C5-Amino acid functionalized LNA: Positively poised for antisense applications

Dale C. Guenther, Pawan Kumar, Brooke A. Anderson and Patrick J. Hrdlicka*

Electronic Supplementary Information (ESI)

Table of Contents

General experimental section S2
Conjugation protocol toward nucleoside $\mathbf{3 x} / \mathbf{3 y} / \mathbf{3 z}$ S3
General phosphitylation protocol for $\mathbf{4 x} / \mathbf{4} \mathbf{y} / \mathbf{4 z}$ S7
General protocol for synthesis of modified ONs S9
Protocol - thermal denaturation studies S10
MALDI-MS of synthesized ONs (Table S1) S10
Representative thermal denaturation curves (Figure S1) S11
T_{m} 's of duplexes between B1-B4 -series towards DNA (Table S2) S11
Thermodynamic parameters (Table S3) S12
Thermostability toward RNA at various ionic strengths (Table S4) S13
Thermostability toward DNA at various ionic strengths (Table S5, Figure S2) S14
Discrimination of mismatched DNA by B1-series (Table S6) S15
Discrimination of mismatched RNA/DNA by B4-series (Table S7) S15
Thermostability of ASO duplexes (Table S8) S16
References S16
NMR spectra of novel nucleosides S17

General experimental section. Analytical grade solvents and reagents were purchased from commercial suppliers and used without further purification. Anhydrous solvents were either purchased (DMF) or dried with activated molecular sieves: $\mathrm{CH}_{3} \mathrm{CN}(3 \AA)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 1$,2-dichloroethane/ N, N^{\prime}-diisopropylethylamine (4 \AA). Reactions using these solvents were conducted under an inert atmosphere (argon). All reactions were monitored by thin layer chromatography (TLC) using silica gel coated plates with a fluorescence indicator ($\mathrm{SiO}_{2}-60, \mathrm{~F}-254$), which were visualized under UV light and/or by dipping in 5% conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in abs. ethanol (v / v) followed by heating. Purification ($>95 \%$ purity, assessed by one-dimensional NMR techniques) was accomplished using column chromatography (silica gel 60, particle size $0.040-0.063 \mathrm{~mm}$) using moderate pressure (pressure ball). Evaporation of solvents was carried out under reduced pressure at temperatures below $40^{\circ} \mathrm{C}$. Chemical shifts are reported relative to deuterated solvents or other internal standards (trimethylsilane and 80% phosphoric acid for ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR, respectively) or external standards (DMSO- d_{6} and trifluorochloromethane for ${ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR, respectively). Exchangeable protons were detected by disappearance of peaks upon $\mathrm{D}_{2} \mathrm{O}$ addition. Assignments of NMR spectra are based on 2D spectra (COSY, HSQC) and DEPT. Quaternary carbons in ${ }^{13} \mathrm{C}$ NMR are not assigned, but their presence was verified by HSQC and DEPT spectra (absence of signals). Assignments of ${ }^{1} \mathrm{H}$ NMR signals of $\mathrm{H}^{\prime} / \mathrm{H} 5^{\prime \prime} / \mathrm{CH}_{2} \mathrm{Ph}$ and the corresponding ${ }^{13} \mathrm{C}$ NMR signals are interchangeable. MALDI-HRMS spectra were recorded on a Q-TOF mass spectrophotometer using 2,5dihydroxybenzoic acid (DHB) as a matrix.

Method A. Nucleoside $\mathbf{1}^{\mathrm{S} 1}(1.28 \mathrm{~g}, 1.83 \mathrm{mmol})$ was dissolved in sat. methanolic ammonia $(30 \mathrm{~mL})$ and the mixture was stirred for 16 h at rt , at which point the solvents were evaporated. The resulting residue was purified by column chromatography (5-10\% $\left.\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{v} / \mathrm{v}\right)$ to afford nucleoside $2(1.11 \mathrm{~g}, 97 \%)$ as a brown foam, which was used in the next step without further purification. $R_{\mathrm{f}}=0.5\left(10 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{v} / \mathrm{v}\right)$; MALDI-HRMS $m / z 634.2146\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{8} \cdot \mathrm{Na}^{+}\right.$, Calcd 634.2160); ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 500.1 \mathrm{MHz}\right) \delta 7.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 6), 7.43-7.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.30-7.36(\mathrm{~m}, 6 \mathrm{H}$, Ar), 7.23-7.27 (m, 1H, Ar), 6.91 (d, 4H, $J=9.0 \mathrm{~Hz}, \mathrm{Ar}$), 5.73 (br s, $\left.1 \mathrm{H}, \mathrm{ex}, 3^{\prime}-\mathrm{OH}\right), 5.42$ (s, 1H, H1'), 4.25 ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 2^{\prime}\right), 4.07$ ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 3^{\prime}\right), 3.78-3.80\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H} 5^{\prime \prime}\right)$, 3.75-3.77 (d, $\left.1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H}^{\prime \prime}\right), 3.75\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.48-3.52(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}$, H5'), 3.28-3.33 (m, 3H, $2 \times \mathrm{CH}_{2} \mathrm{NH}_{2}$, H5' - partial overlap with $\mathrm{H}_{2} \mathrm{O}$); ${ }^{13} \mathrm{C}$ NMR (DMSO$\left.d_{6}, 125.5 \mathrm{MHz}\right) \delta 161.8,158.1,149.0,144.7,141.1$ (C6), 135.3, 135.1, 129.7 (Ar), 129.6 (Ar), 127.9 (Ar), 127.6 (Ar), 126.6 (Ar), 113.2 (Ar), 98.1, 93.6, 87.5, 86.9 (Cl^{\prime}), 85.6, $78.7\left(\mathrm{C}^{\prime}\right), 74.1,71.3\left(\mathrm{C}^{\prime \prime}\right), 69.5\left(\mathrm{C} 3^{\prime}\right), 58.9\left(\mathrm{C}^{\prime}\right), 55.0\left(\mathrm{CH}_{3} \mathrm{O}\right), 31.1\left(\mathrm{CH}_{2} \mathrm{NH}\right)$. Minor unidentified impurities were observed in the ${ }^{13} \mathrm{C}$ NMR spectrum below 40 ppm .

