Supporting Information

Catalytic Asymmetric Hetero-Diels-Alder Reaction of Olefinic Azlactones and Isatins: Facile Access to Chiral Spirooxindole Dihydropyranones

Tai-Ping Gao, Jun-Bing Lin, Xiu-Qin Hu and Peng-Fei Xu* State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China. Corresponding author: xupf@lzu.edu.cn

contents

1. General information	2
2. General procedure for the synthesis of olefinic azlactones	2
3. General procedure for the synthesis of 3 and analytical data	3
4. X-ray crystallographic data of compound 3c	12
5. NMR spectra of compound 3	13
6. HPLC spectra of compound 3	49

1. General information

All glassware was thoroughly oven-dried. Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Thin-layer chromatography plates were visualized by exposure to ultraviolet light and/or staining with phosphomolybdic acid followed by heating on a hot plate. Flash chromatography was carried out using silica gel (200-300 mesh). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AM-400 (400 MHz). The spectra were recorded in d₆-DMSO as solvent at room temperature, ¹H and ¹³C NMR chemical shifts are reported in ppm relative to the residual solvent peak. The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale (d₆-DMSO: δ_{H} = 2.50 ppm, $\delta_{\rm C} = 39.52$ ppm). Data for ¹H NMR are reported as follows: chemical shift $(\delta \text{ ppm})$, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet), integration, coupling constant (Hz) and assignment. Data for ¹³C NMR are reported as chemical shift. IR spectra were recorded using Nicolet NEXUS 670 FT-IR instrument and are reported in wavenumbers (cm⁻¹). Optical rotation was measured on the Perkin Elmer 341 polarimeter with $[\alpha]_D$ values reported in degrees; concentration (c) is reported in g/100 mL. HRMS were performed on a Bruker Apex II mass instrument (ESI). Enantiomeric excess values were determined by HPLC with Chiralcel ID columns on Waters 1525/2998 eluting with DCM, MeOH and *n*-hexane.

2. General procedure for the synthesis of olefinic azlactones¹

Acetophenone (2.4 g, 20 mmol) and malonitrile (2.6 g, 40 mmol) were dissolved in toluene, NH₄OAc (3.8 g, 50 mmol) dissolved in AcOH (5.5 mL, 100 mmol) was

added. The flask was equipped with a Dean-Stark apparatus and the reaction mixture was heated to reflux and stirred for 2h. After cooling to room temperature, the reaction was diluted with diethyl ether (30 mL), washed with water (2×30 mL), brine (30 mL) and dried with MgSO₄. Evaporation of the solvents gave the crude product **S1** which was used without further purification.

A mixture of **S1** (10 mmol), hippuric acid (10 mmol), and acetic anhydride (20 mmol) was warmed for 3h. Excess acetic anhydride was decomposed with water and the solution was extracted with DCM for 3 times. The combined organic layers were dried over Na_2SO_4 and concentrated under vacuum to give crude product which was purified by flash chromatography (silica gel, mixtures of petroleum/ethyl acetate) to afford the pure product **2**.

[1] R. M. A.-Motaleb, H. M. Bakeer, G. H. Tamam and W. A. A. Arafa, J. *Heterocyclic Chem.*, 2012, **49**, 1071.

3. General procedure for the synthesis of **3** and analytical data.

Isatins 1 (0.1 mmol) and olefinic azlactones 2 (0.1 mmol) was added to a solution of catalyst **F** (20 mol%) in dry DCE (1.0 mL). The mixture was stirred at 30 $^{\circ}$ C for 48 h, then the crude mixture was purified by flash chromatography (silica gel, mixtures of

petroleum/ethyl acetate) to afford the pure products 3.

(R)-N-(1-ethyl-2,6'-dioxo-4'-phenyl-3',6'-dihydrospiro[indoline-3,2'-pyran]-5'-yl) benzamide (3a)

White solid; 82% yield; 98% ee; $[\alpha]_{D}^{20} = 36.0$ (*c* 0.25, CH₂Cl₂); mp 202–204 °C; The enantiomeric excess was determined by HPLC with an ID column. (*n*-hexane: DCM: MeOH = 50:47.5:2.5), 1.0 mL/min, $\lambda = 280.0$ nm, $t_{R(minor)} = 7.5$ min, $t_{R(major)} = 11.8$ min. ¹H NMR (400 MHz, d₆-DMSO): δ 9.93 (s, 1H), 8.29 (d, J = 7.2 Hz, 1H), 7.90 (d, J = 7.2 Hz, 2H), 7.43–7.60 (m, 6H), 7.35–7.41 (m, 3H), 7.20 (d, J = 8.0 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 3.71-3.79 (m, 3H), 3.13 (d, J = 18.0 Hz, 1H), 1.20 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, d₆-DMSO): δ 171.0, 167.2, 160.9, 147.1, 142.0, 136.1, 133.2, 131.9, 131.1, 129.5, 128.4, 127.6, 127.5, 127.2, 124.6, 122.9, 122.1, 109.7, 79.1, 34.9, 34.6,12.3. IR (KBr, cm⁻¹): 3317, 2923, 2374, 1735, 1661, 1611, 1468, 1383, 1261, 1090, 748, 702, 583. HRMS (ESI) for C₂₇H₂₂N₂O₄ [M+Na] ⁺ calcd. 461.1472, found 461.1467.

