Electronic Supplementary Information (ESI)

High Performance Gas Adsorption and Natural Gas Purification in Two Microporous Metal-Organic Frameworks with Ternary Building Units

Dongmei Wang, Tingting Zhao, Yu Cao, Shuo Yao, Guanghua Li, Qisheng Huo, and Yunling Liu*

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China

Materials and Methods

All the reagents were obtained from commercial sources and used without further purification. Powder X-ray diffraction (PXRD) data were collected on a Rigaku D/max-2550 diffractometer with CuK α radiation ($\lambda = 1.5418$ Å). The elemental analyses were performed on a Perkin-Elmer 2400 element analyzer. The infrared (IR) spectra were recorded within the 4000-400 cm⁻¹ region on a Nicolet Impact 410 FTIR spectrometer with KBr pellets. Thermogravimetric (TG) analyses were performed on TGA Q500 V20.10 Build 36 thermogravimetric analyzer in the temperature range 35-800 °C under air flow with the heating rate of 10 °C min⁻¹. Gas sorption isotherm measurements were carried out on a Micromeritics ASAP 2420 and Micromeritics ASAP 2020 instrument.

Synthesis of Compound JLU-Liu5

A mixture of $In(NO_3)_3 \cdot 4H_2O$ (15 mg, 0.05 mmol), H_5L (4.5 mg, 0.01 mmol), NMF (2 mL), and HBF₄ (0.2 mL) were added to a vial, and the solution was heated to 85 °C for 3d. Colorless crystals were collected and air-dried (70% yield based on

1

In(NO₃)₃·4H₂O). The agreement between the experimental and simulated PXRD patterns indicated the phase-purity of the as-synthesized product (see Figure S7a). ICP and elemental analysis calcd (%) for **JLU-Liu5**, [CH₃NH₃][In₃L₂(H₂O)_{2.5}]·8NMF: C, 42.39; H, 3.89; N, 7.06; In, 19.30; Found: C, 41.72; H, 3.96; N, 7.58; In, 19.71.

Synthesis of Compound JLU-Liu6

A mixture of $Zn(NO_3)_2 \cdot 6H_2O$ (12 mg, 0.04 mmol), H₅L (4 mg, 0.01 mmol), DMF (1 mL), and HCOOH (0.05 mL) were added to a vial, and the solution was heated to 85 °C for 3d. Colorless crystals were collected and air-dried (67% yield based on $Zn(NO_3)_2 \cdot 6H_2O$). The agreement between the experimental and simulated PXRD patterns indicated the phase-purity of the as-synthesized product (see Figure S7b). ICP and elemental analysis calcd (%) for **JLU-Liu6**, [(CH₃)₂NH₂][Zn₅L₂(OH)(H₂O)(DMF)₂]: C, 44.88; H, 2.99; N, 2.90; Zn, 22.63; Found: C, 43.81; H, 3.05; N, 3.08; Zn, 22.86.

Single Crystal X-ray Structure Determination

Data were collected on a Bruker Apex II CCD diffractometer at 293(2) K for **JLU-Liu5**, with graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å). Data was performed on a Rigaku RAXIS-RAPID IP diffractometer by using graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) for **JLU-Liu6**. The structure was solved by direct methods and refined by full-matrix least-squares methods with SHELXTL.¹ All non-hydrogen atoms were easily found from the difference Fourier map. All non-hydrogen atoms were refined anisotropically. PLATON/SQUEEZE² was employed to calculate the diffraction contribution of the solvent molecules and, thereby, to produce a set of solvent-free diffraction intensities; structures were then refined again using the generated data. Since the highly disordered cations and guest molecules were trapped in the channels of **JLU-Liu5** and **JLU-Liu6** and could not be modeled properly, there are "Alert level A" about "Check Reported Molecular Weight" and "VERY LARGE Solvent Accessible VOID(S) in Structure" in the

"checkCIF/PLATON report" files for **JLU-Liu5** and **JLU-Liu6**. The final formulas of **JLU-Liu5** and **JLU-Liu6** were derived from crystallographic data combined with elemental and thermogravimetric analysis data. The CCDC-1000072-1000073 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Basic information pertaining to crystal parameters and structure refinement is summarized in Table S1, and selected bond lengths [Å] and angles [°] are listed in Table S6 and Table S7.

Name	JLU-Liu5	JLU-Liu6
pirical formula	$C_{63}H_{69}In_3N_9O_{30.50}$	C ₅₄ H ₄₃ N ₃ O ₂₄ Zn ₅
Formula weight	1784.73	1444.76
Temperature (K)	296(2)	293(2)
Wave length (Å)	0.71073	0.71073
Crystal system	Orthorhombic	Monoclinic
Space group	Fdd2	c2/c
a (Å)	33.493(5)	29.372(6)
b (Å)	53.707(8)	15.784(3)
c (Å)	22.036(3)	19.140(4)
α (deg)	90	90
β (deg)	90	107.16(3)
γ (deg)	90	90
Volume (Å ³)	39639(10)	8478(3)
Z, D_{calc} (Mg/m ³)	16, 1.196	4, 1.132
Absorption coefficient (mm ⁻¹)	0.760	1.452
F (000)	14416	2920
Crystal size (mm ³)	0.38 x 0.26 x 0.24	0.27 x 0.26 x 0.24
θ range (deg)	1.17 to 25.00	3.07 to 27.46
index range (deg)	-32<=h<=39,-63<=k<=63,	-38<=h<=37,-20<=k<=20, -
	26<=l<=19	24<=1<=24
Reflections collected / unique	42211 / 14946 [R(int) = 0.0660]	40113 / 9621 [R(int) = 0.0574]
Data / restraints / parameters	14946 / 37 / 645	9621 / 18 / 424
Goodness-of-fit on F^2	1.089	1.089
$R_1, wR_2 (I > 2\sigma(I))$	0.0603, 0.1676	0.0715, 0.2301
R_1 , w R_2 (all data)	0.0737, 0.1742	0.0952, 0.2436
Largest diff. peak and hole (e Å-3)	0.940, -0.834	2.865, -1.184

Table S1 Crystal data and structure refinement for the two compounds.