Method B. To a flame-dried round-bottomed flask was added 5-iodo-5'-O-(4,4'-dimethoxytrityl)-LNA uridine ${ }^{\mathrm{S} 1}(2.00 \mathrm{~g}, 2.92 \mathrm{mmol})$, $\mathrm{CuI}(111 \mathrm{mg}, 0.58 \mathrm{mmol})$, $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.34 \mathrm{~g}, 0.29 \mathrm{mmol})$ and anhydrous DMF $(30 \mathrm{~mL})$. Several degas/argon cycles were performed, followed by addition of propargyl amine ($0.47 \mathrm{~mL}, 7.31 \mathrm{mmol}$) and anhydrous $\mathrm{Et}_{3} \mathrm{~N}(1.80 \mathrm{~mL}, 12.90 \mathrm{mmol})$. The reaction mixture was stirred at room
temperature under argon atmosphere for 15.5 h , at which point the solvent was evaporated off at high vacuum. The resulting residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$, washed with brine $(2 \times 100 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The organic layer was evaporated to dryness and the resulting crude was purified via silica gel column chromatography $\left(0-10 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{v} / \mathrm{v}\right)$ to give nucleoside $2(1.27 \mathrm{~g}$, 71%) as a light brown foam. ${ }^{\text {S2 }}$

Conjugation protocol for the synthesis of nucleosides $\mathbf{3 x} / \mathbf{3 y} / \mathbf{3 z}$. Protected amino acids 2-(2,2,2-trifluoroacetamido)acetic acid and (S)-2,6-bis(2,2,2-trifluoroacetamido)hexanoic acid were prepared according to literature protocols. ${ }^{\text {S3 }} S$-2-(2,2,2-Trifluoroacetamido)-4methylpentanoic acid was also prepared essentially as described in the literature, ${ }^{\text {S4 }}$ except that sodium in methanol $\left(0^{\circ} \mathrm{C}\right)$, rather than potassium in methanol $\left(40^{\circ} \mathrm{C}\right)$, was used to generate methoxide. A solution of the appropriate protected amino acid, $\mathrm{O}-(\mathrm{N}-$ succinimidyl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TSTU) and N, N^{\prime} diisopropylethylamine (DIPEA) in anhydrous DMF was stirred at rt for 30 min . After cooling the solution to $0{ }^{\circ} \mathrm{C}$, nucleoside 2 was added and the reaction mixture was warmed to rt over 15 min . Upon completion of the reaction (reaction time specified below) the solvent was evaporated and the resulting residue dissolved in EtOAc (100 $\mathrm{mL})$. The organic phase was sequentially washed with sat. aq. $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$ and brine (50 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness. The resulting residue was purified by silica gel column chromatography ($0-5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, v/v) to afford desired nucleoside $\mathbf{3 x} / \mathbf{y} / \mathbf{z}$ (quantities and yields specified below).

5-(TFA-glycyl-aminopropynyl)-5'-O-(4,4'-dimethoxytrityl) LNA uridine (3x). A solution of 2-(2,2,2-trifluoroacetamido)acetic acid ($90 \mathrm{mg}, 0.58 \mathrm{mmol}$), nucleoside 2 $(0.30 \mathrm{~g}, 0.49 \mathrm{mmol})$, TSTU ($190 \mathrm{mg}, 0.63 \mathrm{mmol}$) and DIPEA ($0.25 \mathrm{~mL}, 1.47 \mathrm{mmol}$) in anhydrous DMF (10 mL) was reacted (2 h), worked up and purified as described in the representative protocol to afford nucleoside $\mathbf{3 x}$ ($180 \mathrm{mg}, 48 \%$) as a slightly brown solid material. $R_{\mathrm{f}}=0.4\left(5 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{v} / \mathrm{v}\right)$; MALDI-HRMS $m / z 787.2200\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, $\mathrm{C}_{38} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{10} \cdot \mathrm{Na}^{+}$, Calcd 787.2203); ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 500.1 \mathrm{MHz}\right) \delta 11.68(\mathrm{~s}, 1 \mathrm{H}$, ex, $\mathrm{NH}(\mathrm{U})$), 9.62 (t, 1 H , ex, $\left.J=5.5 \mathrm{~Hz}, \mathrm{NHCOCF}_{3}\right), 8.49(\mathrm{t}, 1 \mathrm{H}, \mathrm{ex}, J=5.2 \mathrm{~Hz}$, $\mathrm{NHCH}_{2} \mathrm{C} \equiv \mathrm{C}$), 7.78 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 6$), 7.42-7.45 (m, 2H, Ar), 7.28-7.35 (m, 6H, Ar), 7.23-7.27 (m, 1H, Ar), 6.91-6.92 (2d, 4H, $J=9.0 \mathrm{~Hz}, \mathrm{Ar}), 5.73$ (d, 1H, ex, $\left.J=5.0 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.43$ (s, 1H, H1'), $4.25\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 2^{\prime}\right), 4.04\left(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 3.94-3.99(\mathrm{dd}, 1 \mathrm{H}, J=17.7$ $\mathrm{Hz}, 5.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$), 3.86-3.91 (dd, $\left.2 \mathrm{H}, J=17.7,5.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 3.79-3.83(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{H}^{\prime \prime}, \mathrm{CH}_{2} \mathrm{NHCOCF}_{3}$), 3.75 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 3.55-3.58 (d, $1 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{H}^{\prime}$), 3.26-3.30 (d, $1 \mathrm{H}, J=11.0 \mathrm{~Hz}, \mathrm{H} 5^{\prime}$, partial overlap with $\mathrm{H}_{2} \mathrm{O}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 125.5 \mathrm{MHz}\right) \delta$ 166.6, 161.7, 158.12, 158.08, $156.7\left(\mathrm{q}, J_{C F}=36 \mathrm{~Hz}, \mathrm{COCF}_{3}\right), 149.0,144.7,141.8$ (C6), $135.4,134.9,129.8(\mathrm{Ar}), 129.6(\mathrm{Ar}), 127.9(\mathrm{Ar}), 127.5(\mathrm{Ar}), 126.7(\mathrm{Ar}), 115.9\left(\mathrm{q}, J_{C F}=\right.$ $287 \mathrm{~Hz}, \mathrm{CF}_{3}$), 113.3 (Ar), 113.2 (Ar$), 97.5,88.8,87.6,86.9\left(\mathrm{Cl}^{\prime}\right), 85.6,78.8\left(\mathrm{C}^{\prime}\right)$, 74.7, 71.4 (C5'), $69.6\left(\mathrm{C}^{\prime}\right), 59.1\left(\mathrm{C}^{\prime}\right), 55.0\left(\mathrm{CH}_{3} \mathrm{O}\right), 41.7\left(\mathrm{CH}_{2} \mathrm{NHCOCF}_{3}\right), 28.8\left(\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right)$; ${ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{DMSO}-d_{6}, 470.6 \mathrm{MHz}\right) \delta-74.8\left(\mathrm{CF}_{3}\right)$.