(R)-N-(5-bromo-1-ethyl-2,6'-dioxo-4'-phenyl-3',6'-dihydrospiro[indoline-3,2'-pyr an]-5'-yl)benzamide (3b)

White solid; 75% yield; 99% ee; $[\alpha]_{D}^{20} = 80.0$ (*c* 0.5, CH₂Cl₂); mp 204–207 °C; The enantiomeric excess was determined by HPLC with an ID column. (*n*-hexane: DCM: MeOH = 60:38:2), 1.0 mL/min, $\lambda = 280.0$ nm, $t_{R(minor)} = 13.2$ min, $t_{R(major)} = 21.2$ min. ¹H NMR (400 MHz, d₆-DMSO): δ 9.94 (s, 1H), 8.50 (s, 1H), 7.89 (d, *J* = 7.2 Hz, 2H), 7.67 (d, *J* = 2.0 Hz, 1H), 7.49–7.65 (m, 5H), 7.36–7.44 (m, 3H), 7.19 (d, *J* = 8.4 Hz, 1H), 3.69–3.79 (m, 3H), 3.25 (d, *J* = 18.0 Hz, 1H), 1.19 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, d₆-DMSO): δ 170.6, 167.3, 160.7, 147.2, 141.4, 136.0, 133.7, 133.2, 131.9, 129.6, 129.5, 128.4, 128.4, 127.6, 127.5, 127.3, 122.1, 114.8, 111.7, 78.9, 34.7, 34.5, 12.1. IR (KBr, cm⁻¹): 3343, 2923, 2370, 1733, 1605, 1463, 1264, 1113, 741, 590. HRMS (ESI) for C₂₇H₂₁BrN₂O₄ [M+Na] ⁺ calcd. 539.0577, found 539.0568.

(R)-N-(6-bromo-1-ethyl-2,6'-dioxo-4'-phenyl-3',6'-dihydrospiro[indoline-3,2'-pyr an]-5'-yl)benzamide (3c)

White solid; 83% yield; 99% ee; $[\alpha]_{D}^{20} = 20.0$ (*c* 0.5, CH₂Cl₂); mp 186–190 °C; The enantiomeric excess was determined by HPLC with an ID column. (*n*-hexane: DCM: MeOH = 60: 38: 2), 1.0 mL/min, $\lambda = 280.0$ nm, $t_{R(minor)} = 13.0$ min, $t_{R(major)} = 22.2$ min. ¹H NMR (400 MHz, d₆-DMSO): δ 9.93 (s, 1H), 8.21 (d, *J* = 8.0 Hz, 1H), 7.88 (d, *J* = 7.2 Hz, 2H), 7.48–7.60 (m, 6H), 3.74–3.80 (m, 2H), 3.70 (dd, *J* = 17.6 Hz, 2 Hz, 1H), 3.19 (d, *J* = 17.6 Hz, 1H), 1.19 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, d₆-DMSO): δ 171.0, 167.2, 160.7, 147.1, 143.8, 136.0, 133.1, 131.9, 129.6, 128.4, 128.4, 127.6, 127.3, 126.7, 126.2, 125.4, 124.3, 122.1, 78.8, 34.8, 34.6, 12.2. IR (KBr, cm⁻¹): 3332, 2924, 2367, 1737, 1603, 1477, 1262, 1159, 1094, 738, 599. HRMS (ESI) for C₂₇H₂₁BrN₂O₄ [M+Na]⁺ calcd. 539.0577, found 539.0569.

(R)-N-(7-bromo-1-ethyl-2,6'-dioxo-4'-phenyl-3',6'-dihydrospiro[indoline-3,2'-pyr an]-5'-yl)benzamide (3d)

White solid; 79% yield; 75% ee; $[\alpha]_{D}^{20} = 7.0$ (*c* 1.0, CH₂Cl₂); mp 203–206 °C; The enantiomeric excess was determined by HPLC with an ID column. (*n*-hexane: DCM: MeOH = 60: 38: 2), 1.0 mL/min, $\lambda = 280.0$ nm, $t_{R(minor)} = 11.2$ min, $t_{R(major)} = 25.2$ min. ¹H NMR (400 MHz, d₆-DMSO): δ 9.92 (s, 1H), 8.33 (d, J = 7.6 Hz, 1H), 7.89 (d, J = 7.2 Hz, 2H), 7.63 (d, J = 7.6 Hz, 1H), 7.49–7.59 (m, 5H), 7.33–7.41 (m, 3H), 7.08 (t, J = 7.6 Hz, 1H), 4.08–4.14 (m, 2H), 3.30 (d, J = 17.6 Hz, 1H), 1.27 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, d₆-DMSO): δ 172.6, 167.7, 161.1, 147.5, 140.0, 137.0, 136.4, 133.6, 132.3, 131.4, 130.0, 128.9, 128.8, 128.1, 127.8, 125.2, 124.4, 122.5, 102.6, 78.7, 36.8, 35.3, 14.9. IR (KBr, cm⁻¹): 3364, 2923, 2372, 1734, 1595, 1459, 1261, 1106, 794, 706. HRMS (ESI) for C₂₇H₂₁BrN₂O₄ [M+Na] ⁺ calcd. 539.0577, found 539.0566.