 $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|. \ wR_2 = \left[\sum \left[w \left(F_o^2 - F_c^2\right)^2 \right] / \sum \left[w \left(F_o^2\right)^2 \right] \right]^{1/2}$

Fig. S1 Three types of 5-connected ligands with different dihedral angles in JLU-Liu5 (a, b) and JLU-Liu6 (c).

Fig. S2 The structure of **JLU-Liu5**: a) 3D framework with different direction metalorganic square (MOS) linked by ligands; b) 1D chain with distorted MOS; c) 1D tube along [011] direction.

Fig. S3 The structure of **JLU-Liu6**: (a) 2D chain along [101] direction; (b) Stick and ball model of the 3D framework along the [110] direction.

Topology Analysis

The two compounds are assembled by one kind of organic SBU and two kinds of inorganic SBUs, when considering the H₅L ligand as 5-c nodes, **JLU-Liu5** and **JLU-Liu6** can be regarded as novel (4,5)-c and (4,5,6)-c nets, respectively (Fig. S4a, S5a). However, preferable description could be obtained as below: the organic H₅L linker can be considered as three 3-c nodes centered between three phenyl rings, leading to the different new (3,4)-c and (3,4,6)-c nets for the compounds **JLU-Liu5** and **JLU-Liu6**, respectively (Fig. S4b, S5b). The topological information for two compounds is summarized in Table S2.

Fig. S4 Illustration of topology of **JLU-Liu5**: simplification of the inorganic $In(CO_2)_4$ (4-connected node, green) and $In_2(H_2O)(CO_2)_4$ clusters (4-connected node, blue), and the organic H₅L linker (5-connected nodes, purple), leading to the new (4,5)-c net a). When the organic H₅L linker was regarded as three 3-connected nodes (purple), lead to the new (3,4)-c net b). Hydrogen atoms are omitted for clarity.

Fig. S5 Illustration of topology of **JLU-Liu6**: simplification of the inorganic $Zn_2(CO_2)_4$ paddlewheels (4-connected node, yellow) and $Zn_3(CO_2)_6$ clusters (6-connected node, green), and the organic H₅L linker (5-connected nodes, purple), leading to the new (4,5,6)-c net a). When the organic H₅L linker regarded as three 3-connected nodes (purple), leading to the new (3,4,6)-c net b). Hydrogen atoms are omitted for clarity.

Table S2 The topological information for JLU-Liu5a (4,5)-c net and JLU-Liu5b (3,4)-c net, andJLU-Liu6a (4,5,6)-c net and JLU-Liu6b (3,4,6)-c net calculated by *Topos 4.0* and *Systre*.Compound JLU-Liu5a

Vertex figure	Square pyramid + Tetrahedron										
Vertex	CS1	CS2	CS3	CS4	CS5	CS6	CS7	CS8	CS9	CS10	Cum10
V ₁ (square pyramid)	5	13	33	47	96	117	202	218	350	350	1432
V ₂ (square pyramid)	5	11	31	47	91	109	196	212	342	345	1389
V ₃ (tetrahedron)	4	16	26	56	78	150	168	278	282	282	1502
V ₄ (tetrahedron)	4	14	25	55	72	134	154	260	273	273	1423
V ₅ (tetrahedron)	4	14	26	61	76	137	160	271	278	278	1461
Vertex	Exte	nded po	oint syn	ıbols							
V ₁ (square pyramid)	[4(2)	.4(2).6.0	5.6.6(2)	.6(2).6(2	2).6(2).6	6(3)]					
V ₂ (square pyramid)	[4(2)	.6.6.6.6	.6(2).6(2	2).6(2).6	6(3).6(3)]					
V ₃ (tetrahedron)	[6(2)	.6(2).6(2	2).6(2).6	6(4).6(4)]						
V ₄ (tetrahedron)	[4.6.4	4.6(3).4	.6(3)]								
V ₅ (tetrahedron)	[4.6.4	4.6(2).4	.6(4)]								

