ELECTRONIC SUPPLEMENTARY INFORMATION

Promising two-photon probes for in-vivo detection of β amyloid deposits

N. Arul Murugan, ${ }^{\dagger}$ Robert Zaleśny, ${ }^{\dagger, \|}$ Jacob Kongsted ${ }^{\ddagger}$, Agneta Nordberg \vdash and Hans Ågren ${ }^{\dagger}$
${ }^{\dagger}$ Division of Theoretical Chemistry and Biology
School of Biotechnology
Royal Institute of Technology
SE-10691 Stockholm, Sweden
${ }^{\|}$Theoretical Chemistry Group
Institute of Physical and Theoretical Chemistry
Wrocław University of Technology
Wyb. Wyspiańskiego 27, PL-50370, Wroctaw, Poland
${ }^{\ddagger}$ Department of Physics, Chemistry and Pharmacy
University of Southern Denmark
Campusvej 55, DK-5230 Odense M, Denmark
${ }^{\vdash}$ Karolinska Institute
Department of Clinical Neuroscience
Division of Molecular Neuropharmacology
Huddinge University Hospital, B 84
S-141 86 Stockholm, Sweden

A. Computational details

The molecular structures of the three donor/acceptor group substituted phenyl polymethines are referred to as NIRF-0, NIRF-1 and NIRF-2 and were optimized using density functional theory with the B3LYP exchange-correlation functional together with the $6-311+\mathrm{g}(\mathrm{d}, \mathrm{p})$ basis set using the Gaussian09 package. ${ }^{1}$ The geometry optimization was performed for the molecules in vacuo as well as in solution (dichloromethane). In the latter case, the PCM method was used. The one- and two-photon absorption spectra calculations in both vacuo and solution (on the respective geometries in vacuo and solution) were carried out using the CAM-B3LYP ${ }^{2}$ functional and the TZVP ${ }^{3}$ basis set employed for all atoms. For the calculations in solution the Polarizable Continuum Model ${ }^{4}$ was used and the solute cavity was based on the UAHF model ${ }^{5}$ The one- and two photon absorption properties were computed using linear and quadratic response theory within time-dependent density functional, respectively. All property calculations were performed using a locally modified version of the DALTON program ${ }^{6}$.

The two-photon absorption cross section, $\sigma^{2 \mathrm{PA}}(\omega)$ in Göppert-Mayer units was computed using the following expression:

$$
\begin{equation*}
\sigma^{2 \mathrm{PA}}(2 \omega)=\frac{4 \pi^{3} \alpha a_{0}^{5} \omega^{2}}{c} g(2 \omega) \delta^{2 \mathrm{PA}} \tag{1}
\end{equation*}
$$

where α is the fine structure constant, a_{0} is the Bohr radius, c is the speed of light, ω is the energy of the photon, $\mathrm{g}(2 \omega)$ is the line shape function and $\delta^{2 \mathrm{PA}}$ is the two-photon transition rate in atomic units. For the line shape function corresponding to a transition to a final state f, we assume a Lorentzian function:

$$
\begin{equation*}
g(2 \omega)=\frac{1}{\pi} \frac{\frac{1}{2} \Gamma_{f}}{\left(\omega_{f}-2 \omega\right)^{2}+\left(\frac{1}{2} \Gamma_{f}\right)^{2}} \tag{2}
\end{equation*}
$$

In all calculations we used $\Gamma_{f}=0.1 \mathrm{eV} .{ }^{7}$

B. Three-state model

A three-state model (TSM), which is a special case of a generalized few-state model suggested by Alam et al..8,9, considers three electronic states: the ground $(|0\rangle)$, intermediate $(|i\rangle)$ and final $(|f\rangle)$ states. The excited state $|f\rangle$ is also included as an intermediate in this model. The twophoton absorption probability corresponding to excitation from the ground to the final excited state is given by:

$$
\begin{equation*}
\delta_{3 S M}^{f \leftarrow 0}=\delta^{i i}+\delta^{f f}+2 \delta^{i f} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta^{i i}=\frac{4}{15}\left(\frac{\left|\mu^{0 i}\right|\left|\mu^{i f}\right|}{\omega_{i}-\frac{1}{2} \omega_{f}}\right)^{2}\left(2 \cos ^{2}\left(\theta_{i f}^{0 i}\right)+1\right) \tag{4}
\end{equation*}
$$