(R)-N-(1-ethyl-5-methyl-2,6'-dioxo-4'-phenyl-3',6'-dihydrospiro[indoline-3,2'-pyr an]-5'-yl)benzamide (3e)

White solid; 75% yield; 99% ee; $[\alpha]_{D}^{20} = 8.0$ (c 0.5, CH₂Cl₂); mp190–194 °C; The

enantiomeric excess was determined by HPLC with an ID column. (*n*-hexane: DCM: MeOH = 60:38:2), 1.0 mL/min, λ = 280.0 nm, $t_{R(minor)}$ = 12.0 min, $t_{R(major)}$ = 22.5 min. ¹H NMR (400 MHz, d₆-DMSO): δ 9.93 (s, 1H), 8.20 (s, 1H), 7.93 (d, *J* = 7.6 Hz, 2H), 7.53–7.65 (m, 5H), 7.41–7.47 (m, 3H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.13 (d, *J* = 8 Hz, 1H), 3.71-3.81 (m, 3H), 3.17 (d, *J* = 17.6 Hz, 1H), 2.35 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, d₆-DMSO): δ 171.4, 167.7, 161.5, 147.8, 140.0, 136.6, 133.8, 132.6, 132.3, 131.5, 130.0, 128.9, 128.1, 128.0, 127.7, 125.9, 122.6, 109.9, 79.7, 21.1, 12.8. IR (KBr, cm⁻¹): 3299, 2961, 2925, 2371, 1728, 1663, 1494, 1264, 1088, 1026, 804, 700, 584. HRMS (ESI) for C₂₈H₂₄N₂O₄ [M+Na]⁺ calcd. 475.1628, found 475.1624.

(R)-N-(1-ethyl-7-methyl-2,6'-dioxo-4'-phenyl-3',6'-dihydrospiro[indoline-3,2'-pyr an]-5'-yl)benzamide (3f)

White solid; 82% yield; 94% ee; $[\alpha]_{D}^{20} = 10.0$ (*c* 0.5, CH₂Cl₂); mp 208–212 °C; The enantiomeric excess was determined by HPLC with an ID column. (*n*-hexane: DCM: MeOH = 60:38:2), 1.0 mL/min, $\lambda = 280.0$ nm, $t_{R(minor)} = 7.5$ min, $t_{R(major)} = 11.8$ min. ¹H NMR (400 MHz, d₆-DMSO): δ 9.90 (s, 1H), 8.14 (d, J = 7.2 Hz, 1H), 7.88 (d, J = 7.2 Hz, 2H), 7.47–7.59 (m, 5H), 7.24–7.40 (m, 3H), 7.23 (d, J = 7.6 Hz, 1H), 7.03 (t, J = 7.6 Hz, 1H), 3.91–3.96 (m, 2H), 3.68 (d, J = 17.6 Hz, 1H), 3.11 (d, J = 17.6 Hz, 1H), 2.52 (s, 3H), 1.22 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, d₆-DMSO): δ 172.7, 167.6, 161.4, 147.4, 140.3, 136.6, 135.3, 133.7, 132.3, 130.3, 130.0, 128.9, 128.9, 128.1, 127.7, 123.5, 122.9, 122.5, 122.7, 78.9, 37.0, 35.7, 18.8, 14.8. IR (KBr, cm⁻¹): 3306, 2921, 2364, 1733, 1666, 1463, 1262, 1098, 797, 742, 591. HRMS (ESI) for C₂₈H₂₄N₂O₄ [M+Na]⁺ calcd. 475.1628, found 475.1623.

(R)-N-(1-ethyl-5,7-dimethyl-2,6'-dioxo-4'-phenyl-3',6'-dihydrospiro[indoline-3,2' -pyran]-5'-yl)benzamide (3g)

White solid; 77% yield; 99% ee; $[\alpha]_{D}^{20} = 15.0$ (*c* 1.00, CH₂Cl₂); mp 218–220 °C; The enantiomeric excess was determined by HPLC with an ID column. (*n*-hexane: DCM: MeOH = 60:38:2), 1.0 mL/min, $\lambda = 280.0$ nm, $t_{R(minor)} = 10.9$ min, $t_{R(major)} = 20.0$ min. ¹H NMR (400 MHz, d₆-DMSO): δ 9.85 (s, 1H), 8.00 (s, 1H), 7.88 (d, *J* = 7.6 Hz, 2H), 7.47–7.59 (m, 5H), 7.33–7.41 (m, 3H), 7.04 (s, 1H), 3.88–3.94 (m, 2H), 3.67 (d, *J* = 1.6 Hz, 2H), 3.62 (dd, *J* = 17.6 1.6 Hz, 1H), 3.11 (d, *J* = 17.6 Hz, 1H), 2.47 (s, 3H),

2.26 (s, 3H), 1.211 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, d₆-DMSO): δ 172.6, 167.6, 161.5, 147.6, 137.7, 136.7, 135.4, 133.8, 132.6, 132.2, 129.9, 128.9, 128.8, 128.1, 127.7, 123.7, 122.5, 120.3, 79.0, 36.9, 35.8, 20.8, 18.6, 14.7. IR (KBr, cm⁻¹): 3309, 2924, 1733, 1711, 1661, 1512, 1478, 1380, 1314, 1265, 1185, 1098, 869, 745, 701, 583. HRMS (ESI) for C₂₉H₂₆N₂O₄ [M+Na]⁺ calcd. 489.1785, found 489.1782.

