz) δ 11.68 (s, 1H, ex, NH(U)), 9.54 (d, 1H, ex, J = 8.5 Hz, NHCOCF₃), 8.58-8.61 (m, 1H, ex, NHCH₂C=C), 7.77 (s, 1H, H6), 7.42-7.45 (m, 2H, Ar), 7.28-7.35 (m, 6H, Ar), 7.22-7.26 (m, 1H, Ar), 6.89-6.93 (2d, 4H, J = 9.0 Hz, Ar), 5.71-5.74 (d, 1H, ex, J = 8.5 Hz, 3'-OH – partial overlap with CH₂Cl₂), 5.43 (s, 1H, H1'), 4.35-4.41 (m, 1H, CHNHCOCF₃), 4.25 (s, 1H, H2'), 4.02-4.05 (m, 1H, H3'), 3.85-3.99 (m, 2H, CH₂C=C), 3.78-3.83 (m, 2H, H5"), 3.75 (s, 6H, CH₃O), 3.54-3.58 (d, 1H, *J* = 11.0 Hz, H5'), 3.26-3.30 (d, 1H, *J* = 11.0 Hz, H5' - partial overlap with H₂O), 1.63-1.66 (m, 1H, CH₂-*i*Pr), 1.45-1.54 (m, 2H, CH₂*i*Pr, CH(CH₃)₂), 0.81-0.89 (m, 6H, (CH₃)₂CH); ¹³C NMR (DMSO-*d*₆, 125.5 MHz) 170.1, 161.7, 158.12, 158.08, 156.3 (q, ${}^{2}J_{CF}$ = 36 Hz, COCF₃), 149.0, 144.7, 141.8 (C6), 135.42, 135.40, 134.91, 134.87, 129.8 (Ar), 129.6 (Ar), 127.9 (Ar), 127.5 (Ar), 126.7 (Ar), 115.8 $(q, {}^{I}J_{CF} = 288 \text{ Hz}, \text{ CF}_{3}), 113.2 \text{ (Ar)}, 97.6, 88.9, 87.5, 86.9 \text{ (C1')}, 85.6, 78.8 \text{ (C2')}, 74.7,$ 71.4 (C5"), 69.6 (C3'), 59.1 (C5'), 55.0 (CH₃O), 51.5 (CHNHCOCF₃), 39.7 (CH₂-*i*Pr overlap with DMSO-*d*₆), 28.9 (CH₂C≡C), 24.3 (CHMe₂), 22.9 (CH₃), 21.0 (CH₃); ¹⁹F NMR (DMSO- d_6 , 282.4 MHz) δ -74.3. An extra set of ¹³C NMR signals are observed for some of the carbons (extra signals at 88.8, 74.8, 59.0, 24.2, 22.8, 20.9 ppm). We attribute these peaks to the presence of two different conformers, most likely rotamers - rather than scrambling of the chirality center in the amino acid residue - based on the observation that only one set of signals is observed when the spectrum is recorded in acetone- d_6 .