Compound JLU-Liu5b

Vertex figure	Triangle + Tetrahedron										
Vertex	CS1	CS2	CS3	CS4	CS5	CS6	CS7	CS8	CS9	CS10	Cum10
V ₁ (Triangle)	3	7	18	29	53	74	109	136	193	227	849
V ₂ (Triangle)	3	8	17	33	52	74	110	142	189	233	861
V ₃ (Triangle)	3	8	17	32	55	80	106	150	184	246	881
V ₄ (Triangle)	3	8	17	32	52	82	110	155	181	245	885
V ₅ (Triangle)	3	3 8 17 32 51 82 106 149 177 247 87								872	
V ₆ (tetrahedron)	4	8	20	36	56	76	116	144	204	232	896
V ₇ (tetrahedron)	4	8	18	36	53	79	114	145	194	241	892
V ₈ (Triangle)	3	7	18	30	53	74	104	146	180	230	845
V ₉ (tetrahedron)	4	8	20	32	57	84	117	144	202	235	903
Vertex	Exte	nded po	oint syn	nbols							
V ₁ (Triangle)	[7.7.2	7]									
V ₂ (Triangle)	[7.7.9	9(3)]									
V ₃ (Triangle)	[7.7(2).8(2)]									
V ₄ (Triangle)	[7.7.2	7(2)]									
V ₅ (Triangle)	[7.7.2	7]									
V ₆ (tetrahedron)	[7.7.8	8.8.8(2)	.9(2)]								
V ₇ (tetrahedron)	[7.7.2	7.7.9.8]									

V ₈ (Triangle)	[7.7(2).8]
V ₉ (tetrahedron)	[7.7.7.7.8]

Compound JLU-Liu6a

Vertex figure	Square + Square pyramid + Octahedron										
Vertex	CS1	CS2	CS3	CS4	CS5	CS6	CS7	CS8	CS9	CS10	Cum10
V ₁ (square)	5	16	35	63	97	140	189	248	312	387	1492
V ₂ (square pyramid)	4	14	36	60	94	136	190	244	308	382	1468
V ₃ (octahedron)	6	16	34	62	100	140	188	246	316	386	1494
Vertex	Exte	nded po	int sym	bols							
V ₁ (square)	[4.4.4	4.4.4.6(2).6(2).6((4).6(5).	6]						
V ₂ (square pyramid)	[4.4.6	[4.4.6(2).8(20).6(3).6(3)]									
V ₃ (octahedron)	[4.4.4	4.4.4.4.4	.4.6(4).6	(4).6(4)	.6(4).6.6	.6(2)]					

Compound JLU-Liu6b

Vertex figure	Triangle + Square +Octahedron										
Vertex	CS1	CS2	CS3	CS4	CS5	CS6	CS7	CS8	CS9	CS10	Cum10
V ₁ (octahedron)	6	12	24	44	82	108	138	188	266	286	1154
V ₂ (Triangle)	3	10	22	42	67	103	138	190	232	303	1110
V ₃ (Triangle)	3	10	22	44	69	101	142	190	233	299	1113
V ₄ (Triangle)	3	9	24	38	69	104	142	176	238	303	1106
V ₅ (Square)	4	8	28	46	66	98	160	184	234	294	1122
Vertex	Exte	nded po	int sym	bols							
V ₁ (octahedron)	[6.6.0	6.6.7.7.7	.7.7.7.7(2).8.8.8	.9(2)]						
V ₂ (Triangle)	[6.7.'	7(2)]									
V ₃ (Triangle)	[6.7.'	7(2)]									
V ₄ (Triangle)	[6.6.'	7]									
V ₅ (Square)	[7(3)	.7(3).8(2	2).8(2).9	(2).9(2)							

Fig. S6 Infrared spectra for the two compounds JLU-Liu5 and JLU-Liu6 (KBr, cm⁻¹).

Fig. S7 Experimental and calculated powder X-ray diffraction (PXRD) patterns for

the two compounds **JLU-Liu5** (a) and **JLU-Liu6** (b), indicating the phase purity of the as-synthesized, solvent exchanged and activated samples.

Fig. S8 Thermogravimetric analysis curves for the as-synthesized and exchanged compounds (a) **JLU-Liu5** exchanged with CH₃COCH₃ and (b) **JLU-Liu6** exchanged with CH₂Cl₂.

Thermogravimetric Analysis

Thermogravimetric analysis (TGA) for the compound **JLU-Liu5** shows a weight loss of 29.8 % between 35 and 260 °C, which corresponding to the loss of $CH_3NH_3^+$ and coordinated two and half H_2O molecules and eight NMF molecules (calcd: 30.8 %). The further weight loss of 50.9% occurs between 260 and 600°C should be attributed to the release of organic H_5L ligands (calcd 49.9%). The profiles for acetone exchanged materials indicated that the guest NMF and coordinated water molecules captured in the pore were mostly removed, and the framework of **JLU-Liu5** was stable to 350°C. PXRD studies indicated that the final product, upon calcinations above 600°C, is a main phase of In₂O₃ (JCPDS: 71-2194).

Thermogravimetric analysis (TGA) for the compound **JLU-Liu6** shows a weight loss of 16.2 % between 35 and 220°C, which corresponding to the loss of $(CH_3)_2NH_2^+$ and coordinated H₂O molecule and two DMF molecules (calcd: 15.4 %). The further weight loss of 62% between 220 and 520°C, and should be attributed to OH⁻ and the release of organic H₃L ligands (calcd 62.8%). The profiles for dichloromethane exchanged materials indicated that the coordinated water and DMF molecules were mostly removed, and the framework of **JLU-Liu6** was stable to 350°C. PXRD studies indicated that the final product, upon calcinations above 600°C, is a dense phase of ZnO (JCPDS: 36-1451).

Gas sorption measurements.