5-(TFA-leucyl-aminopropynyl)-5'-O-(4,4'-dimethoxytrityl) LNA uridine (3y). A

 solution of S-2-(2,2,2-trifluoroacetamido)-4-methylpentanoic acid ($100 \mathrm{mg}, 0.44 \mathrm{mmol}$), nucleoside $2(0.25 \mathrm{~g}, 0.40 \mathrm{mmol})$, TSTU ($160 \mathrm{mg}, 0.53 \mathrm{mmol}$) and DIPEA (0.21 mL , 1.20 mmol) in anhydrous DMF (5 mL) was reacted (2 h), worked up and purified asdescribed in the representative protocol to afford nucleoside $\mathbf{3 y}$ ($170 \mathrm{mg}, 49 \%$) as a brown solid material. $R_{\mathrm{f}}=0.5\left(5 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{v} / \mathrm{v}\right)$; MALDI-HRMS $m / z 843.2797$ $\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{42} \mathrm{H}_{43} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{10} \cdot \mathrm{Na}^{+}\right.$, Calcd 843.2829); ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 500.1 \mathrm{MHz}\right) \delta$ $11.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ex}, \mathrm{NH}(\mathrm{U})), 9.54\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ex}, J=8.5 \mathrm{~Hz}, \mathrm{NHCOCF}_{3}\right), 8.58-8.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ex}$, $\mathrm{NHCH}_{2} \mathrm{C} \equiv \mathrm{C}$), 7.77 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 6$), 7.42-7.45 (m, 2H, Ar), 7.28-7.35 (m, 6H, Ar), 7.22-7.26 (m, 1H, Ar), 6.89-6.93 (2d, 4H, $J=9.0 \mathrm{~Hz}, \mathrm{Ar}), 5.71-5.74\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ex}, J=8.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}-\right.$ partial overlap with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), 5.43 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}^{\prime}$), 4.35-4.41 (m, $1 \mathrm{H}, \mathrm{CHNHCOCF}_{3}$), 4.25 (s, 1H, H2'), 4.02-4.05 (m, 1H, H3'), 3.85-3.99 (m, 2H, CH2C \equiv C), 3.78-3.83 (m, 2 H , $\mathrm{H}^{\prime \prime}$), $3.75\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.54-3.58\left(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 3.26-3.30(\mathrm{~d}, 1 \mathrm{H}, J=11.0$ $\mathrm{Hz}, \mathrm{H}^{\prime}$ - partial overlap with $\mathrm{H}_{2} \mathrm{O}$), 1.63-1.66 (m, $1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{i} \mathrm{Pr}$), 1.45-1.54 (m, $2 \mathrm{H}, \mathrm{CH}_{2}-$ $\left.i \operatorname{Pr}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.81-0.89\left(\mathrm{~m}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 125.5 \mathrm{MHz}\right) 170.1$, 161.7, 158.12, 158.08, $156.3\left(\mathrm{q},{ }^{2} J_{C F}=36 \mathrm{~Hz}, \mathrm{COCF}_{3}\right), 149.0,144.7,141.8(\mathrm{C} 6), 135.42$, 135.40, 134.91, 134.87, 129.8 (Ar), 129.6 (Ar), 127.9 (Ar), 127.5 (Ar), 126.7 (Ar), 115.8 $\left(\mathrm{q},{ }^{1} J_{C F}=288 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 113.2(\mathrm{Ar}), 97.6,88.9,87.5,86.9\left(\mathrm{C}^{\prime}\right), 85.6,78.8\left(\mathrm{C}^{\prime}\right), 74.7$, $71.4\left(\mathrm{C}^{\prime \prime}\right), 69.6\left(\mathrm{C}^{\prime}\right), 59.1\left(\mathrm{C}^{\prime}\right), 55.0\left(\mathrm{CH}_{3} \mathrm{O}\right), 51.5\left(\mathrm{CHNHCOCF}_{3}\right), 39.7\left(\mathrm{CH}_{2}-\mathrm{iPr}-\right.$ overlap with DMSO- d_{6}), $28.9\left(\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 24.3\left(\mathrm{CHMe}_{2}\right), 22.9\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR (DMSO- $\left.d_{6}, 282.4 \mathrm{MHz}\right) \delta-74.3$. An extra set of ${ }^{13} \mathrm{C}$ NMR signals are observed for some of the carbons (extra signals at $88.8,74.8,59.0,24.2,22.8,20.9 \mathrm{ppm}$). We attribute these peaks to the presence of two different conformers, most likely rotamers - rather than scrambling of the chirality center in the amino acid residue - based on the observation that only one set of signals is observed when the spectrum is recorded in acetone- d_{6}.