5-(bis-TFA-lysyl-aminopropynyl)-5'-O-(4,4'-dimethoxytrityl) LNA uridine (3z). A solution of (S)-2,6-bis(2,2,2-trifluoroacetamido)hexanoic acid (0.27 g, 0.79 mmol), nucleoside 2 (0.50 g, 0.81 mmol), TSTU (0.32 g, 1.06 mmol) and DIPEA (0.42 mL, 2.40 mmol) in anhydrous DMF (10 mL) was reacted (3h), worked up and purified as described in the representative protocol to afford nucleoside 3z (0.44 g, 58%) as a slightly brown solid material. $R_f = 0.5$ (5% MeOH in CH₂Cl₂, v/v); MALDI-HRMS m/z 954.2770 ([M + Na]⁺, C₄₄H₄₃F₆N₅O₁₁·Na⁺, Calcd 954.2761); ¹H NMR (DMSO- d_6 , 500.1 MHz) δ 11.68 (s, 1H, ex, NH), 9.50 (d, 1H, ex, J = 7.0 Hz, NHCH), 9.36 (br s, 1H, ex, NH(CF₃CO)CH₂), 8.55 (br s, 1H, ex, NHCH₂C=C), 7.78 (s, 1H, H6), 7.42-7.45 (m, 2H, Ar), 7.28-7.35 (m, 6H, Ar), 7.22-7.26 (m, 1H, Ar), 6.88-6.93 (2d, 4H, J = 9.0 Hz, Ar), 5.72 (d, 1H, ex, J =5.0 Hz, 3'-OH), 5.42 (ap d, 1H, J = 3.5 Hz, H1'), 4.27-4.32 (m, 1H, CHNH), 4.25 (s, 1H, H2'), 4.03 (ap t, 1H, J = 5.0 Hz, H3'), 3.78-3.98 (m, 4H, CH₂C=C, H5"), 3.74 (s, 6H, CH₃O), 3.55-3.58 (d, 1H, J = 11.5 Hz, H5'), 3.26-3.29 (d, 1H, J = 11.5 Hz, H5'), 3.09-3.20 (m, 2H, CH₂CH₂CH₂CH₂CHNH), 1.65-1.74 (m, 2H, CH₂CHNH), 1.41-1.49 (m, 2H, CH₂CH₂CH₂CHNH), 1.18-1.32 (m, 2H, CH₂CH₂CHNH); ¹³C NMR (DMSO-*d*₆, 125.5) MHz) δ 169.8, 161.7, 158.12, 158.08, 156.4 (2q, ${}^{2}J_{CF}$ = 36 Hz, 2×COCF₃), 149.0, 144.7, 141.80, 141.78 (C6), 135.42, 135.39, 134.91, 134.88, 129.8 (Ar), 129.6 (Ar), 127.9 (Ar), 127.5 (Ar), 126.6 (Ar), 115.9 (g, ${}^{1}J_{CF} = 286$ Hz, CF₃), 115.7 (g, ${}^{1}J_{CF} = 290$ Hz, CF₃), 113.2 (Ar), 97.54, 97.53, 88.81, 88.75, 87.5, 86.9 (C1'), 85.6, 78.8 (C2'), 74.84, 74.79, 71.4 (C5"), 69.6 (C3'), 59.1 (C5'), 59.0 (C5'), 54.9 (CH₃O), 53.0 (CHNH), 38.9 (CH₂CH₂CH₂CH₂CHNH), 30.5 (CH₂CHNH), 28.9 $(CH_2C\equiv C)$, 27.6 (CH₂CH₂CH₂CHNH), 22.7 (CH₂CH₂CHNH); ¹⁹F NMR (DMSO-*d*₆, 282.4 MHz) δ -74.3, -74.9. An extra set of ¹³C NMR signals is observed for some of the carbons, which we again attribute to the presence of two different conformers/rotamers (extra signals at \sim 141.8, 97.5, 88.8, 74.8 and 59.1 ppm – all belong to carbons in the (anticipated spatial) vicinity of the amino acid residue).

General phosphitylation protocol for the preparation of 4x/y/z. The appropriate nucleoside 3 was coevaporated with anhydrous 1,2-dichloroethane (2 × 10 mL) and dissolved in anhydrous CH₂Cl₂. DIPEA was added to this solution followed by dropwise addition of 2-cyanoethyl *N*,*N*-diisopropylchlorophosphoramidite (PCl reagent). The reaction was stirred at rt for 2 h, at which point ice cold ethanol (1 mL) was added and the solvents were evaporated. The resulting residue was purified by silica gel column chromatography (typically 0-5% MeOH/CH₂Cl₂, v/v) and subsequent trituration from CH₂Cl₂ and petroleum ether to provide phosphoramidites 4x/y/z.