In the two compounds, the different degree of distortion of the unsymmetrical pentacarboxylate ligand results in the formation of the multiple-pore system with pore sizes ranging from 5.9 to 13.5 Å, such materials with multiple pores are often applied to the field of gas adsorption and separation. In addition, the two compounds are anionic framework, and the counter-cations, CH₃NH₃⁺, (CH₃)₂NH₂⁺ which came from the decomposition of the solvent NMF molecules and DMF molecules, occupied in the pores for charge balance of the framework of **JLU-Liu5** and **JLU-Liu6**, respectively. The counter-cations and open metal sites (OMSs) generated by thermal activation obviously influence gas adsorption and separation. The accessible pore volumes of the structures were estimated to be 66.7% for **JLU-Liu5** and 56.4% for **JLU-Liu6** of the total volume without the guest molecules and counter-cations in the pores, according to calculations using PLATON.

Before the gas sorption isotherm measurements, the as-synthesized JLU-Liu5 and JLU-Liu6 samples were solvent-exchanged with acetone and dichloromethane for 2 days, respectively. The solvent exchanged sample was then dried at 80°C under vacuum overnight lead to the formation of activated sample. The activated samples still maintain high crystallinity, as evidenced by the PXRD patterns (Fig. S7). About 100 mg of the desolvated samples were used for the entire adsorption/desorption 11

measurements.

		Н	2^{b}	CO	CO_2^b		$CH_4{}^b$		$C_2H_6{}^b$		$C_3H_8{}^b$	
MOFs	SA_{BET}^{a}	77K	87K	273K	298K	273K	298K	273K	298K	273K	298K	
JLU-Liu5	707	163	127	102	52	28	16	90	71	78	70	
JLU-Liu6	544	150	124	70	43	24	13	62	49	62	57	
^{<i>a</i>} Surface area (m ² g ⁻¹) was calculated from N ₂ isotherm. ^{<i>b</i>} Gas uptake in cm ³ g ⁻¹ .												

Table S3 Gas adsorption data of compounds JLU-Liu5 and JLU-Liu6.

Fig. S9 (a) Nitrogen sorption isotherms on **JLU-Liu5** (red) and **JLU-Liu6** (blue) at 77 K. (b) The pore size distribution calculated using the DFT method. Adsorption: closed symbols; desorption: open symbols, respectively.

Fig. S10 Hydrogen adsorption isotherms for the two compounds JLU-Liu5 (a) and JLU-Liu6 (b).

Calculations of the Isosteric Heats of Gas Adsorption (Q_{st}):

A virial-type⁴ expression comprising the temperature-independent parameters a_i and b_j was employed to calculate the enthalpies of adsorption for CH₄, C₂H₆ and C₃H₈ (at 273 and 298 K) on compounds. In each case, the data were fitted using the equation:

$$ln^{P} = ln^{N} + \frac{1}{T} \sum_{i=0}^{m} a_{i}N^{i} + \sum_{j=0}^{n} b_{j}N^{j}$$

Here, *P* is the pressure expressed in Torr, *N* is the amount adsorbed in mmol g^{-1} , *T* is the temperature in K, a_i and b_j are virial coefficients, *m*, *n* represent the number of coefficients required to adequately describe the isotherms (*m* and *n* were gradually increased until the contribution of extra added *a* and *b* coefficients was deemed to be statistically insignificant towards the overall fit, and the average value of the squared deviations from the experimental values was minimized). The values of the virial coefficients a_0 through a_m were then used to calculate the isosteric heat of adsorption using the following expression.

$$Q_{st} = -R \sum_{i=0}^{m} a_i N^i$$

 Q_{st} is the coverage-dependent isosteric heat of adsorption and *R* is the universal gas constant. The heat of gas sorption for **JLU-Liu5** and **JLU-Liu6** in this manuscript are determined by using the sorption data measured in the pressure range from 0-1 bar (273 and 298 K for gases), which is fitted by the virial-equation very well.

Fig. S11 (a) Nonlinear curves fitting of CO_2 for JLU-Liu5 at 273 K and 298 K; (b) Isosteric heat of CO_2 for JLU-Liu5.

Fig. S12 (a) Nonlinear curves fitting of C_3H_8 for JLU-Liu5 at 273 K and 298 K; (b) Isosteric heat of C_3H_8 for JLU-Liu5.

Fig. S13 (a) Nonlinear curves fitting of C_2H_6 for JLU-Liu5 at 273 K and 298 K; (b) Isosteric heat of C_2H_6 for JLU-Liu5.

Fig. S14 (a) Nonlinear curves fitting of CH_4 for JLU-Liu5 at 273 K and 298 K; (b) Isosteric heat of CH_4 for JLU-Liu5.

Fig. S15 (a) Nonlinear curves fitting of CO_2 for JLU-Liu6 at 273 K and 298 K; (b) Isosteric heat of CO_2 for JLU-Liu6.

Fig. S16 (a) Nonlinear curves fitting of C_3H_8 for **JLU-Liu6** at 273 K and 298 K; (b) Isosteric heat of C_3H_8 for **JLU-Liu6**.

Fig. S17 (a) Nonlinear curves fitting of C_2H_6 for JLU-Liu6 at 273 K and 298 K; (b) Isosteric heat of C_2H_6 for JLU-Liu6.

Fig. S18 (a) Nonlinear curves fitting of CH_4 for JLU-Liu6 at 273 K and 298 K; (b) 15

Isosteric heat of CH₄ for **JLU-Liu6**.

