Electronic Supplementary Information

For

The anion-sensing polyanion: a molecular cobalt vanadium oxide as multi-anion sensor

Andrey Seliverstov,^{a,b} Johannes Forster,^{a,b} Magdalena Heiland,^a Johannes Unfried,^b Carsten Streb^{a,b}*

^aInstitute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany ^b previous address:Department Chemistry and Pharmacy, Inorganic Chemistry II, Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstr. 1, 91058 Erlangen, Germany. *Email: carsten.streb@uni-ulm.de, web: www.strebgroup.net

1. Instrumentation

X-ray diffraction: Single-crystal X-ray diffraction studies were performed on a Nonius Kappa CCD Single-crystal X-ray diffractometer equipped with a graphite monochromator using MoK_{α} radiation (wavelength λ (Mo $K\alpha$) = 0.71073 Å).

FT-IR spectroscopy: FT-IR spectroscopy was performed on a Shimadzu FT-IR-8400S spectrometer. Samples were prepared as KBr pellets. Signals are given as wavenumbers in cm⁻¹ using the following abbreviations: vs = very strong, s = strong, m = medium, w = weak and b = broad.

UV-Vis spectroscopy: UV-Vis spectroscopy was performed on a Shimadzu UV-2401PC spectrophotometer, Varian Cary 50 spectrophotometer or Varian Cary 5G spectrophotometer equipped with a Peltier thermostat. All systems were used with standard cuvettes (d = 10.0 mm).

Thermogravimetry analysis (TGA): TGA was performed on a Setaram Setsys CS Evo, 30 - 900°C at 10K/min, 50 mL/min air, Graphite crucible 0.5 mL.

Elemental analysis: Elemental analysis was performed on a Euro Vector Euro EA 3000 Elemental Analyzer.

Atomic absorption spectroscopy: Atomic absorption spectroscopy analysis was performed on a Perkin Elmer 5100 PC spectrometer.

Nuclear Magnetic Resonance Spectroscopy (NMR): ¹H-NMR spectra were recorded at 269.7 MHz on a JNM-EX270 FT NMR spectrometer (JEOL). The solvent was DMSOd6, data is given as chemical shifts δ in ppm.

Electrospray ionization mass spectrometry (ESI-MS): ESI-MS measurements were performed on an ultra-high resolution time-of-flight (UHR-TOF) Bruker Daltonik maXis, an ESI-TOF-MS. Detection was in negative-ion mode and the source voltage was 4 kV. The flow rates were 500 μ L/hour. The drying gas (N₂) was held at 180 °C. The machine was calibrated prior to every experiment by direct infusion of the Agilent ESI-TOF low concentration tuning mixture.

General remarks: All chemicals were purchased from Sigma Aldrich or ACROS and were of reagent grade. The chemicals were used without further purification unless stated otherwise. $(n-Bu_4N)_4[V_4O_{12}] \times 4H_2O$ was synthesized as reported in the literature.^{S1}

2. Synthetic section: Synthesis of compound 1 Method 1:

 $(n-Bu_4N)_4[V_4O_{12}]$ (200 mg, 146.5 mmol) was dissolved in DMF (2 mL) and added to a solution of $Co(AcO)_2 \cdot 4H_2O$ (18.2 mg, 73.1 mmol) in DMF (4 mL). Upon mixing, a spontaneous colour change from pink to emerald green was observed. The clear, green solution was stirred at room temperature for 2 h. The product was obtained a single crystalline material by diffusion of diethyl ether or ethyl acetate into the mother liquor. Yield: 65 mg (52.4 mmol, 71.4 % based on Co). Elemental analysis in wt.-% for $C_{50}H_{111}N_3O_{14}V_4Co$ (calculated values in brackets): C 48.63 (48.39), H 9.25 (9.01), N 3.47 (3.39), V 16.58 (16.41), Co 4.48 (4.75). Characteristic IR-bands (in cm⁻¹): 2959 (m), 2874 (vs), 1474 (s), 1379 (m), 1167 (s), 1109 (vs), 1057 (m), 1030 (s), 941 (m), 821 (b), 750 (m), 648 (b).