(R)-N-(5-chloro-1-ethyl-2,6'-dioxo-4'-phenyl-3',6'-dihydrospiro[indoline-3,2'-pyr an]-5'-yl)benzamide (3h)

White solid; 75% yield; 95% ee; $[\alpha]_{D}^{20} = 15.0$ (*c* 1.00, CH₂Cl₂); mp 208–210 °C; The enantiomeric excess was determined by HPLC with an ID column. (*n*-hexane: DCM: MeOH = 60:38:2), 1.0 mL/min, $\lambda = 280.0$ nm, $t_{R(minor)} = 10.7$ min, $t_{R(major)} = 24.8$ min. ¹H NMR (400 MHz, d₆-DMSO): δ 9.93 (s, 1H), 8.39 (s, 1H), 7.88 (d, *J* = 7.2 Hz, 2H), 7.48–7.60 (m, 6H), 7.37–7.44 (m, 3H), 7.24 (d, *J* = 8.4 Hz, 1H), 3.68–3.79 (m, 2H), 3.24 (d, *J* = 18.0 Hz, 2H), 1.19 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, d₆-DMSO): δ 170.6, 167.4, 160.7, 147.3, 141.0, 135.9, 135.7, 133.2, 132.8, 131.8, 130.8, 129.6, 129.2, 128.4, 128.4, 127.6, 127.3, 127.1, 124.9, 122.0, 111.3, 78.9, 34.7, 34.5, 12.1. IR (KBr, cm⁻¹): 3317, 2925, 1732, 1662, 1610, 1481, 1360, 1263, 1095, 800, 737, 548. HRMS (ESI) for C₂₇H₂₁ClN₂O₄ [M+Na]⁺ calcd. 495.1062, found 495.1076.

(R)-N-(6-chloro-1-ethyl-2,6'-dioxo-4'-phenyl-3',6'-dihydrospiro[indoline-3,2'-pyr an]-5'-yl)benzamide (3i)

White solid; 73% yield; >99% ee; $[\alpha]_{D}^{20}$ =38 (*c* 0.5, CH₂Cl₂); mp 188–190 °C; The enantiomeric excess was determined by HPLC with an ID column. (*n*-hexane: DCM: MeOH = 50:47.5:2.5), 1.0 mL/min, λ = 280.0 nm, t_{R(minor)} = 11.7 min, t_{R(major)} = 19.9 min. ¹H NMR (400 MHz, d₆-DMSO): δ 9.95 (s, 1H), 8.28 (d, *J* = 8.0, 1H), 7.89 (d, *J* = 7.2, 2H), 7.48–7.60 (m, 5H), 7.36–7.41 (m, 4H), 7.20 (dd, *J* = 8.2 Hz, 1.2 Hz, 1H), 3.69–3.80 (m, 3H), 3.19 (d, *J* = 18.0 Hz, 1H), 1.19 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, d₆-DMSO): δ 171.5, 167.7, 161.1, 147.6, 144.3, 136.4, 136.2, 133.6, 132.4, 130.0, 128.9, 128.9, 128.1, 127.7, 126.7, 126.4, 123.0, 122.6, 110.7, 79.2, 35.3, 35.2, 12.7. IR (KBr, cm⁻¹): 3275, 2961, 2925, 1731, 1608, 1485, 1356, 1262, 1075, 799, 702, 603. HRMS (ESI) for C₂₇H₂₁ClN₂O₄ [M+Na] ⁺ calcd. 495.1062, found 495.1077.

(R)-N-(1-ethyl-5-fluoro-2,6'-dioxo-4'-phenyl-3',6'-dihydrospiro[indoline-3,2'-pyr

an]-5'-yl)benzamide (3j)

White solid; 63% yield; 95% ee; $[\alpha]_{D}^{20} = 10.0$ (*c* 1.0, CH₂Cl₂); mp 162–168 °C; The enantiomeric excess was determined by HPLC with an ID column. (*n*-hexane: DCM: MeOH = 50:47.5:2.5), 1.0 mL/min, $\lambda = 280.0$ nm, $t_{R(minor)} = 13.3$ min, $t_{R(major)} = 23.2$ min. ¹H NMR (400 MHz, d₆-DMSO): δ 9.95 (s, 1H), 8.27 (d, *J* = 6.8 Hz, 1H), 7.89 (d, *J* = 7.6 Hz, 2H), 7.48–7.60 (m, 5H), 7.22–7.25 (m, 1H), 7.20 (d, *J* = 8.0 Hz, 1H), 3.71–3.79 (m, 3H), 3.19 (d, *J* = 18.0 Hz, 1H), 1.19 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, d₆-DMSO): δ 171.2, 168.0, 161.2, 161.1, 160.1, 157.7, 147.9, 138.8, 136.4, 133.5, 132.4, 130.1, 129.3, 128.9, 128.1, 127.7, 122.5, 117.9, 117.6, 113.4, 113.1, 111.4, 111.3, 79.6, 35.2, 35.1, 12.7. IR (KBr, cm⁻¹): 3314, 2924, 1735, 1461, 1263, 1094, 740, 582. HRMS (ESI) for C₂₇H₂₁FN₂O₄ [M+Na] ⁺ calcd. 479.1378, found 479.1372.