Prediction of adsorption of binary mixture by IAST theory

The excess adsorption data for pure gases measured at 298 *K*, were first converted to absolute loadings, along with *Peng-Robinson* equation. In order to perform the IAST calculations, the single-component isotherm was fitted by the dual-site Langmuir-Freundlich (DSLF) adsorption model⁵ to correlate the pure-component equilibrium data and further predict the adsorption of mixtures. The DSLF model is described as:

$$N^{0}(f) = \frac{N_{1}k_{1}f}{1+k_{1}f} + \frac{N_{2}k_{2}f}{1+k_{2}f}$$

Where *f* is the fugacity of bulk gas at equilibrium with adsorbed phase, N_i is the model parameter of the maximum adsorption amount at the site *i* (*i*=1 or 2), and k_i is the affinity constant.

Based on the above model parameters of pure gas adsorption, we used the IAST model,⁶ which was proposed by *Myer* and *Prausnitz* in 1965 to predict the multicomponent adsorption. Analogous to *Raoult's* law for vapor-liquid equilibrium, the IAST assumes that the adsorbed solutions are ideal and all activity coefficients in the adsorbed phase are unity. Thus, the adsorption equilibrium between adsorbed and gas phases will lead to the following equation

$$Py_i\varphi_i = x_i f_i^0(\pi)$$

Where f_i^0 is the fugacity of the equilibrium gas phase corresponding to the spreading

pressure π for the adsorption of pure gas *i*, φ_i is the gas fugacity coefficient of component *i* calculated by *PR* equation of state, and x_i and y_i are the molar fraction of component *i* at the adsorbed and bulk phases, respectively. The binary gas mixing process is carried out at constant spreading pressure π and indicated by

$$\int_{0}^{f_{1}^{0}} N_{1}^{0}(f_{1}) dlnf_{1} = \int_{0}^{f_{2}^{0}} N_{2}^{0}(f_{2}) dlnf_{2}$$

Where the single-component adsorption amount and selectivity are further obtained from the above equation by numerical integration and root exploration.

To investigate the separation of binary mixtures, the adsorption selectivity is defined by

$$S_{ij} = \frac{\frac{x_i}{x_j}}{\frac{y_i}{y_j}}$$

Where the selectivity refers to the first component over the second one, and the x_i, x_j and y_i, y_j denote the molar fractions of species *i*, *j* in the adsorbed and bulk phases, respectively.

Fig. S19 Isotherms of each component of CO_2/CH_4 mixture in the compound **JLU-Liu5** (a) predicted by IAST for equimolar mixtures of CO_2 and CH_4 at 298 K and 1 bar; (b) IAST selectivity of CO_2 versus CH_4 at various pressures and mole fractions of CH_4 (y_{CH4}= 0.05 and 0.95) at 298K and 1 bar; **Jlu-Liu6** for (c, d).

Table S4 Comparison of the two compounds with some other materials for CO_2/CH_4 adsorptive selectivity at 298 K and 1 bar.

	Compound	Selectivity	Reference
	MOF-177	0.9	7
	ZIF-8	1.4	7
	UMCM-1	1.8	7
	Cu ₃ (BTC) ₂	2.3	7
	MIL-53(Al)	2.3	7
	MOF-5	2.3	9
	JLU-Liu5	4.6	This work
MOFs	$[Zn_2(L)]$	4.8	8
materials	$[Zn_2(L)(DMF)_2]$	5.7	8
	$[Zn_2(L)(py-CF_3)_2]$	6.2	8
	M'MOF-20a	6.8	9
	JLU-Liu6	7.4	This work
	PAF-1-450	7.9	10
	Zn ₅ (BTA) ₆ (TDA) ₂ 15DMF 8H ₂ O	9.2	11
	[Cu(bpy-1) ₂ SiF ₆]	10.5	12
	[Cu ₂ (HBTB) ₂ (H ₂ O)(EtOH)] H ₂ O EtOH	12	13

	MPM-1-TIFSIX	20.3	14
	a-MCMBs	3.7	15
Carbon	activated carbon	3.7	15
materials	C ₁₆₈	5.4	16
	activated carbon bead	1.9	16

Fig. S20 Measured CO₂ and N₂ isotherms at 298 K along with the DSLF fits for JLU-Liu5 (a) and JLU-Liu6 (d); Isotherms of each component of CO_2/N_2 mixture in JLU-Liu5 (b) and JLU-Liu6 (e) predicted by IAST for equimolar mixtures of CO₂ and N₂ at 298 K and 1 bar; IAST predicted equimolar gas mixture adsorption selectivities at 298K and 1 bar for JLU-Liu5 (c) and JLU-Liu6 (f).

Fig. S21 Isotherms of each component of C_3H_8/CH_4 and C_2H_6/CH_4 mixture in JLU-Liu5 (a, b) predicted by IAST for equimolar mixtures of gases at 298 K and 1 bar; JLU-Liu6 (c, d).