5-(bis-TFA-lysyl-aminopropynyl)-5'-O-(4,4'-dimethoxytrityl) LNA uridine (3z). A solution of (S)-2,6-bis(2,2,2-trifluoroacetamido)hexanoic acid ($0.27 \mathrm{~g}, 0.79 \mathrm{mmol}$), nucleoside $2(0.50 \mathrm{~g}, 0.81 \mathrm{mmol})$, TSTU $(0.32 \mathrm{~g}, 1.06 \mathrm{mmol})$ and DIPEA $(0.42 \mathrm{~mL}, 2.40$ mmol) in anhydrous DMF (10 mL) was reacted (3 h), worked up and purified as described in the representative protocol to afford nucleoside $3 \mathrm{z}(0.44 \mathrm{~g}, 58 \%)$ as a slightly brown solid material. $R_{\mathrm{f}}=0.5\left(5 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{v} / \mathrm{v}\right)$; MALDI-HRMS $m / z 954.2770([\mathrm{M}+$ $\mathrm{Na}]^{+}, \mathrm{C}_{44} \mathrm{H}_{43} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{11} \cdot \mathrm{Na}^{+}$, Calcd 954.2761); ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500.1 \mathrm{MHz}$) $\delta 11.68(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{ex}, \mathrm{NH}$), $9.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ex}, J=7.0 \mathrm{~Hz}, \mathrm{NHCH}), 9.36\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{ex}, \mathrm{NH}\left(\mathrm{CF}_{3} \mathrm{CO}\right) \mathrm{CH}_{2}\right)$, 8.55 (br s, $1 \mathrm{H}, \mathrm{ex}, \mathrm{NHCH}_{2} \mathrm{C} \equiv \mathrm{C}$), 7.78 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 6$), 7.42-7.45 (m, 2H, Ar), 7.28-7.35 (m, 6H, Ar), 7.22-7.26 (m, 1H, Ar), 6.88-6.93 (2d, 4H, $J=9.0 \mathrm{~Hz}, \mathrm{Ar}), 5.72(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ex}, J=$ $\left.5.0 \mathrm{~Hz}, 3^{\prime}-\mathrm{OH}\right), 5.42\left(\mathrm{ap} \mathrm{d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 4.27-4.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHNH}), 4.25(\mathrm{~s}, 1 \mathrm{H}$, H2'), 4.03 (ap t, $1 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{H}^{\prime}$), $3.78-3.98\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}, \mathrm{H} 5^{\prime \prime}\right), 3.74(\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{O}$), 3.55-3.58 (d, 1H, $\left.J=11.5 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 3.26-3.29\left(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{H} 5^{\prime}\right), 3.09-$ $3.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHNH}\right), 1.65-1.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHNH}\right), 1.41-1.49(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHNH}$), 1.18-1.32 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHNH}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125.5$ $\mathrm{MHz}) \delta 169.8,161.7,158.12,158.08,156.4\left(2 \mathrm{q},{ }^{2} J_{C F}=36 \mathrm{~Hz}, 2 \times \mathrm{COCF}_{3}\right), 149.0,144.7$, 141.80, 141.78 (C6), 135.42, 135.39, 134.91, 134.88, 129.8 (Ar), 129.6 (Ar), 127.9 (Ar), $127.5(\mathrm{Ar}), 126.6(\mathrm{Ar}), 115.9\left(\mathrm{q},{ }^{1} J_{C F}=286 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 115.7\left(\mathrm{q},{ }^{1} J_{C F}=290 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, 113.2 (Ar), 97.54, 97.53, 88.81, 88.75, 87.5, 86.9 (Cl^{\prime}), 85.6, 78.8 (C^{\prime}), 74.84, 74.79, 71.4 ($\mathrm{C}^{\prime \prime}$), 69.6 (C^{\prime}), 59.1 (C^{\prime}), 59.0 (C^{\prime}), $54.9\left(\mathrm{CH}_{3} \mathrm{O}\right), 53.0(\mathrm{CHNH}), 38.9$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHNH}\right), \quad 30.5 \quad\left(\mathrm{CH}_{2} \mathrm{CHNH}\right), \quad 28.9 \quad\left(\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right), \quad 27.6$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHNH}\right.$), $22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHNH}\right) ;{ }^{19} \mathrm{~F}$ NMR (DMSO- $\left.d_{6}, 282.4 \mathrm{MHz}\right) \delta-74.3$, -74.9. An extra set of ${ }^{13} \mathrm{C}$ NMR signals is observed for some of the carbons, which we
again attribute to the presence of two different conformers/rotamers (extra signals at \sim $141.8,97.5,88.8,74.8$ and 59.1 ppm - all belong to carbons in the (anticipated spatial) vicinity of the amino acid residue).

General phosphitylation protocol for the preparation of $\mathbf{4 x} / \mathbf{y} / \mathbf{z}$. The appropriate nucleoside 3 was coevaporated with anhydrous 1,2-dichloroethane ($2 \times 10 \mathrm{~mL}$) and dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. DIPEA was added to this solution followed by dropwise addition of 2-cyanoethyl N, N-diisopropylchlorophosphoramidite (PCl reagent). The reaction was stirred at rt for 2 h , at which point ice cold ethanol $(1 \mathrm{~mL})$ was added and the solvents were evaporated. The resulting residue was purified by silica gel column chromatography (typically $0-5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{v} / \mathrm{v}$) and subsequent trituration from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and petroleum ether to provide phosphoramidites $4 \mathbf{x} / \mathbf{y} / \mathbf{z}$.

5-(TFA-glycyl-aminopropynyl)-5'-O-(4,4'-dimethoxytrityl)-3'-O-(N,N-

diisopropylamino-2-cyanoethoxyphosphinyl) LNA uridine (4x). A solution of nucleoside 3x ($146 \mathrm{mg}, 0.19 \mathrm{mmol}$), DIPEA ($137 \mu \mathrm{~L}, 0.78 \mathrm{mmol}$) and PCl reagent (66 $\mu \mathrm{L}, 0.29 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was reacted and purified as described above to afford phosphoramidite $\mathbf{4 x}(119 \mathrm{mg}, 64 \%)$ as a white foam. $R_{\mathrm{f}}=0.3(5 \% \mathrm{MeOH}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{v} / \mathrm{v}\right)$; MALDI-HRMS $m / z 987.3279\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{47} \mathrm{H}_{52} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{11} \mathrm{P} \cdot \mathrm{Na}^{+}\right.$, Calcd 987.3282); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.5 \mathrm{MHz}\right) \delta 149.9,148.8$.