5-(TFA-glycyl-aminopropynyl)-5'-O-(4,4'-dimethoxytrityl)-3'-O-(N,N-

diisopropylamino-2-cyanoethoxyphosphinyl) LNA uridine (4x). A solution of nucleoside 3x (146 mg, 0.19 mmol), DIPEA (137 μ L, 0.78 mmol) and PCl reagent (66 μ L, 0.29 mmol) in anhydrous CH₂Cl₂ (4 mL) was reacted and purified as described above to afford phosphoramidite 4x (119 mg, 64%) as a white foam. $R_{\rm f} = 0.3$ (5% MeOH in CH₂Cl₂, v/v); MALDI-HRMS *m/z* 987.3279 ([M + Na]⁺, C₄₇H₅₂F₃N₆O₁₁P·Na⁺, Calcd 987.3282); ³¹P NMR (CDCl₃, 121.5 MHz) δ 149.9, 148.8.

5-(TFA-leucyl-aminopropynyl)-5'-O-(4,4'-dimethoxytrityl)-3'-O-(N,Ndiisopropylamino-2-cyanoethoxyphosphinyl) LNA uridine (4y). A solution of nucleoside **3y** (83 mg, 0.10 mmol), DIPEA (71 µL, 0.41 mmol) and PCl reagent (41 µL, 0.18 mmol) in anhydrous CH₂Cl₂ (4 mL) was reacted and purified as described above to afford phosphoramidite **4y** as a light yellow foam (38 mg, 37% yield). $R_{\rm f} = 0.3$ (5% MeOH in CH₂Cl₂, v/v); MALDI-HRMS *m/z* 1043.3889 ([M + Na]⁺, C₅₁H₆₀F₃N₆O₁₁P·Na⁺, Calcd 1043.3908); ³¹P NMR (CDCl₃, 121.5 MHz) δ 149.8, 148.8.

5-(TFA-lysyl-aminopropynyl)-5'-O-(4,4'-dimethoxytrityl)-3'-O-(N,N-

diisopropylamino-2-cyanoethoxyphosphinyl) LNA uridine (4z). A solution of nucleoside 3z (154 mg, 0.16 mmol), DIPEA (112 μ L, 0.65 mmol) and PCI-reagent (72 μ L, 0.32 mmol) in anhydrous CH₂Cl₂ (4 mL) was reacted and purified as described above to afford phosphoramidite 4z (83 mg, 45%) as a light yellow foam. $R_{\rm f} = 0.4$ (5% MeOH in CH₂Cl₂, v/v); MALDI-HRMS *m/z* 1154.3789 ([M + Na]⁺, C₅₃H₆₀F₆N₇O₁₂P·Na⁺, Calcd 1154.3840); ³¹P NMR (DMSO-*d*₆, 121.5 MHz) δ 148.4, 147.9.

General protocol for the synthesis of modified ONs. ASO L1 was obtained from a commercial vendor. All other modified ONs were synthesized on an automated DNA synthesizer (0.2 μ mol scale) and using long-chain alkyl amine controlled pore glass (LCAA-CPG) solid support. Modified phosphoramidites (0.05 M in acetonitrile) were used to incorporate monomers **X-Z**. Extended hand couplings (15 min, 4,5-dicyanoimidazole), oxidation (60 s) and capping (30 s) were employed resulting in stepwise coupling yield of 99, 93, and 90% for phosphoramidites **4x**, **4y** and **4z**, respectively. ONs were deprotected and cleaved from solid support using ammonia (55 °C, 17 h), purified in the DMT-ON mode using reverse-phase ion-pair HPLC (0.05 M aq.

triethyl ammonium acetate / 25% water in CH₃CN), detritylated (80% aq. AcOH) and precipitated (NaOAc/NaClO₄/acetone, -18 °C for 12-16 h). Purity (>80%) and identity was verified by analytical HPLC and MALDI-TOF, respectively. Quantification of ONs was performed using extinction coefficients (OD_{260}/μ mol) of 12.01 (G), 15.2 (A), 7.05 (C), and 8.40 (T).

Protocol – **thermal denaturation studies**. Thermal denaturation curves were recorded and analyzed as previously described. The two strands comprising a duplex were annealed (each at 1.0 μ M, 85 °C, 2 min) in a medium salt phosphate buffer ([Na⁺] = 110 mM, [Cl⁻] = 100 mM, pH 7.0 (NaH₂PO₄/Na₂HPO₄)), unless otherwise specified. A temperature ramp of 0.5 °C/min was used in all experiments. The reported $T_{\rm m}$ is the maximum of the first derivative curve, rounded to the nearest 0.5 °C, averaged from two experiments within 1.0 °C.