Table S5 Parameters of measured pure CO_2 , CH_4 , C_2H_6 and C_3H_8 isotherm at 298 K along with the DSLF fits.

adaarbant	adaarbata	N_1	k_1	n_1	N ₂	k_2	<i>n</i> ₂
ausorbent	ausorbate	[mmol g ⁻¹]	[kPa ⁻¹]		[mmol g ⁻¹]	[kPa ⁻¹]	
	N_2	1.30549	0.00151	1.04061	0.00885	0.85447	0.46001
	CO_2	4.39363	0.0035	1.22409	0.12907	0.04565	1.62694
JLU-Liu5	CH_4	3.53769	0.0017	1.0752	0.00331	0.0867	4.00322
	C_2H_6	3.70116	0.01651	0.63117	2.57805	0.03074	1.18285
	C_3H_8	2.30288	0.65201	1.17237	2.83992	0.03965	0.51303
	N_2	0.80000	0.00921	0.41589	1.50000	9.7099E-4	1.16659
	CO_2	0.76959	0.03561	1.17276	2.74621	0.0047	1.12915
JLU-Liu6	CH_4	2.65699	0.00149	1.02422	0.36848	0.00936	0.9792
	C_2H_6	2.32227	0.0761	0.95659	0.38574	8.7613E-5	1.92937
	C_3H_8	1.4974	0.13433	0.54199	1.63135	2.88322	0.95232

Fig. S22 Fluorescent emission spectra of ligand H_5L (black), and JLU-Liu5 (red),

JLU-Liu6 (green) in solid state at room temperature.

Photoluminescent Properties:

The solid-state luminescence of the two compounds **JLU-Liu5** and **JLU-Liu6**, as well as the free ligand H₅L, are investigated at room temperature. As depicted in Fig. S22, the **JLU-Liu5** and **JLU-Liu6** display fluorescent emission bands at 491 nm and 466 nm upon excitation at 396 nm and 339 nm, respectively. These bands can probably be assigned to the π - π * intraligand luminescent emission since similar emission is observed at 481 nm upon excitation at 410 nm for ligand.

Compared with the free ligand, the **JLU-Liu5** has a decreased luminescent intensity, it may results from the more coordinated water molecules which have a strong quenching effect to the luminescence. However, the luminescent intensity of **JLU-Liu6** is greatly enhanced. It probably due to the unique coordination of the ligand to the Zn^{2+} center, which increases the conformational rigidity of the ligand, thereby reduces the nonradiative decay of the intraligand (π - π *) excited state. In comparison with the emission of H₃L, slight blue-shift of 10 nm occur in the maximum emission peaks in the compound **JLU-Liu6**, and slight red-shift of 15 nm occur in the compound **JLU-Liu5**. As the ligand dominates luminescence of the compounds, the blue and red-shifted emission can be presumably associated with coordinative environment around the ligand.

Table S6. Selected bond lengths [Å] and angles [°] for compound JLU-Liu5.

$I_{r}(1) O(21)$	2.050(5)	$I_{m}(1) O(14) \# 1$	2152(7)
$\ln(1) - O(21)$	2.059(5)	In(1)-O(14)#1	2.152(7)
$\ln(1) - O(3)$	2.111(6)	$\ln(1) - O(23)$	2.160(14)
$\ln(1) - O(22)$	2.139(12)	$\ln(1) - O(13)$	2.167(7)
$\ln(2) - O(6)$	2.128(7)	ln(2)-O(18)#4	2.274(6)
ln(2)-O(11)#2	2.179(7)	In(2)-O(1)#3	2.285(7)
In(2)-O(2)#3	2.224(6)	In(2)-O(12)#2	2.366(7)
In(2)-O(17)#4	2.259(6)	In(2)-O(5)	2.535(8)
In(3)-O(9)#5	2.130(7)	In(3)-O(15)	2.265(6)
In(3)-O(20)#6	2.195(6)	In(3)-O(7)#7	2.283(6)
In(3)-O(8)#7	2.234(6)	In(3)-O(19)#6	2.351(7)
In(3)-O(16)	2.259(6)		
O(21)-In(1)-O(3)	103.0(3)	O(22)-In(1)-O(23)	87.9(5)
O(21)-In(1)-O(22)	172.2(4)	O(14)#1-In(1)-O(23)	172.2(4)
O(3)-In(1)-O(22)	84.7(4)	O(21)-In(1)-O(13)	87.7(3)
O(21)-In(1)-O(14)#1	91.7(3)	O(3)-In(1)-O(13)	169.3(3)
O(3)-In(1)-O(14)#1	93.0(3)	O(22)-In(1)-O(13)	84.6(4)
O(22)-In(1)-O(14)#1	86.9(4)	O(14)#1-In(1)-O(13)	86.9(4)
O(21)-In(1)-O(23)	92.6(4)	O(23)-In(1)-O(13)	86.8(5)
O(3)-In(1)-O(23)	92.3(4)	O(17)#4-In(2)-O(1)#3	88.2(2)
O(6)-In(2)-O(11)#2	112.9(3)	O(18)#4-In(2)-O(1)#3	126.6(2)
O(6)-In(2)-O(2)#3	88.7(3)	O(11)#2-In(2)-O(12)#2	57.0(2)
O(11)#2-In(2)-O(2)#3	137.6(3)	O(2)#3-In(2)-O(12)#2	165.1(2)
O(6)-In(2)-O(17)#4	139.6(3)	O(17)#4-In(2)-O(12)#2	82.4(3)
O(11)#2-In(2)-O(17)#4	92.8(3)	O(18)#4-In(2)-O(12)#2	83.3(2)
O(2)#3-In(2)-O(17)#4	92.5(3)	O(1)#3-In(2)-O(12)#2	135.8(2)
O(6)-In(2)-O(18)#4	82.4(3)	O(6)-In(2)-O(5)	53.6(3)
O(11)#2-In(2)-O(18)#4	134.5(2)	O(11)#2-In(2)-O(5)	82.3(3)
O(2)#3-In(2)-O(18)#4	82.2(2)	O(2)#3-In(2)-O(5)	82.6(3)
O(17)#4-In(2)-O(18)#4	57.8(2)	O(17)#4-In(2)-O(5)	166.2(3)
O(6)-In(2)-O(1)#3	125.2(3)	O(18)#4-In(2)-O(5)	133.5(2)
O(11)#2-In(2)-O(1)#3	80.7(3)	O(1)#3-In(2)-O(5)	78.3(3)
O(2)#3-In(2)-O(1)#3	57.5(2)	O(12)#2-In(2)-O(5)	105.3(3)
O(6)-In(2)-O(12)#2	86.2(3)	O(9)#5-In(3)-O(20)#6	103.9(3)
O(20)#6-In(3)-O(8)#7	134.4(2)	O(9)#5-In(3)-O(8)#7	88.6(3)
O(9)#5-In(3)-O(16)	84.6(3)	O(16)-In(3)-O(7)#7	96.2(2)
O(20)#6-In(3)-O(16)	142.6(2)	O(15)-In(3)-O(7)#7	87.1(2)
O(8)#7-In(3)-O(16)	81.3(2)	O(9)#5-In(3)-O(19)#6	83.5(3)
O(9)#5-In(3)-O(15)	121.1(2)	O(20)#6-In(3)-O(19)#6	57.2(2)
O(20)#6-In(3)-O(15)	87.9(2)	O(8)#7-In(3)-O(19)#6	81.7(2)
O(8)#7-In(3)-O(15)	123.0(2)	O(16)-In(3)-O(19)#6	159.5(2)
O(16)-In(3)- $O(15)$	57.8(2)	O(15)-In(3)-O(19)#6	142.5(2)
O(9)#5-In(3)-O(7)#7	145.3(3)	O(7)#7-In(3)-O(19)#6	84.4(2)
O(20)#6-In(3)-O(7)#7	96.4(2)	O(8)#7-In(3)-O(7)#7	57.5(2)
	\ /		