5-(TFA-leucyl-aminopropynyl)-5'-O-(4,4'-dimethoxytrityl)-3'-O-(N,N-diisopropylamino-2-cyanoethoxyphosphinyl) LNA uridine (4y). A solution of
nucleoside 3y ($83 \mathrm{mg}, 0.10 \mathrm{mmol}$), DIPEA ($71 \mu \mathrm{~L}, 0.41 \mathrm{mmol}$) and PCl reagent ($41 \mu \mathrm{~L}$, $0.18 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was reacted and purified as described above to afford phosphoramidite $4 y$ as a light yellow foam ($38 \mathrm{mg}, 37 \%$ yield). $R_{\mathrm{f}}=0.3(5 \%$ MeOH in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad \mathrm{v} / \mathrm{v}\right) ;$ MALDI-HRMS $m / z \quad 1043.3889\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, $\mathrm{C}_{51} \mathrm{H}_{60} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{11} \mathrm{P} \cdot \mathrm{Na}^{+}$, Calcd 1043.3908); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.5 \mathrm{MHz}\right) \delta$ 149.8, 148.8.

5-(TFA-lysyl-aminopropynyl)-5'-O-(4,4'-dimethoxytrityl)-3'-O-(N,N-

diisopropylamino-2-cyanoethoxyphosphinyl) LNA uridine (4z). A solution of nucleoside $\mathbf{3 z}(154 \mathrm{mg}, 0.16 \mathrm{mmol})$, DIPEA ($112 \mu \mathrm{~L}, 0.65 \mathrm{mmol}$) and PCl-reagent (72 $\mu \mathrm{L}, 0.32 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was reacted and purified as described above to afford phosphoramidite $\mathbf{4 z}(83 \mathrm{mg}, 45 \%)$ as a light yellow foam. $R_{\mathrm{f}}=0.4(5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, v/v); MALDI-HRMS $m / z 1154.3789\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{53} \mathrm{H}_{60} \mathrm{~F}_{6} \mathrm{~N}_{7} \mathrm{O}_{12} \mathrm{P} \cdot \mathrm{Na}^{+}\right.$, Calcd 1154.3840); ${ }^{31} \mathrm{P}$ NMR (DMSO- $\left.d_{6}, 121.5 \mathrm{MHz}\right) \delta$ 148.4, 147.9.

General protocol for the synthesis of modified ONs. ASO L1 was obtained from a commercial vendor. All other modified ONs were synthesized on an automated DNA synthesizer ($0.2 \mu \mathrm{~mol}$ scale) and using long-chain alkyl amine controlled pore glass (LCAA-CPG) solid support. Modified phosphoramidites (0.05 M in acetonitrile) were used to incorporate monomers $\mathbf{X}-\mathbf{Z}$. Extended hand couplings (15 min, 4,5dicyanoimidazole), oxidation (60 s) and capping (30 s) were employed resulting in stepwise coupling yield of 99,93 , and 90% for phosphoramidites $\mathbf{4 x}, \mathbf{4 y}$ and $\mathbf{4 z}$, respectively. ONs were deprotected and cleaved from solid support using ammonia (55 $\left.{ }^{\circ} \mathrm{C}, 17 \mathrm{~h}\right)$, purified in the DMT-ON mode using reverse-phase ion-pair HPLC $(0.05 \mathrm{M} \mathrm{aq}$.
triethyl ammonium acetate / 25\% water in $\mathrm{CH}_{3} \mathrm{CN}$), detritylated ($80 \% \mathrm{aq} . \mathrm{AcOH}$) and precipitated ($\mathrm{NaOAc} / \mathrm{NaClO}_{4} /$ acetone, $-18{ }^{\circ} \mathrm{C}$ for $12-16 \mathrm{~h}$). Purity ($>80 \%$) and identity was verified by analytical HPLC and MALDI-TOF, respectively. Quantification of ONs was performed using extinction coefficients $\left(\mathrm{OD}_{260} / \mu \mathrm{mol}\right)$ of $12.01(\mathrm{G}), 15.2(\mathrm{~A}), 7.05$ (C), and $8.40(\mathrm{~T})$.

Protocol - thermal denaturation studies. Thermal denaturation curves were recorded and analyzed as previously described. The two strands comprising a duplex were annealed (each at $1.0 \mu \mathrm{M}, 85^{\circ} \mathrm{C}, 2 \mathrm{~min}$) in a medium salt phosphate buffer $\left(\left[\mathrm{Na}^{+}\right]=110\right.$ $\left.\mathrm{mM},\left[\mathrm{Cl}^{-}\right]=100 \mathrm{mM}, \mathrm{pH} 7.0\left(\mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}\right)\right)$, unless otherwise specified. A temperature ramp of $0.5^{\circ} \mathrm{C} / \mathrm{min}$ was used in all experiments. The reported T_{m} is the maximum of the first derivative curve, rounded to the nearest $0.5^{\circ} \mathrm{C}$, averaged from two experiments within $1.0^{\circ} \mathrm{C}$.