(R)-N-(1-ethyl-4'-(4-fluorophenyl)-5-methyl-2,6'-dioxo-3',6'-dihydrospiro[indolin e-3,2'-pyran]-5'-yl)benzamide (3k)

White solid; 82% yield; >99% ee; $[\alpha]_{D}^{20} = -10$ (*c* 1.0, CH₂Cl₂); mp 218–220 °C; The enantiomeric excess was determined by HPLC with an ID column. (*n*-hexane: DCM: MeOH = 50:47.5:2.5), 1.0 mL/min, $\lambda = 280.0$ nm, $t_{R(minor)} = 11.8$ min, $t_{R(major)} = 19.8$ min. ¹H NMR (400 MHz, d₆-DMSO): δ 9.90 (s, 1H), 8.11 (s, 1H), 7.89 (d, *J* = 7.6 Hz, 2H), 7.57–7.62 (m, 3H), 7.51 (t, J = 7.6, 2H), 7.25–7.29 (m, 3H), 7.09 (d, *J* = 8.0 Hz, 1H), 3.67–3.76 (m, 3H), 3.15 (d, *J* = 18.0 Hz, 1H), 1.19 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, d₆-DMSO): δ 171.3, 167.6, 161.7, 161.5, 146.9, 140.0, 133.7, 133.0, 133.0, 132.6, 132.3, 131.6, 130.3, 130.2, 128.9, 128.1, 127.9, 125.9, 122.6, 116.0, 115.8, 109.9, 79.6, 35.4, 35.0, 21.1, 12.8. IR (KBr, cm⁻¹): 3311, 2924, 1727, 1602, 1509, 1263, 1093, 1021, 805, 553. HRMS (ESI) for C₂₈H₂₃FN₂O₄ [M+Na]⁺ calcd. 493.1534, found 493.1531.

(R)-N-(5-bromo-1-ethyl-4'-(4-fluorophenyl)-2,6'-dioxo-3',6'-dihydrospiro[indolin e-3,2'-pyran]-5'-yl)benzamide (3l)

White solid; 75% yield; 85% ee; $[\alpha]_D^{20} = 9.0$ (*c* 1.0, CH₂Cl₂); mp 212–214 °C; The enantiomeric excess was determined by HPLC with an ID column. (*n*-hexane: DCM: MeOH = 60: 38:2), 1.0 mL/min, $\lambda = 280.0$ nm, $t_{R(minor)} = 14.3$ min, $t_{R(major)} = 22.9$ min. ¹H NMR (400 MHz, d₆-DMSO): δ 9.93 (s, 1H), 8.45 (d, J = 1.6 Hz, 1H), 7.88 (d, J = 7.2 Hz, 2H), 7.70 (d, J = 4.0 Hz, 1H), 7.57–7.62 (m, 3H), 7.50 (t, J = 8.0 Hz, 2H), 7.28 (t, J = 8.8 Hz, 2H), 7.19 (d, J = 8.4 Hz, 1H), 3.67–3.78 (m, 3H), 3. 27 (d, J = 18.0 Hz, 1H), 1.87 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, d₆-DMSO): δ 171.0, 167.8, 164.2, 161.8, 161.1, 146.7, 141.9, 134.2, 133.6, 132.8, 132.8, 132.4, 130.3, 130.2, 130.0, 128.9, 128.1, 128.0, 122.5, 116.1, 115.9, 115.3, 112.2, 79.3, 35.2, 34.9, 12.6. IR (KBr ,cm⁻¹): 3271, 2921, 1725, 1603, 1478, 1346, 1261, 1095, 1022, 802, 709, 575. HRMS (ESI) for C₂₇H₂₀BrFN₂O₄ [M+Na]⁺ calcd. 557.0483, found 557.0481.