ON	Sequence	Calculated $m/z [M]^+$	Observed $m/z [M]^+$
X1	5'-GTG AXA TGC	2876.5	2877.7
X2	3'-CAC XAT ACG	2805.5	2806.6
X3	3'-CAC TAX ACG	2805.5	2806.6
X4	3'-CAC XAX ACG	2929.6	2930.5
Y1	5'-GTG AYA TGC	2932.6	2933.6
Y2	3'-CAC YAT ACG	2861.6	2862.6
Y3	3'-CAC TAY ACG	2861.6	2862.0
Y4	3'-CAC YAY ACG	3041.7	3042.1
Z 1	5'-GTG AZA TGC	2947.6	2948.7
Z2	3'-CAC ZAT ACG	2876.6	2877.8
Z3	3'-CAC TAZ ACG	2876.6	2877.7
Z4	3'-CAC ZAZ ACG	3071.7	3072.6
ASO Z1	5'- Zcg AAG TAC TCG GCG TAg gZT	7309.8	7310.0

Table S1. MALDI-MS of synthesized ONs.^a

^{*a*} Structures of monomers X/Y/Z are shown in Scheme 1 in the main text. Lower case letters denote canonical LNA monomers; underlined denotes phophorothioate backbone.

Figure S1. Representative thermal denaturation curves for the B2-series (3'-CAC TA**B** ACG). For monomer structures, see Scheme 1.

			$T_{\rm m} [\Delta T_{\rm m}/{\rm mod}]/^{\circ}{\rm C}$				
ON	Duplex	<u>B</u> =	L	Х	Y	Ζ	
B1	5'-GTG A <u>B</u> A TGC		36.0	37.5	36.5	38.5	
D2	3'-CAC TAT ACG		[+6.5]	[+8.0]	[+7.0]	[+9.0]	
D1	5'-GTG ATA TGC		34.0	36.0	36.5	39.0	
B2	3'-CAC <u>B</u> AT ACG		[+4.5]	[+6.5]	[+7.0]	[+9.5]	
D1	5'-GTG ATA TGC		36.5	38.0	37.0	37.0	
B3	3'-CAC TA <u>B</u> ACG		[+7.0]	[+8.5]	[+7.5]	[+7.5]	
D1	5'-GTG ATA TGC		39.0	46.0	44.5	49.0	
B4	3'-CAC <u>B</u> A <u>B</u> ACG		[+4.8]	[+8.3]	[+7.5]	[+9.8]	

Table S2. $T_{\rm m}$'s of duplexes between **B1-B4** -series and complementary DNA targets.^{*a*}

^{*a*} For monomer structures, see Scheme 1. $\Delta T_{\rm m}$ = change in $T_{\rm m}$ relative to unmodified **D1**:**D2** duplex (29.5 °C).

Table S3. Thermodynamic parameters for duplex formation between **B1-B3**-series andcomplementary RNA or DNA. a