Table S1. MALDI-MS of synthesized ONs. ${ }^{a}$

ON	Sequence	Calculated $m / z[\mathrm{M}]^{+}$	Observed $m / z[\mathrm{M}]^{+}$
X1	5'-GTG AXA TGC	2876.5	2877.7
X2	3^{\prime}-CAC XAT ACG	2805.5	2806.6
X3	3^{\prime}-CAC TAX ACG	2805.5	2806.6
X4	3^{\prime}-CAC XAX ACG	2929.6	2930.5
Y1	5'-GTG AYA TGC	2932.6	2933.6
Y2	3^{\prime}-CAC YAT ACG	2861.6	2862.6
Y3	3^{\prime}-CAC TAY ACG	2861.6	2862.0
Y4	3^{\prime}-CAC YAY ACG	3041.7	3042.1
Z1	5'-GTG AZA TGC	2947.6	2948.7
Z2	3'-CAC ZAT ACG	2876.6	2877.8
Z3	3'-CAC TAZ ACG	2876.6	2877.7
Z4	3'-CAC ZAZ ACG	3071.7	3072.6
ASO Z1	5'- Z $\mathbf{Z c g}$ AAG TAC TCG GCG TAg gZT	7309.8	7310.0

[^0]

Figure S1. Representative thermal denaturation curves for the B2-series (3'-CAC TAB ACG). For monomer structures, see Scheme 1.

Table S2. T_{m} 's of duplexes between B1-B4 -series and complementary DNA targets. ${ }^{a}$

ON	Duplex	$\underline{\mathbf{B}}=$	$T_{\mathrm{m}}\left[\Delta T_{\mathrm{m}} / \mathrm{mod}\right] /{ }^{\circ} \mathrm{C}$			
			L	X	Y	Z
B1	5'-GTG ABA TGC		36.0	37.5	36.5	38.5
D2	3'-CAC TAT ACG		[+6.5]	[+8.0]	[+7.0]	[+9.0]
D1	5'-GTG ATA TGC		34.0	36.0	36.5	39.0
B2	3'-CAC BAT ACG		[+4.5]	[+6.5]	[+7.0]	[+9.5]
D1	5'-GTG ATA TGC		36.5	38.0	37.0	37.0
B3	3'-CAC TAB ACG		[+7.0]	[+8.5]	[+7.5]	[+7.5]
D1	5'-GTG ATA TGC		39.0	46.0	44.5	49.0
B4	3'-CAC BAB ACG		[+4.8]	[+8.3]	[+7.5]	[+9.8]

${ }^{a}$ For monomer structures, see Scheme 1. $\Delta T_{\mathrm{m}}=$ change in T_{m} relative to unmodified D1:D2 duplex (29.5 ${ }^{\circ} \mathrm{C}$).

Table S3. Thermodynamic parameters for duplex formation between B1-B3-series and complementary RNA or DNA. ${ }^{a}$

ON	Sequence	complementary RNA			complementary DNA		
		$\begin{gathered} \Delta \boldsymbol{G}^{298}\left[\Delta \Delta \mathbf{G}^{298}\right] \\ (\mathrm{kJ} / \mathrm{mol}) \\ \hline \end{gathered}$	$\begin{gathered} \Delta \boldsymbol{H}[\Delta \Delta \boldsymbol{H}] \\ (\mathrm{kJ} / \mathrm{mol}) \\ \hline \end{gathered}$	$\begin{gathered} -\boldsymbol{T}^{298} \Delta \boldsymbol{S} \\ {\left[\begin{array}{l} \left.\left(-\boldsymbol{T}^{298} \Delta \boldsymbol{S}\right)\right] \\ (\mathrm{kJ} / \mathrm{mol}) \end{array}\right.} \\ \hline \end{gathered}$	$\begin{gathered} \Delta \boldsymbol{G}^{298}\left[\Delta \Delta \boldsymbol{G}^{293}\right] \\ (\mathrm{kJ} / \mathrm{mol}) \\ \hline \end{gathered}$	$\begin{gathered} \Delta \boldsymbol{H}[\Delta \Delta \boldsymbol{H}] \\ (\mathrm{kJ} / \mathrm{mol}) \\ \hline \end{gathered}$	$\begin{gathered} -\boldsymbol{T}^{298} \Delta \boldsymbol{S} \\ {\left[\left(-T^{298} \Delta S\right)\right]} \\ (\mathrm{kJ} / \mathrm{mol}) \end{gathered}$
D1	5'-GTG ATA TGC	-36	-278	241	-42	-314	271
D2	3'-CAC TAT ACG	-39	-293	254	-42	-314	271
L1	5'-GTG ALA TGC	-49 [-13]	-309 [-31]	260 [+19]	-47 [-5]	-297 [+17]	250 [-21]
L2	3'-CAC LAT ACG	-47 [-8]	-331 [-38]	283 [+29]	-46 [-4]	-332 [-18]	286 [+15]
L3	3'-CAC TAL ACG	-50 [-11]	-340 [-47]	290 [+36]	-49 [-7]	-332 [-18]	283 [+12]
X1	5'-GTG AXA TGC	-55 [-19]	-385 [-107]	330 [+89]	-55 [-13]	-399 [-85]	344 [+73]
X 2	3'-CAC XAT ACG	-47 [-8]	-386 [-93]	339 [+85]	-50 [-8]	-382 [-68]	332 [+61]
X3	3'-CAC TAX ACG	-53 [-14]	-409 [-116]	356 [+102]	-52 [-10]	-338 [-24]	285 [+14]
Y1	5'-GTG Á̇A TGC	-46 [-10]	-310 [-32]	264 [+23]	-47 [-5]	-342 [-28]	295 [+24]
Y2	$3{ }^{\prime}$-CAC YAT ACG	-54 [-15]	-480 [-187]	426 [+172]	-59 [-17]	-557 [-243]	499 [+228]
Y3	3 '-CAC TAY ACG	-53 [-14]	-490 [-197]	436 [+182]	-51 [-9]	-451 [-137]	400 [+129]
Z1	5'-GTG AZA TGC	-59 [-23]	-426 [-148]	366 [+125]	-56 [-14]	-395 [-81]	339 [+68]
Z2	3'-CAC ZAT ACG	-51 [-12]	-427 [-134]	$376[+122]$	-56 [-14]	-480 [-166]	423 [+152]
Z3	3'-CAC TAZ ACG	-59 [-20]	-428 [-135]	369 [+115]	-54 [-12]	-369 [-55]	315 [+44]

[^1]Table S4. Thermostaiblity of duplexes between B1-B4 -series and complementary RNA at various ionic strengths. ${ }^{a}$