Method 2:

 $(n-Bu_4N)_4[V_4O_{12}]$ (200 mg, 146.5 mmol) was dissolved in DMF or MeCN (2 mL). The resulting solution was added to a solution of $Co(NO_3)_2 \cdot 6H_2O$ (21.3 mg, 73.0 mmol) in DMF or MeCN (4 mL), which resulted in a spontaneous colour change of the reaction mixture to dark green. After stirring at 60 °C overnight the mixture was allowed to cool to RT. The product was obtained as emerald green crystals by diffusion crystallization

using EtAcO as diffusion solvent. Lower yields (*ca.* 30 %) were observed as ethyl acetate decomposition (to give the required acetate ions) seems to be the limiting factor.

Figure S1: IR spectrum of compound 1.

Figure S2: UV-Vis spectrum of **{CoV**₄**}** in DMF: $\lambda_{max1} = 724$ nm, $\epsilon = 242.7$ M⁻¹ cm⁻¹; $\lambda_{max2} = 640$ nm, $\epsilon = 120.0$ M⁻¹ cm⁻¹. $\lambda_{max3} = 576$ nm, $\epsilon = 71.2$ M⁻¹ cm⁻¹.

3. Crystallographic analysis of {CoV4}

Suitable single crystals of **1** were grown and mounted using a MicroLoop and Fomblin oil. X-ray diffraction intensity data were measured at 150 K on a Nonius Kappa CCD diffractometer [λ (Mo-K_a) = 0.71073 Å] equipped with a graphite monochromator. Structure solution and refinement was carried out using the SHELX-97 package^{S2} *via* WinGX.^{S3} Corrections for incident and diffracted beam absorption effects were applied using empirical methods.^{S4} Structures were solved by a combination of direct methods and difference Fourier syntheses and refined against F^2 by the full-matrix least-squares technique. Crystallographic data and structure refinements for compound **1**: C₅₀H₁₁₁Co₁N₃O₁₄V₄, M_r = 1241.11 g mol⁻¹; block crystal: 0.18 × 0.15 × 0.13 mm³; *T* = 150(2) K. Monoclinic, space group $P2_1$, *a* = 11.8530(7), *b* = 21.6446(12), *c* = 12.5652(11) Å, β = 93.647(6), *V* = 3217.1(4) Å³, *Z* = 2, ρ = 1.281 g cm⁻³, μ (Mo_{Ka}) = 0.868 mm⁻¹, *F*(000) = 1326, 89091 reflections measured, 14733 unique (R_{int} = 0.0390), 659 refined parameters, R_1 = 0.0455, w R_2 = 0.1140. CSD 834843 contains the supplementary crystallographic data. These data can be obtained free of charge *via* www.ccdc.cam.ac.uk/conts/retrieving.html or deposit@ccdc.cam.ac.uk.

A suitable crystal of compound **2** was selected and mounted using a MicroLoop and Fomblin oil on a SuperNova, Dual, Cu at zero, Atlas diffractometer. The crystal was kept at 180.00(14) K during data collection. Using Olex2^{S5}, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL^{S2} refinement package using Least Squares minimization. Crystallographic data and structure refinements for compound **2**: $C_{55}H_{113}CoN_3O_{14}V_4$ (*M*=1303.17): monoclinic, space group Cc (no. 9), *a* = 24.1500(4) Å, *b* = 23.6855(4) Å, *c* = 23.9678(4) Å, *β* = 93.9267(14)°, *V* = 13677.5(4) Å³, *Z* = 8, *T* = 180.00(14) K, µ(MoKα) = 0.820 mm⁻¹, *Dcalc* = 1.266 g/mm³, 54985 reflections measured (6.16 ≤ 2Θ ≤ 65.598), 31955 unique ($R_{int} = 0.0279$, $R_{sigma} = 0.0466$) which were used in all calculations. The final R_1 was 0.0436 (I > 2σ(I)) and *w* R_2 was 0.1036 (all data).