		comp	lementary RI		comp	complementary DNA		
		$\Delta G^{298} [\Delta \Delta G^{298}]$	$\Delta H [\Delta \Delta H]$	$-T^{298}\Delta S$ $[\Delta(-T^{298}\Delta S)]$	$\Delta G^{298} [\Delta \Delta G^{293}]$	$\Delta H [\Delta \Delta H]$	$-T^{298}\Delta S$ $[\Delta(-T^{298}\Delta S)]$	
ON	Sequence	(kJ/mol)	(kJ/mol)	(kJ/mol)	(kJ/mol)	(kJ/mol)	(kJ/mol)	
D1	5'-GTG ATA TGC	-36	-278	241	-42	-314	271	
D2	3'-CAC TAT ACG	-39	-293	254	-42	-314	271	
L1	5'-GTG A <u>L</u> A TGC	-49 [-13]	-309 [-31]	260 [+19]	-47 [-5]	-297 [+17]	250 [-21]	
L2	3'-CAC LAT ACG	-47 [-8]	-331 [-38]	283 [+29]	-46 [-4]	-332 [-18]	286 [+15]	
L3	3'-CAC TA <u>L</u> ACG	-50 [-11]	-340 [-47]	290 [+36]	-49 [-7]	-332 [-18]	283 [+12]	
X1	5'-GTG A <u>X</u> A TGC	-55 [-19]	-385 [-107]	330 [+89]	-55 [-13]	-399 [-85]	344 [+73]	
X2	3'-CAC <u>X</u> AT ACG	-47 [-8]	-386 [-93]	339 [+85]	-50 [-8]	-382 [-68]	332 [+61]	
X3	3'-CAC TA <u>X</u> ACG	-53 [-14]	-409 [-116]	356 [+102]	-52 [-10]	-338 [-24]	285 [+14]	
Y1	5'-GTG A <u>Y</u> A TGC	-46 [-10]	-310 [-32]	264 [+23]	-47 [-5]	-342 [-28]	295 [+24]	
Y2	3'-CAC YAT ACG	-54 [-15]	-480 [-187]	426 [+172]	-59 [-17]	-557 [-243]	499 [+228]	
¥3	3'-CAC TA $\underline{\mathbf{Y}}$ ACG	-53 [-14]	-490 [-197]	436 [+182]	-51 [-9]	-451 [-137]	400 [+129]	
Z 1	5'-GTG A <u>Z</u> A TGC	-59 [-23]	-426 [-148]	366 [+125]	-56 [-14]	-395 [-81]	339 [+68]	
Z2	3'-CAC ZAT ACG	-51 [-12]	-427 [-134]	376 [+122]	-56 [-14]	-480 [-166]	423 [+152]	
Z3	3'-CAC TAZ ACG	-59 [-20]	-428 [-135]	369 [+115]	-54 [-12]	-369 [-55]	315 [+44]	

^{*a*} Values were determined from thermal denaturation curves using the van't Hoff method and are reported as the average of two experiments. $\Delta\Delta G^{298}$, $\Delta\Delta H$ and $\Delta (T^{298}\Delta S)$ are calculated relative to reference duplexes **D1:D2**, **D1:R2** and **D2:R1**.

Table S4. Thermostaiblity of duplexes between B1-B4 -series and complementary RNA

at various ionic strengths.^a

			complementary RNA					
			$(\Delta T_{\rm m}/{\rm mod})/{\rm ^{o}C}$					
ON	Sequence	$[Na^{+}] =$	110 mM	40 mM	10 mM			
L1	5'-GTG ALA TGC		9.0	9.0	8.5			
L2	3'-CAC <u>L</u> AT ACG		7.5	7.5	7.5			
L3	3'-CAC TA <u>L</u> ACG		9.0	9.0	9.5			
L4	3'-GCA <u>L</u> A <u>L</u> CAC		7.5	7.8	7.8			
			10 5	10.5	12.5			
X1	5'-GTG A <u>X</u> A TGC		10.5	12.5	13.5			
X2	3'-GCA <u>X</u> AT CAC		10.5	13.0	14.0			
X3	3'-GCA TA <u>X</u> CAC		10.0	9.5	10.5			
X4	3'-GCA <u>X</u> A <u>X</u> CAC		9.0	nd	nd			
Y1	5'-GTG AYA TGC		9.5	12.5	14.5			
Y2	3'-GCA YAT CAC		10.5	11.0	10.5			
Y3	3'-GCA TAY CAC		7.0	8.0	9.5			
Y4	3'-GCA $\underline{\mathbf{Y}}A\overline{\underline{\mathbf{Y}}}$ CAC		9.3	10.8	11.8			
Z 1	5'-GTG A <u>Z</u> A TGC		12.5	16.5	18.0			
Z2	3'-GCA <u>Z</u> AT CAC		11.0	12.5	14.5			
Z3	3'-GCA TAZ CAC		14.0	17.5	19.5			
Z4	3'-GCA <u>Z</u> A <u>Z</u> CAC		13.0	14.8	17.0			