ON	Sequence	$\left[\mathrm{Na}^{+}\right]=$	complementary RNA$\left(\Delta T_{\mathrm{m}} / \mathrm{mod}\right) /{ }^{\circ} \mathrm{C}$		
			110 mM	40 mM	10 mM
L1	5'-GTG ALA TGC		9.0	9.0	8.5
L2	3'-CAC LAT ACG		7.5	7.5	7.5
L3	3'-CAC TAL ACG		9.0	9.0	9.5
L4	3'-GCA L LAL CAC		7.5	7.8	7.8
X1	5'-GTG AXA TGC		10.5	12.5	13.5
X2	3'-GCA XAT CAC		10.5	13.0	14.0
X3	3'-GCA TAX CAC		10.0	9.5	10.5
X4	$3{ }^{\prime}$-GCA $\underline{\mathbf{X}}$ AX CAC		9.0	nd	nd
Y1	5'-GTG A ${ }^{\text {a }}$ A TGC		9.5	12.5	14.5
Y2	3'-GCA YAT CAC		10.5	11.0	10.5
Y3	3'-GCA TAY CAC		7.0	8.0	9.5
Y4	3'-GCA Y		9.3	10.8	11.8
Z1	5'-GTG AZAA TGC		12.5	16.5	18.0
Z2	3'-GCA $\underline{Z} A T$ CAC		11.0	12.5	14.5
Z3	3'-GCA TAZ CAC		14.0	17.5	19.5
Z4	3'-GCA $\underline{\underline{Z}} \mathrm{~A} \underline{\underline{\mathbf{Z}} \text { CAC }}$		13.0	14.8	17.0

${ }^{a}$ Graphical representation shown in Figure 1 of main text. $\Delta T_{\mathrm{m}}=$ change in T_{m} relative to matched duplex (D1:R2 or R1:D2) in the corresponding buffer: D1:R2 $\left(T_{\mathrm{m}, 110 \mathrm{mM}}=28.0^{\circ} \mathrm{C}, T_{\mathrm{m}, 40 \mathrm{mM}}=21.0^{\circ} \mathrm{C}, T_{\mathrm{m}, 10 \mathrm{mM}}=\right.$ $11.5^{\circ} \mathrm{C}$); R1:D2 $\left(T_{\mathrm{m}, 110 \mathrm{mM}}=28.0^{\circ} \mathrm{C}, T_{\mathrm{m}, 40 \mathrm{mM}}=22.0^{\circ} \mathrm{C}, T_{\mathrm{m}, 10 \mathrm{mM}}=12.0^{\circ} \mathrm{C}\right.$). Buffer conditions: $\left(\left[\mathrm{Na}^{+}\right]=\right.$ $\left.110 \mathrm{mM},\left[\mathrm{Cl}^{-}\right]=100 \mathrm{mM}, \mathrm{pH} 7.0\left(\mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}\right)\right),\left(\left[\mathrm{Na}^{+}\right]=40 \mathrm{mM},\left[\mathrm{Cl}^{-}\right]=30 \mathrm{mM}, \mathrm{pH} 7.0\right.$ $\left.\left(\mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}\right)\right)$ or $\left(\left[\mathrm{Na}^{+}\right]=10 \mathrm{mM}, \mathrm{pH} 7.0\left(\mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}\right)\right)$ for 110 mM Na , $40 \mathrm{mM} \mathrm{Na}^{+}$, and $10 \mathrm{mM} \mathrm{Na}^{+}$, respectively. $\mathrm{nd}=$ not determined.

Table S5. Thermostability of duplexes between B1-B4 -series and complementary DNA at various ionic strengths. ${ }^{a}$

ON	Sequence	$\left[\mathrm{Na}^{+}\right]=$	complementary DNA$\Delta T_{\mathrm{m}} /{ }^{\circ} \mathrm{C}$		
			110 mM	40 mM	10 mM
L1	5'-GTG ALA TGC		6.5	7.0	6.0
L2	3'-CAC LAT ACG		4.5	4.0	4.5
L3	3'-CAC TAL ACG		7.0	6.5	6.5
L4	3'-GCA LAL CAC		5.0	5.5	5.0
X1	5'-GTG AXA TGC		10.5	nd	nd
X2	3'-GCA XAT CAC		6.5	6.5	7.0
X3	3'-GCA TAX CAC		8.5	9.5	10.0
X4	3'-GCA XAX CAC		8.0	nd	nd
Y1	5'-GTG AYA TGC		7.0	9.0	9.5
Y2	3'-GCA YAT CAC		7.0	5.5	6.5
Y3	3'-GCA TAY CAC		7.5	9.5	8.5
Y4	3^{\prime}-GCA Y		7.5	9.0	10.0
Z1	5'-GTG AZA TGC		9.0	11.0	12.5
Z2	3'-GCA Z		7.5	9.0	8.5
Z3	3'-GCA TA苜 CAC		9.5	12.5	14.5
Z4	3'-GCA $\underline{\underline{\mathbf{Z}}} \underline{\underline{\underline{Z}}}$ CAC		10.0	11.0	14.0

${ }^{a} \Delta T_{\mathrm{m}}=$ change in T_{m} relative to matched duplex (D1:D2) in the corresponding buffer: $T_{\mathrm{m}, 110 \mathrm{mM}}=29.5^{\circ} \mathrm{C}$, $T_{\mathrm{m}, 40 \mathrm{mM}}=23.5^{\circ} \mathrm{C}, T_{\mathrm{m}, 10 \mathrm{mM}}=14.0^{\circ} \mathrm{C}$. For buffers, see Table S 4 . $\mathrm{nd}=$ not determined.

Figure S2. Thermostability of duplexes between B1-B4 -series and complementary DNA at different ionic strengths. See Table S5 for conditions and raw data.