	Compound 1	Compound 2
Identification code	CCDC 834843	CCDC 1001987
Empirical formula	$C_{50}H_{111}C0N_3O_{14}V_4$	$C_{55}H_{113}CON_3O_{14}V_4$
Formula weight	1241.11	1303.17
Temperature/K	150(2)	180.00(14)
Crystal system	monoclinic	monoclinic
Space group	P2 ₁	Сс
a/Å	11.8530(7)	24.1500(4)
b/Å	21.6446(12)	23.6855(4)
c/Å	12.5652(11)	23.9678(4)
α/°	90.00	90
β/°	93.647(6)	93.9267(14)
γ/°	90.00	90
Volume/Å ³	3217.1(4)	13677.5(4)
Z	2	8
ρ _{calc} mg/mm ³	1.281	1.266
m/mm ⁻¹	0.868	0.820
F(000)	1326.0	5560.0
Crystal size/mm ³	0.25 × 0.18 × 0.16	0.2379 × 0.1958 × 0.1528
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
20 range for data collection	6.62 to 55°	6.16 to 65.598°
Index ranges	$-15 \le h \le 15, -28 \le k \le 28, -16 \le 1 \le 16$	-36 ≤ h ≤ 36, -35 ≤ k ≤ 35, -32 ≤ I ≤ 34
Reflections collected	89091	54985
Independent reflections	14733 [$R_{int} = 0.0390, R_{sigma} = 0.0330$]	31955 [R _{int} = 0.0279, R _{sigma} = 0.0466]
Data/restraints/parameters	14733/1/659	31955/3829/1414
Goodness-of-fit on F ²	1.084	1.021
Final R indexes [I>=2σ (I)]	R ₁ = 0.0455, wR ₂ = 0.1101	R ₁ = 0.0436, wR ₂ = 0.0926
Final R indexes [all data]	R ₁ = 0.0539, wR ₂ = 0.1140	R ₁ = 0.0633, wR ₂ = 0.1036
Largest diff. peak/hole / e Å ⁻³	0.93/-0.50	0.35/-0.35
Flack parameter	0.012(15)	-0.018(5)

Table S1. Crystal data and structure refinement compounds 1 and 2

Figure S3: ORTEP representation of compound 1 (CCDC 834843), thermal ellipsoids given at 50 % probability.

Figure S4: ORTEP representation of compound 2 (CCDC 1001987), thermal ellipsoids given at 50 % probability.

Compound $(n-Bu_4N)_3[CoV_4O_{12}CI]^{S6}$ is registered under CCDC 721230.

4. NMR spectroscopy

Figure S5: ¹H-NMR spectrum of **{CoV**₄**}** (left) and **Co(AcO)**₂×6H₂**O** (right) in DMSO-d6. See Table S2 for peak assignment. The AcO⁻ methyl signal is observed at δ = 1.92 for **{CoV**₄**}** and at δ = 2.51 for Co(AcO)₂x6H₂O.

_ /			No of H from integration			
ð / ppm	Peak #	Peak assignment	(referenced to the n -Bu ₄ N - CH ₃			
			group at 0.92ppm)			
{CoV ₄ }						
0.92	4	N-CH ₂ -CH ₂ -CH ₂ -CH ₃	12.00			
1.20	3	N-CH ₂ -CH ₂ -CH ₂ -CH ₃	8.16			
1.52	2	N-CH ₂ -CH ₂ -CH ₂ -CH ₃	8.04			
1.92	5	CH₃-COO ⁻	3.12			
2.85	1	$N-CH_2-CH_2-CH_2-CH_3$	7.08			
Co(AcO) ₂ ×6H ₂ O						
2.09	3	CH ₃ -COO ⁻				
2.51	2	DMSO-d6				
3.38	1	H₂O				

Table S2:	¹ H-NMR	peak	assignment:

5. ESI mass spectrometry

ESI mass spectrometry was performed in acetonitrile ([1] = 100 μ M) in negative ion mode.