Symmetry transformations used to generate equivalent atoms:

#1 -x-1/2,-y-1/2,z	#2 x+1/4,-y-3/4,z+1/4	#3 x-1/4,-y-3/4,z-1/4	#4 -x-3/4,y-1/4,z+3/4
#5 -x-3/4,y+1/4,z-3/4	#6 -x-3/4,y+1/4,z+1/4	#7 -x-1/2,-y-1/2,z-1	#8 -x-1/2,-y-1/2,z+1

Zn(1)-O(12)	1.976(3)	Zn(2)-O(4)	1.850(4)
Zn(1)-O(7)#1	2.020(3)	Zn(2)-O(11)	1.902(5)
Zn(1)-O(8)#2	2.023(3)	Zn(2)-O(1)#5	2.012(12)
Zn(1)-O(6)#3	2.034(3)	Zn(2)-O(4)#4	2.027(4)
Zn(1)-O(5)	2.040(3)	Zn(2)-O(1')#5	2.322(17)
Zn(3)-O(3)	2.057(6)	Zn(4)-O(11)	1.759(4)
Zn(3)-O(13)	2.091(12)	Zn(4)-O(10')#7	1.930(5)
Zn(3)-O(2')#5	2.129(9)	Zn(4)-O(9)#6	1.930(7)
Zn(3)-O(1')#5	2.332(18)	Zn(4)-O(2)#5	1.935(6)
Zn(3)-O(1)#5	2.362(14)	Zn(4)-O(10)#7	1.960(18)
Zn(3)-O(11)	2.3879(14)	Zn(3)-O(9')#6	2.011(7)
O(12)-Zn(1)-O(7)#1	99.68(16)	O(13)-Zn(3)-O(1)#5	111.1(5)
O(12)-Zn(1)-O(8)#2	102.06(15)	O(2')#5-Zn(3)-O(1)#5	54.8(4)
O(7)#1-Zn(1)-O(8)#2	158.23(15)	O(1')#5-Zn(3)-O(1)#5	15.9(4)
O(12)-Zn(1)-O(6)#3	100.90(16)	O(9')#6-Zn(3)-O(11)	91.4(3)
O(7)#1-Zn(1)-O(6)#3	88.72(15)	O(3)-Zn(3)-O(11)	84.2(2)
O(8)#2-Zn(1)-O(6)#3	88.33(16)	O(13)-Zn(3)-O(11)	169.6(5)
O(12)-Zn(1)-O(5)	100.92(16)	O(2')#5-Zn(3)-O(11)	95.0(3)
O(7)#1-Zn(1)-O(5)	86.61(16)	O(1')#5-Zn(3)-O(11)	88.2(5)
O(8)#2-Zn(1)-O(5)	88.14(17)	O(1)#5-Zn(3)-O(11)	74.0(3)
O(6)#3-Zn(1)-O(5)	158.15(15)	O(9')#6-Zn(3)-O(3)	108.9(3)
O(4)-Zn(2)-O(11)	125.52(17)	O(9')#6-Zn(3)-O(13)	88.6(5)
O(4)-Zn(2)-O(1)#5	108.0(3)	O(3)-Zn(3)-O(13)	85.9(5)
O(11)-Zn(2)-O(1)#5	93.8(3)	O(9')#6-Zn(3)-O(2')#5	97.1(4)
O(4)-Zn(2)-O(4)#4	111.3(2)	O(3)-Zn(3)-O(2')#5	154.0(3)
O(11)-Zn(2)-O(4)#4	116.17(14)	O(13)-Zn(3)-O(2')#5	95.3(6)
O(1)#5-Zn(2)-O(4)#4	94.1(4)	O(9')#6-Zn(3)-O(1')#5	155.9(5)
O(4)-Zn(2)-O(1')#5	93.0(3)	O(3)-Zn(3)-O(1')#5	95.0(4)
O(11)-Zn(2)-O(1')#5	101.5(4)	O(13)-Zn(3)-O(1')#5	96.0(6)
O(1)#5-Zn(2)-O(1')#5	15.2(4)	O(2')#5-Zn(3)-O(1')#5	59.0(4)
O(4)#4-Zn(2)-O(1')#5	102.0(5)	O(9')#6-Zn(3)-O(1)#5	145.7(4)
O(11)-Zn(4)-O(10')#7	115.45(18)	O(3)-Zn(3)-O(1)#5	100.5(3)
O(11)-Zn(4)-O(9)#6	110.2(3)	O(11)-Zn(4)-O(10)#7	116.4(5)
O(10')#7-Zn(4)-O(9)#6	101.6(4)	O(10')#7-Zn(4)-O(10)#7	28.9(5)
O(11)-Zn(4)-O(2)#5	105.9(2)	O(9)#6-Zn(4)-O(10)#7	74.3(6)
O(10')#7-Zn(4)-O(2)#5	115.3(3)	O(2)#5-Zn(4)-O(10)#7	133.9(6)
O(9)#6-Zn(4)-O(2)#5	108.2(3)		