Table S6. Discrimination of mismatched DNA targets by B1-series and reference strands. ${ }^{a}$

ON	Sequence	$\underline{\mathbf{M}}=$	DNA: 3'-CAC TMT ACG			
			$T_{\mathrm{m}} /{ }^{\circ} \mathrm{C}$	$\Delta T_{\mathrm{m}} /{ }^{\circ} \mathrm{C}$		
			A	C	G	T
D1	5'-GTG ATA TGC		29.5	-16.5	-8.0	-15.5
L1	5'-GTG ALA TGC		34.5	-18.0	-11.0	-16.0
X1	5'-GTG AXA TGC		37.5	-23.5	-14.5	-19.5
Y1	5'-GTG A		36.5	-18.0	-15.0	-17.5
Z1	5'-GTG A $\underline{\underline{Z}} \mathrm{~A}$ TGC		38.5	-16.5	-12.5	-16.0

${ }^{a}$ For conditions of thermal denaturation experiments, see Table 1. T_{m} 's of fully matched duplexes are shown in bold. $\Delta T_{\mathrm{m}}=$ change in T_{m} relative to fully matched D1:D2 duplex.

Table S7. Discrimination of mismatched RNA/DNA targets by B4-series and reference strands. ${ }^{a}$

ON	Sequence	RNA: 5^{\prime}-GUG AMA UGC					DNA: 5'-GTG AMA TGC			
		$\underline{\mathbf{M}}=$	$T_{\mathrm{m}} /{ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{C}\right]$	$\Delta T_{\mathrm{m}} /{ }^{\circ} \mathrm{C}$			$T_{\mathrm{m}} /{ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{C}\right]$	$\Delta T_{\mathrm{m}} /{ }^{\circ} \mathrm{C}$		
			T	A	C	G	T	A	C	G
D2	3'-CAC TAT ACG		28.0	-17.0	-17.0	-12.0	29.5	<-19.5	-16.5	-7.5
L4	3'-CAC LAL ACG		43.0	-21.0	-16.5	-17.0	40.0	-17.0	-15.5	-19.5
X4	3^{\prime}-CAC X X ${ }^{\text {d }}$ ACG		49.5	-13.0	-15.5	-16.0	46.0	nd	nd	nd
Y4	3^{\prime}-CAC $\underline{\mathbf{Y}} \mathbf{A} \underline{\mathbf{Y}} \mathrm{ACG}$		46.5	-17.0	-15.5	-16.0	44.5	-10.0	-13.0	-10.5
Z4	3'-CAC $\underline{\underline{\mathbf{Z}}} \mathbf{A} \underline{\underline{\mathbf{Z}}} \mathrm{ACG}$		54.0	-29.0	-20.0	-25.0	49.0	-4.0	-6.0	-6.0

[^2] determined.

Table S8. Thermostability of duplexes between antisense ONs (ASO) and complementary targets. ${ }^{a}$

ON	Duplex	$T_{\mathrm{m}}\left[\Delta T_{\mathrm{m}} / \mathrm{mod}\right] /{ }^{\circ} \mathrm{C}$		
		$\underline{\underline{b}}=$	L	Z
$\begin{gathered} \hline \text { ASO B1 } \\ \text { R3 } \end{gathered}$	5'- bcg AAG TAC TCG GCG TAg gbT 3'- r(AGC UUC AUG UGC CGC AUC CA)		60.0	59.5
$\underset{\text { D3 }}{\text { ASO B1 }}$	5'- bcg AAG TAC TCG GCG TAg gbT 3'- d(AGC TTC ATG TGC CGC ATC CA)		61.0	57.5

${ }^{a}$ For monomer structures, see Scheme 1. Lower case letters denote canonical LNA; underlined denotes phophorothioate backbone.

References

S1. P. Kumar, M. Østergaard, B. Bharal, B. A. Anderson, D. C. Guenther, M. Kaura, D.
J. Raible, P. K. Sharma and P. J. Hrdlicka, J. Org. Chem., DOI:10.1021/jo500614a.

S2. Couplings between 5-iodo-5'-O-(4,4'-dimethoxytrityl)-LNA uridine and Fmocprotected amino acids were unsuccessful in our hands.

S3. R. B. C. Jagt, R. F. Gómez-Biagi, and M. Nitz, Angew. Chem. Int. Ed., 2009, 48, 1995.

S4. P. A. Jass, V. W. Rosso, S. Racha, N. Soundararajan, J. J. Venit, A. Rusowicz, S. Swaminathan, J. Livshitz, and E. J. Delaney, Tetrahedron, 2003, 59, 9019.

C

$\begin{array}{ll} \overline{6} & \stackrel{2}{6} \\ \stackrel{6}{6} & \vdots \\ \vdots \end{array}$

DEPT

$\frac{8}{8}$		$\begin{aligned} & \text { V高 } \\ & \text { VVI } \end{aligned}$

160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	ppm

HSQC

cosy

DEPT

HSQC

$3 x$

${ }^{19} \mathrm{~F}$

${ }^{1} \mathrm{H}$

${ }^{13} \mathrm{C}$

$3 y$

COSY

$3 y$

DEPT

HSQC

$3 y$

${ }^{19} \mathrm{~F}$

HSQC

${ }^{19} \mathrm{~F}$

${ }^{31} \mathrm{P}$

${ }^{31} \mathrm{P}$

$4 z$

[^0]: ${ }^{a} \overline{\text { Structures of monomers } \mathbf{X} / \mathbf{Y} / \mathbf{Z} \text { are shown in Scheme } 1 \text { in the main text. Lower case letters denote }}$ canonical LNA monomers; underlined denotes phophorothioate backbone.

[^1]: ${ }^{a}$ Values were determined from thermal denaturation curves using the van't Hoff method and are reported as the average of two experiments. $\Delta \Delta G^{298}, \Delta \Delta H$ and $\Delta\left(T^{298} \Delta S\right)$ are calculated relative to reference duplexes D1:D2, D1:R2 and D2:R1.

[^2]: ${ }^{a} \Delta \overline{T_{\mathrm{m}}=\text { change in } T_{\mathrm{m}} \text { relative to fully matched duplex shown in bold (R1:B4 or D1:B4). nd }=}$ not