Figure S6: Experimental and simulated isotopic pattern of **1** with the loss of one acetate ligand. $(n-Bu_4N)[CoV_4O_{12}]^-$ at m/z = 696.9328.

Figure S7: Experimental and simulated isotopic pattern of **1**: $Co^{II}[Co^{II}(AcO)V_4O_{12}]^-$ at m/z = 572.5946.

6. Thermogravimetric analysis

Figure S8: Thermogravimetric analysis of **{CoV**₄} showing one main mass loss step (exp: 64.1 wt.-%) between *ca*. 203 °C and *ca*. 500 °C, assigned to the loss of three *n*-Bu₄N⁺ counterions (calcd. 58.6 wt.-%) and one acetate group (4.8 wt.-%, in sum 63.4 wt.-%). This is in line with the formula assigned from single-crystal XRD.

7. UV-Vis studies

7.1. Molar extinction coefficient of {CoV₄}

The molar extinction coefficients for {CoV₄} were determined by dissolving {CoV₄} in DMF solutions containing a large excess of acetate so as to drive the equilibrium fully to the {CoV₄} side. The experiment was conducted at several initial {CoV₄} concentrations and gave virtually identical molar extinction coefficients. Three d-d-transitions are observed at $\lambda_1 = 576$ nm ($\epsilon_{576} = 71.3 \text{ M}^{-1} \text{ cm}^{-1}$), $\lambda_2 = 640$ nm ($\epsilon_{640} = 120.0 \text{ M}^{-1} \text{ cm}^{-1}$) and $\lambda_3 = 724$ nm ($\epsilon_{724} = 242.7 \text{ M}^{-1} \text{ cm}^{-1}$). For monitoring spectral changes upon acetate addition, the absorption signal a $\lambda = 724$ nm was used.

7.2 Co(NO₃)₂ / {V₄} titration series – acetate addition

For acetate-dependent sensor response studies, solutions of $Co(NO_3)_2 \times 6H_2O$ and $\{V_4\}$ (molar ratio 1:1, $[\{V_4\}]= 5$ mM) were titrated with DMF-solutions of *n*-BuN₄(AcO) as acetate source.

Figure S9: UV-Vis spectroscopic titration demonstrating the effect of acetate on the formation of $\{CoV_4\}$ in solution. Various equivalents of acetate were added to solutions containing 1:1 molar ratios of $[Co(NO_3)_2] / [\{V_4\}]$.

Figure S10: UV-Vis spectroscopic titration demonstrating the effect of acetate on the formation of $\{CoV_4\}$ in solution. Various equivalents of acetate were added to solutions containing 1:1 molar ratios of $[Co(NO_3)_2] / [\{V_4\}]$.

The effects of the {V₄} cluster on the spectral response to acetate-binding was studied using the reaction between acetate and a DMF solution of $Co(NO_3)_2 \times 6H_2O$ (5mM). The results show that acetate-binding also results in increased absorbance, however, in contrast to the {CoV₄} system, here, smaller changes in the molar extinction coefficients are observed together with an overall less characteristic spectral response, compare Fig. S8 and S9.

Figure S11: UV-Vis spectroscopic titration showing the spectral changes observed by addition of n-Bu₄N(AcO) to a DMF solution of $Co(NO_3)_2 \times 6H_2O$ (5mM).

The spectral response to chloride-binding was studied using the reaction between chloride and a DMF solution of $\{V_4\}$ and $Co(NO_3)_2 \times 6H_2O$ (1:1, 5mM each). The results show that distinct spectral changes and increased absorbance are observed, these signals can be distinguished from acetate binding, see above.

Figure S12: UV-Vis spectroscopic titration showing the spectral changes observed by addition of $n-Bu_4NCI$ to a DMF solution containing 1:1 molar ratios of $[Co(NO_3)_2] / [\{V_4\}]$ (5 mM).