(R)-N-(4'-(3-bromophenyl)-1-ethyl-2,6'-dioxo-3',6'-dihydrospiro[indoline-3,2'-py ran]-5'-yl)benzamide (3m)

White solid; 73% yield; 97% ee; $[\alpha]_{D}^{20} = -15$ (*c* 1.0, CH₂Cl₂); mp 200–204 °C; The enantiomeric excess was determined by HPLC with an ID column. (*n*-hexane: DCM: MeOH = 60:38:2), 1.0 mL/min, $\lambda = 280.0$ nm, $t_{R(minor)} = 10.5$ min, $t_{R(major)} = 17.7$ min. ¹H NMR (400 MHz, d₆-DMSO): δ 9.94 (s, 1H), 8.23 (d, *J* = 7.3 Hz, 1H), 7.89 (d, *J* = 7.3 Hz, 2H), 7.57–7.63 (m, 2H), 7.33–7.53 (m, 6H), 7.20 (d, J = 7.9 Hz, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 3.71–3.80 (m, 3H), 3.23 (d, *J* = 18.0 Hz, 1H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, d₆-DMSO): δ 170.9, 167.2, 160.7, 145.8, 142.1, 138.4, 138.1, 133.2, 132.2, 132.0, 131.2, 130.5, 130.3, 129.9, 129.3, 128.5, 127.6, 127.4, 127.2, 126.3, 126.0, 124.6, 123.0, 122.8, 121.7, 109.7, 79.2, 34.6, 12.3. IR (KBr, cm⁻¹): 3308, 2924, 1734, 1611, 1466, 1377, 1263, 1099, 741, 593. HRMS (ESI) for C₂₇H₂₁BrN₂O₄ [M+Na]⁺ calcd. 539.0577, found 539.0577.

(R)-N-(1-ethyl-4'-(4-fluorophenyl)-2,6'-dioxo-3',6'-dihydrospiro[indoline-3,2'-pyr an]-5'-yl)benzamide (3n)

White solid; 88% yield; 94% ee; $[\alpha]_{D}^{20} = 8.0$ (*c* 1.0, CH₂Cl₂); mp 195–198 °C; The enantiomeric excess was determined by HPLC with an ID column. (*n*-hexane: DCM: MeOH = 60:38:2), 1.0 mL/min, $\lambda = 280.0$ nm, $t_{R(minor)} = 12.2$ min, $t_{R(major)} = 20.1$ min. ¹H NMR (400 MHz, d₆-DMSO): δ 9.93 (s, 1H), 8.27 (d, J = 7.6 Hz, 1H), 7.91 (d, J = 12.2 min, t_R(major) = 12.2 min, t_R(major) = 12.2 min, t_R(major) = 12.2 min, t_R(major) = 20.1 min.

7.2 Hz, 2H), 7.56–7.62 (m, 3H), 7.43–7.52 (m, 3H), 7.19–7.28 (m, 3H), 7.13 (t, J = 7.6 Hz, 1H), 3.70–3.79 (m, 3H), 3.16 (d, J = 18.0 Hz, 1H), 1.20 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, d₆-DMSO): δ 171.0, 167.2, 163.7, 161.3, 160.9, 146.2, 142.1, 133.2, 132.5, 132.5, 131.9, 131.1, 129.8, 129.8, 128.5, 127.7, 127.5, 124.6, 123.0, 122.2, 115.6, 115.4, 109.7, 79.1, 34.9, 34.6, 12.3. IR (KBr, cm⁻¹): 3308, 2925, 1732, 1466, 1376, 1263, 1161, 1099, 1015, 840, 742, 572, 543. HRMS (ESI) for C₂₇H₂₁FN₂O₄ [M+Na]⁺ calcd. 479.1378, found 479.1375.

(R)-N-(1-ethyl-4'-(4-methoxyphenyl)-2,6'-dioxo-3',6'-dihydrospiro[indoline-3,2'-p yran]-5'-yl)benzamide (30)

White solid; 78% yield; 73% ee; $[\alpha]_{D}^{20} = 13.0 \ (c1.0, \text{CH}_2\text{Cl}_2)$; mp 207–210 °C; The enantiomeric excess was determined by HPLC with an ID column. (*n*-hexane: DCM: MeOH = 60:38:2), 1.0 mL/min, $\lambda = 280.0 \text{ nm}$, $t_{R(\text{minor})} = 12.2 \text{ min}$, $t_{R(\text{major})} = 27.7 \text{ min}$. ¹H NMR (400 MHz, d₆-DMSO): δ 9.89 (s, 1H), 8.28 (d, J = 6.8 Hz, 1H), 7.94 (d, J = 7.6 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H), 3.65–3.79 (m, 6H), 3.11 (d, J = 17.6 Hz, 1H), 1.21 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, d₆-DMSO): δ 171.0, 167.2, 161.1, 160.3, 146.6, 142.0, 133.3, 131.8, 131.0, 129.3, 128.4, 128.1, 127.7, 127.6, 124.7, 122.9, 120.9, 113.8, 109.6, 79.0, 55.2, 34.9, 34.6, 12.3. IR (KBr, cm⁻¹): 3313, 2924, 1729, 1606, 1466, 1358, 1260, 1108, 1023, 800, 738, 707, 575. HRMS (ESI) for C₂₈H₂₄N₂O₄ [M+Na]⁺ calcd. 491.1577, found 491.1573.