^a Graphical representation shown in Figure 1 of main text. $\Delta T_{\rm m}$ = change in $T_{\rm m}$ relative to matched duplex (**D1:R2** or **R1:D2**) in the corresponding buffer: **D1:R2** ($T_{\rm m,110 \ \rm mM}$ = 28.0 °C, $T_{\rm m,40 \ \rm mM}$ = 21.0 °C, $T_{\rm m,10 \ \rm mM}$ = 12.0 °C); **R1:D2** ($T_{\rm m,110 \ \rm mM}$ = 28.0 °C, $T_{\rm m,40 \ \rm mM}$ = 22.0 °C, $T_{\rm m,10 \ \rm mM}$ = 12.0 °C). Buffer conditions: ([Na⁺] = 110 mM, [Cl⁻] = 100 mM, pH 7.0 (NaH₂PO₄/Na₂HPO₄)), ([Na⁺] = 40 mM, [Cl⁻] = 30 mM, pH 7.0 (NaH₂PO₄/Na₂HPO₄)) for 110 mM Na⁺, 40 mM Na⁺, and 10 mM Na⁺, respectively. nd = not determined.

Table S5	. Thermostability	of duplexes	between	B1-B4	-series and	l complementary	V DNA
at various	ionic strengths. ^a						

			complementary DNA				
				$\Delta T_{\rm m}/^{\circ}{\rm C}$			
ON	Sequence	$[Na^{+}] =$	110 mM	40 mM	10 mM		
L1	5'-GTG A <u>L</u> A TGC		6.5	7.0	6.0		
L2	3'-CAC LAT ACG		4.5	4.0	4.5		
L3	3'-CAC TA <u>L</u> ACG		7.0	6.5	6.5		
L4	3'-GCA <u>L</u> A <u>L</u> CAC		5.0	5.5	5.0		
X1	5'-GTG A <u>X</u> A TGC		10.5	nd	nd		
X2	3'-GCA XAT CAC		6.5	6.5	7.0		
X3	3'-GCA TAX CAC		8.5	9.5	10.0		
X4	3'-GCA $\underline{\mathbf{X}} A \overline{\underline{\mathbf{X}}} CAC$		8.0	nd	nd		
Y1	5'-GTG A <u>Y</u> A TGC		7.0	9.0	9.5		
Y2	$3'$ -GCA \overline{YAT} CAC		7.0	5.5	6.5		
Y3	3'-GCA TAY CAC		7.5	9.5	8.5		
Y4	$3'$ -GCA $\underline{\mathbf{Y}}$ A $\overline{\underline{\mathbf{Y}}}$ CAC		7.5	9.0	10.0		
Z 1	5'-GTG A <u>Z</u> A TGC		9.0	11.0	12.5		
Z2	3'-GCA ZAT CAC		7.5	9.0	8.5		
Z3	3'-GCA TAZ CAC		9.5	12.5	14.5		
Z4	3'-GCA <u>Z</u> A <u>Z</u> CAC		10.0	11.0	14.0		

 ${}^{a}\Delta T_{m}$ = change in T_{m} relative to matched duplex (**D1**:**D2**) in the corresponding buffer: $T_{m,110 \text{ mM}}$ = 29.5 °C, $T_{m,40 \text{ mM}}$ = 23.5 °C, $T_{m,10 \text{ mM}}$ = 14.0 °C. For buffers, see Table S4. nd = not determined.