Table S7. Selected bond lengths [Å] and angles [°] for compound JLU-Liu6.

Symmetry transformations used to generate equivalent atoms:

#1 -x+3/2,y+1/2,-z+3/2 #2 x,-y+1,z-1/2 #3 -x+3/2,-y+3/2,-z+1 #4 -x+1,y,-z+3/2 #5 x,-y+1,z+1/2 #6 x,y+1,z #7 -x+1,y+1,-z+3/2 #8 -x+3/2,y-1/2,-z+3/2 #9 x,y-1,z #10 -x+1,y-1,-z+3/2

Reference:

- 1. G. M. Sheldrick, SHELXTL-97, Program for Crystal Structure Refinement, University of Gottingen, 1997.
- 2. A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7-13.
- (a) M. O'Keeffe, O. M. Yaghi, Chem. Rev. 2012, 112, 675-702; (b) Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang, Z. Chen, Y Yang, W. Zhou, M. O'Keeffe, B. Chen, Angew. Chem., Int. Ed. 2011, 50, 3178-3187; (c) Y. Liu, J. F. Eubank, A. J. Cairns, J. Eckert, V. Ch. Kravtsov, R. Luebke, M. Eddaoudi, Angew. Chem., Int. Ed. 2007, 46, 3278-3283. (d) D. Zhao, D. Yuan, A. Yakovenko, H.-C. Zhou, Chem. Commun., 2010, 46, 4196-4198.
- 4. J. L. C. Rowsell, O. M. Yaghi, J. Am. Chem. Soc. 2006, 128, 1304-1315.
- 5. D. M. Ruthven, *Principles of Adsorption and Adsorption Processes; Wiley: New York*, 1984.
- 6. A. L. Myers, J. M. Prausnitz, AIChE J. 1965, 11, 121-127.
- Z. H. Xiang, X. Peng, X. Cheng, X. J. Li and D. P. Cao, J. Phys. Chem. C, 2011, 115, 19864-19871.
- Y. S. Bae, O. K. Farha, J. T. Hupp and R. Q. Snurr, *J. Mater. Chem.*, 2009, 19, 2131-2134.
- Z. Zhang, S. Xiang, K. Hong, M. C. Das, H. D. Arman, M. Garcia, J. U. Mondal, K. M. Thomas, B. Chen, *Inorg. Chem.* 2012, **51**, 4947-4953.
- T. Ben, Y. Q. Li, L. K. Zhu, D. L. Zhang, D. P. Cao, Z. H. Xiang, X. D. Yao and S. L. Qiu, *Energy Environ. Sci.*, 2012, 5, 8370-8376.
- Z. Zhang, S. Xiang, Y.-S. Chen, S. Ma, Y. Lee, T. Phely-Bobin, B. Chen, *Inorg. Chem.* 2010, 49, 8444-8448.
- S. D. Burd, S. Ma, J. A. Perman, B. J. Sikora, R. Q. Snurr, P. K. Thallapally, J. Tian, L. Wojtas, M. J. Zaworotko, *J. Am. Chem. Soc.*, 2012, **134**, 3663-3666.
- 13. B. Mu, F. Li, K.S. Walton, Chem. Commun. 2009, 18, 2493-2495.
- P. S. Nugent, V. L. Rhodus, T. Pham, K. Forrest, L. Wojtas, B. Space, M. J. Zaworotko, J. Am. Chem. Soc., 2013, 135, 10950-10953.
- M. Heuchel, G. M. Davies, E. Buss and N. A. Seaton, *Langmuir*, 1999, 15, 8695-8705.
- R. Babarao, Z. Q. Hu, J. W. Jiang, S. Chempath and S. I. Sandler, *Langmuir*, 2007, 23, 659-666.
- 17. X. H. Shao, Z. H. Feng, R. S. Xue, C. C. Ma, W. C. Wang, X. Peng and D. P. Cao, *AIChE J.*, 2011, **57**, 3042-3051.