(R)-N-(1-ethyl-4'-(naphthalen-2-yl)-2,6'-dioxo-3',6'-dihydrospiro[indoline-3,2'-py ran]-5'-yl)benzamide (3p)

White solid; 76% yield; 76% ee; $[\alpha]_{D}^{20} = 8.0$ (*c* 0.25, CH₂Cl₂); mp 203–206 °C; The enantiomeric excess was determined by HPLC with an ID column. (*n*-hexane: DCM: MeOH = 60:38:2), 1.0 mL/min, $\lambda = 280.0$ nm, $t_{R(minor)} = 14.2$ min, $t_{R(major)} = 22.6$ min. ¹H NMR (400 MHz, d₆-DMSO): δ 9.96 (s, 1H), 8.30 (d, *J* = 7.6 Hz, 1H), 8.12 (s, 1H), 7.85–7.96 (m, 5H), 7.67 (d, *J* = 8.4 Hz, 1H), 7.44–7.54 (m, 6H), 7.21 (d, *J* = 8.0 Hz, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 3.77–3.3 (m, 3H), 3.28 (s, 1H), 1.21 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, d₆-DMSO): δ 171.0, 167.1, 161.0, 146.8, 142.1, 133.6, 133.3, 133.0, 132.4, 131.9, 131.1, 129.2, 128.5, 128.4, 128.3, 127.7, 127.6, 127.5, 127.5, 127.3, 127.3, 126.7, 124.7, 124.6, 123.0, 122.3, 109.7, 79.2, 35.0, 34.6, 12.3. IR (KBr, cm⁻¹): 3305, 2922, 1727, 1612, 1376, 1263, 1088, 800, 755, 706, 593. HRMS (ESI)

for $C_{31}H_{24}N_2O_4$ [M+Na]⁺ calcd. 511.1628, found 511.1626.

(R)-N-(1-allyl-2,6'-dioxo-4'-phenyl-3',6'-dihydrospiro[indoline-3,2'-pyran]-5'-yl) benzamide (3q)

White solid; 77% yield; 99% ee; $[\alpha]_D^{20} = 22.0$ (*c* 1.0, CH₂Cl₂); mp 188–190 °C; The enantiomeric excess was determined by HPLC with an ID column. (*n*-hexane: DCM: MeOH = 60:38:2), 1.0 mL/min, $\lambda = 280.0$ nm, $t_{R(minor)} = 12.8$ min, $t_{R(major)} = 26.8$ min. ¹H NMR (400 MHz, d₆-DMSO): δ 9.94 (s, 1H), 8.30 (d, *J* = 7.6 Hz, 1H), 7.74 (d, *J* = 7.2 Hz, 2H), 7.48–7.60 (m, 5H), 7.34–7.45 (m, 4H), 7.08–7.15 (m, 2H), 5.84–5.93 (m, 1H), 4.19–5.24 (m, 2H), 4.38 (d, *J* = 4.4 Hz, 2H), 3.76 (d, *J* = 17.6 Hz, 1H), 3.18 (d, *J* = 17.6 Hz, 1H); ¹³C NMR (100 MHz, d₆-DMSO): δ 171.6, 167.7, 161.3, 147.6, 142.6, 136.6, 133.7, 132.3, 131.8, 131.5, 130.0, 128.9, 128.1, 127.8, 127.7, 125.0, 123.6, 122.6, 117.6, 110.7, 79.6, 42.3, 35.4. IR (KBr, cm⁻¹): 3315, 2924, 1730, 1662, 1612, 1468, 1361, 1262, 1186, 1093, 757, 698, 588. HRMS (ESI) for C₂₈H₂₂N₂O₄ [M+Na]⁺ calcd. 473.1472, found 473.1467.

(R)-N-(1-isopropyl-2,6'-dioxo-4'-phenyl-3',6'-dihydrospiro[indoline-3,2'-pyran]-5 '-yl)benzamide (3r).

White solid; 82% yield; 93% ee; $[\alpha]_{D}^{20} = 38.0$ (*c* 1.0, CH₂Cl₂); mp 192–196 °C; The enantiomeric excess was determined by HPLC with an ID column. (*n*-hexane: DCM: MeOH = 60:38:2), 1.0 mL/min, $\lambda = 280.0$ nm, $t_{R(minor)} = 10.2$ min, $t_{R(major)} = 17.2$ min. ¹H NMR (400 MHz, d₆-DMSO): δ 9.89 (s, 1H), 8.28 (d, J = 7.6 Hz, 1H), 7.89 (d, J = 7.2 Hz, 2H),7.58(t, J = 7.6 Hz, 1H), 7.47–7.53 (m, 4H), 7.35–7.44 (m, 4H), 7.30 (d, J = 8.0 Hz, 1H), 7.11 (t, J = 7.6 Hz, 1H), 4.48–4.55 (m, 1H), 3.69 (dd, J = 17.6 Hz, 1.6 Hz, 2H), 3.13 (d, J = 17.6 Hz, 1H), 1.45 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, d₆-DMSO): δ 171.1, 167.2, 160.9, 147.1, 141.8, 136.2, 133.2, 131.9, 131.0, 129.5, 128.4, 127.6, 127.3, 124.7, 122.6, 122.1, 110.7, 79.2, 44.0, 35.1, 18.86, 18.83. IR (KBr, cm⁻¹): 3302, 2921, 1734, 1662, 1476, 1262, 1190, 1157, 1084, 740, 700, 590. HRMS (ESI) for C₂₈H₂₄N₂O₄ [M+Na]⁺ calcd. 475.1628, found 475.1624.