7.3. Ratiometric behaviour

Figure S13: Linear ratiometric range of acetate detection showing the concentration of $\{CoV_4\}$ in solution as a function of the acetate concentration. Linear range for acetate *ca*. 0.5 - 4 mM, $[Co(NO_3)_2] = [\{V_4\}] = 5 \text{ mM}$.

7.4 {CoV₄} – addition of acetate

Figure S14: UV-Vis spectroscopic titration of acetate to a solution containing dissolved crystals of $\{CoV_4\}$ ([$\{CoV_4\}\}$] = 10 mM in DMF). The data shows that upon dissolution, an equilibrium is obtained between $\{CoV_4\}$ and non-cluster bound Co^{II} / $\{V_4\}$ / AcO⁻, see Scheme S1. Acetate addition shifts this equilibrium to the $\{CoV_4\}$ side, thus higher $\{CoV_4\}$ signal intensities are observed.

7.5 Solution equilibrium upon dissolving {CoV₄} in DMF

Figure S15: [**{CoV**₄**}**] observed in solution (solvent: DMF) as a function of the amount of **{CoV**₄**}** dissolved.

The dissociation constant K_d was calculated based on the following equation:

 $K_{d} = [CoV_{4}O_{12}^{4-}] \times [AcO^{-}] / [Co(AcO)V_{4}O_{12}^{3-}]$

Equilibrium concentrations of the three components were determined photometrically using the known extinction coefficients.

 $k_d^{60\%} = 2.78 \times 10^{-1} \text{ mM}$ $k_d^{95\%} = 3.23 \times 10^{-2} \text{ mM}$

7.6. Anion-selective spectral response of {CoV₄}

To investigate the anion-dependent behavior of {**CoV**₄}, DMF-solutions containing {**V**₄} (5 mM), Co(NO₃)₂ × 6H₂O (5 mM) and *n*-Bu₄NX (x = PF₆⁻, PhCOO⁻, Cl⁻, [X] = 0.5 - 25 mM) were prepared and the spectral response to the anion was measured. As shown below, distinct spectral responses were observed for each anion, so that anion-selective detection becomes possible.

Figure S16: Spectral response of a 1:1 molar mixture of $\{V_4\}$ and $Co(NO_3)_2 \times 6H_2O$ upon addition of 5 equivalents of the corresponding *n*-Bu₄N(X) salt (X = PF₆, PhCOO⁻, Cl⁻), [X] = 25 mM. Solvent: DMF.

Figure S17: UV-Vis spectra of 5 mM solution of the educts and corresponding $\{CoV_4\}$ solution in DMF. *n*-Bu₄N(X) salts and $\{V_4\}$ are not absorbing light at the given wavelength-area.

7.7. Thermal stability evaluation of {CoV₄}

The thermal stability of {**CoV**₄} was evaluated by heating a sample of {**CoV**₄} dissolved in DMF for 24 h to T = 90 °C. UV-Vis spectra were recorded before and after the heat treatment and virtually no changes to the characteristic UV-Vis signals of {**CoV**₄} can be observed, see below.

Figure S18: UV-Vis spectroscopic analysis of solution of $\{CoV_4\}$ in DMF before (red line) and after (black line) heating the sample to T = 90 °C for 24 h.

8. Literature references cited in ESI

- S1 J. Forster, J.; Rösner, B.; Khusniyarov, M. M.; Streb, C.; *Chem. Commun.*, **2011**, *47*, 3114.
- S2 Sheldrick, G.M.; Acta Crystallogr. 2008, A64, 112.
- S3 Farrugia, L. J.; J. Appl. Cryst. 1999, 32, 837.
- S4 Blessing, R. H.; Acta Crystallogr. **1995**, A51, 33.
- S5 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H., *J. Appl. Cryst.* 42, **2009**, 339-341
- S6 Kurata, T.; Hayashi, Y.; Isobe, K.; Chem. Lett. 2009, 38, 218–219.