			DNA:	NA: 3'-CAC T <u>M</u> T ACG			
			$T_{\rm m}/^{\rm o}{\rm C}$	$\Delta T_{\rm m}/^{\circ}{\rm C}$			
ON	Sequence	<u>M</u> =	Α	С	G	Т	
D1	5'-GTG ATA TGC		29.5	-16.5	-8.0	-15.5	
L1	5'-GTG A <u>L</u> A TGC		34.5	-18.0	-11.0	-16.0	
X1	5'-GTG A <u>X</u> A TGC		37.5	-23.5	-14.5	-19.5	
Y1	5'-GTG A <u>Y</u> A TGC		36.5	-18.0	-15.0	-17.5	
Z1	5'-GTG A <u>Z</u> A TGC		38.5	-16.5	-12.5	-16.0	

Table S6. Discrimination of mismatched DNA targets by **B1**-series and reference strands.^a

^{*a*} For conditions of thermal denaturation experiments, see Table 1. $T_{\rm m}$'s of fully matched duplexes are shown in bold. $\Delta T_{\rm m}$ = change in $T_{\rm m}$ relative to fully matched **D1:D2** duplex.

Table S7. Discrimination of mismatched RNA/DNA targets by B4-series and reference

strands.^a

			RNA: 5'-GUG A <u>M</u> A UGC			DNA: :	5'-GTG A <u>N</u>	<u>I</u> A TGC		
			$T_{\rm m}/^{\circ}C [^{\circ}C]$		$\Delta T_{\rm m}/^{\circ}{\rm C}$		$T_{\rm m}/^{\circ} C [^{\circ}C]$		$\Delta T_{\rm m}/^{\circ}{\rm C}$	
ON	Sequence	<u>M</u> =	Т	А	С	G	Т	А	С	G
D2	3'-CAC TAT ACG		28.0	-17.0	-17.0	-12.0	29.5	<-19.5	-16.5	-7.5
L4	3'-CAC <u>L</u> A <u>L</u> ACG		43.0	-21.0	-16.5	-17.0	40.0	-17.0	-15.5	-19.5
X4	3'-CAC <u>X</u> A <u>X</u> ACG		49.5	-13.0	-15.5	-16.0	46.0	nd	nd	nd
Y4	3'-CAC <u>Y</u> A <u>Y</u> ACG		46.5	-17.0	-15.5	-16.0	44.5	-10.0	-13.0	-10.5
Z4	3'-CAC <u>Z</u> A <u>Z</u> ACG		54.0	-29.0	-20.0	-25.0	49.0	-4.0	-6.0	-6.0

 $\frac{2.6 \times 10^{-20} \text{ Cm}}{\Delta T_{\text{m}} = \text{ change in } T_{\text{m}} \text{ relative to fully matched duplex shown in bold (R1:B4 or D1:B4). nd = not determined.}$

			$T_{\rm m} \left[\Delta T_{\rm m'} \right]$	/mod]/°C
ON	Duplex	<u>b</u> =	L	Z
ASO B1	5'- <u>bcg AAG TAC TCG GCG TAg gbT</u>	-	60.0	59.5
R3	3'- r(AGC UUC AUG UGC CGC AUC CA)		00.0	39.3
ASO B1	5'- <u>bcg AAG TAC TCG GCG TAg gbT</u>		(1.0	
D3	3'- d(AGC TTC ATG TGC CGC ATC CA)		61.0	57.5

Table S8. Thermostability of duplexes between antisense ONs (ASO) and

complementary targets.^a

^{*a*} For monomer structures, see Scheme 1. Lower case letters denote canonical LNA; underlined denotes phophorothioate backbone.

References

- S1. P. Kumar, M. Østergaard, B. Bharal, B. A. Anderson, D. C. Guenther, M. Kaura, D.
 J. Raible, P. K. Sharma and P. J. Hrdlicka, *J. Org. Chem.*, DOI:10.1021/jo500614a.
- S2. Couplings between 5-iodo-5'-O-(4,4'-dimethoxytrityl)-LNA uridine and Fmocprotected amino acids were unsuccessful in our hands.
- R. B. C. Jagt, R. F. Gómez-Biagi, and M. Nitz, *Angew. Chem. Int. Ed.*, 2009, 48, 1995.
- P. A. Jass, V. W. Rosso, S. Racha, N. Soundararajan, J. J. Venit, A. Rusowicz, S. Swaminathan, J. Livshitz, and E. J. Delaney, *Tetrahedron*, 2003, 59, 9019.

COSY

S23

¹³C

F₃C

COSY

COSY

³¹P