4. X-ray crystallographic data of compound **3c**.

Datablock:

Bond precision:	C-C = 0.0147	A Wavel	ength=0.71000
Cell:	a=10.3254(6)	b=10.3246(8)	c=26.4259(17)
alpha=90	beta=90	gamma=90	
Temperature:	293 K		
Crystal system	orthorhombic		
	Calculated	Repo	orted
Volume	2817.2(3)	2817.	2(3)
Space group	P 21 21 21	P 21 2	21 21
Hall group	P 2ac 2ab	P 2ac	2ab
Moiety formula	C27 H21 Br N2	2 O4 C27 H2	1 Br N2 O4
Sum formula	C27 H21 Br N2	2 O4 C27 H2	1 Br N2 O4
Mr	517.36	517.	37
Dx,g cm ⁻³	1.220	1.22	0
Z	4	4	
Mu (mm-1)	1.490	1.49	0
F000	1056.0	1050	6.0
F000'	1055.29		
h,k,lmax	12,12,32	13,13	3,34
Nref	5555[3154]	5465	5
Tmin,Tmax	0.627,0.640	0.127,1	1.000
Tmin'	0.615		
Correction meth	nod= MULTI-SCA	N	
Data completen	ess= 1.73/0.98	Theta(max)	= 25.994
R(reflections)=	0.0668(2028)	wR2(reflectio	ns)= 0.1732(5465)
S = 0.796		Npar= Npa	$\mathbf{r} = 308$

5. NMR spectra of compound **3**.

6. HPLC spectra of compound **3**.

3a HPLC analysis using chiral ID Column (*n*-hexane: DCM: MeOH = 50:47.5:2.5, 1.0 mL/min)

3b HPLC analysis using chiral ID Column (*n*-hexane: DCM: MeOH = 60:38:2, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.0 nm	13.237	5226	2706	0.60
2	PDA 280.0 nm	21.196	8590460	208613	99.40

3c HPLC analysis using chiral ID Column (*n*-hexane: DCM: MeOH = 60:38:2, 1.0 mL/min)

3d HPLC analysis using chiral ID Column (*n*-hexane: DCM: MeOH = 60: 38: 2, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.0 nm	11.183	1803973	104413	12.64
2	PDA 280.0 nm	25.235	12468343	294297	87.36

3e HPLC analysis using chiral ID Column (*n*-hexane: DCM: MeOH = 60: 38: 2, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.0 nm	12.067	1265283	57574	53.79
2	PDA 280.0 nm	22.969	1086991	34404	46.21

3f HPLC analysis using chiral ID Column (*n*-hexane: DCM: MeOH = 60:38:2, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.0 nm	13.181	96638	4939	3.09
2	PDA 280.0 nm	30.476	3030669	69058	96.91

3g HPLC analysis using chiral ID Column (*n*-hexane: DCM: MeOH = 60:38:2, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.0 nm	11.255	3923952	222300	50.59
2	PDA 280.0 nm	22.627	3832811	118784	49.41

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.0 nm	10.961	8913	598	0.42
2	PDA 280.0 nm	20.029	2106031	58763	99.58

3h HPLC analysis using chiral ID Column (*n*-hexane: DCM: MeOH = 60:38:2, 1.0 mL/min)

3i HPLC analysis using chiral ID Column (*n*-hexane: DCM: MeOH = 60:38:2, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.0 nm	11.708	2893	199	0.06
2	PDA 280.0 nm	19.979	4835411	163205	99.94

3j HPLC analysis using chiral ID Column (n-hexane: DCM: MeOH = 60:38:2, 1.0 mL/min)

3645939

23.162

3k HPLC analysis using chiral ID Column (*n*-hexane: DCM: MeOH = 60:38:2, 1.0 mL/min)

31 HPLC analysis using chiral ID Column (*n*-hexane: DCM: MeOH = 60:38:2, 1.0 mL/min)

3m HPLC analysis using chiral ID Column (*n*-hexane: DCM: MeOH = 60:38:2, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.0 nm	10.930	3921957	173757	49.96
2	PDA 280.0 nm	21.543	3928659	114847	50.04

3n HPLC analysis using chiral ID Column (*n*-hexane: DCM: MeOH = 60:38:2, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.0 nm	12.259	503249	27530	3.11
2	PDA 280.0 nm	20.185	15652579	367213	96.89

30 HPLC analysis using chiral ID Column (*n*-hexane: DCM: MeOH = 60:38:2, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.0 nm	17.027	6318617	215650	50.69
2	PDA 280.0 nm	28.107	6146477	118210	49.31

3p HPLC analysis using chiral ID Column (*n*-hexane: DCM: MeOH = 60:38:2, 1.0 mL/min)

3q HPLC analysis using chiral ID Column (*n*-hexane: DCM: MeOH = 60:38:2, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.0 nm	12.850	73211	3683	0.49
2	PDA 280.0 nm	26.845	14932253	315187	99.51

3r HPLC analysis using chiral ID Column (*n*-hexane: DCM: MeOH = 60:38:2, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.0 nm	10.200	126283	7784	3.67
2	PDA 280.0 nm	17.193	3313354	126659	96.33