$$
\begin{gather*}
\delta^{f f}=\frac{16}{15}\left(\frac{\left|\mu^{0 f}\right|\left|\mu^{f f}\right|}{\omega_{f}}\right)^{2}\left(2 \cos ^{2}\left(\theta_{f f}^{0 f}\right)+1\right) \tag{5}\\
\delta^{i f}=\frac{8}{15}\left(\frac{\left|\mu^{0 i}\right|\left|\mu^{0 f}\right|\left|\mu^{i f}\right|\left|\mu^{f f}\right|}{\omega_{f}\left(\omega_{i}-\frac{1}{2} \omega_{f}\right)}\right)\left(\cos \theta_{0 f}^{f f} \cos \theta_{0 i}^{i f}+\cos \theta_{0 f}^{0 i} \cos \theta_{f f}^{i f}+\cos \theta_{0 f}^{i f} \cos \theta_{0 i}^{f f}\right) . \tag{6}
\end{gather*}
$$

Here $\hbar \omega_{i}$ stands for the excitation energy from the ground state to the excited state $|i\rangle$, $\mu^{i j}=\langle i| \vec{\mu}|j\rangle$ and $\theta_{i j}^{k l}$ is the angle between (transition) dipole moments $\mu^{i j}$ and $\mu^{k l}$.

C. Additional data

Table 1: Bond lengths (in \AA) and BLA for NIRF-0, NIRF-1 and NIRF-2 in dichloromethane solvent. C 1 refers to the polymethine carbon connected to the phenyl group while C 7 refers to the carbon atom connected to the cyano groups and the intermediate carbons are labeled accordingly.

Probe \Rightarrow	NIRF-0	NIRF-1	NIRF-2
Atom pairs \Downarrow			
C1-C2	1.4224	1.4279	1.4322
C2-C3	1.3836	1.3768	1.3737
C3-C4		1.4066	1.4122
C4-C5	1.3875	1.3807	
C5-C6			1.4040
C6-C7	1.3544		1.3894
N-C	1.4202	1.3577	1.3603
C-CCN	(1.4235)	1.4200	1.4195
	0.04	0.07	(1.4183)
BLA			0.10

Table 2: Ground and excited-state dipole moments (in Debyes) for NIRF-0 as obtained from CAM-B3LYP and RI-CC2 levels of theory using the TZVPP basis set. The calculations were carried out at the optimized gas phase geometry (B3LYP/6-311+G(d,p) level of theory). RICC2 calculations were performed using the TURBOMOLE 6.4 program. ${ }^{10}$

State	CAM-B3LYP	RI-CC2
0	11.16	10.82
1	15.16	17.83
2	12.09	11.41
3	16.36	17.07

References

[1] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009.
[2] T. Yanai, D. P. Tew and N. C. Handy, Chem. Phys. Lett., 2004, 393, 51-57.
[3] A. Schafer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829-5835.
[4] J. Tomasi, B. Mennucci and E. Cancès, J. Mol. Struct. (Theochem), 1999, 464, 211-226.
[5] V. Barone, M. Cossi and J. Tomasi, J. Chem. Phys., 1997, 107, 3210-3221.
[6] K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekström, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Hättig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenæs, S. Høst, I.-M. Høyvik, M. F. Iozzi, B. Jansík, H. J. A. Jensen, D. Jonsson, P. Jørgensen, J. Kauczor, S. Kirpekar, T. Kjærgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnæs, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. V. Rybkin, P. Saek, C. C. M. Samson, A. S. de Merás, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thøgersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski and H. Ågren, Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 00-00.
[7] M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu and C. Xu, Science, 1998, 281, 1653-1656.
[8] M. M. Alam, M. Chattopadhyaya and S. Chakrabarti, J. Phys. Chem. A, 2012, 116, 8067-8073.
[9] M. M. Alam, M. Chattopadhyaya and S. Chakrabarti, Phys. Chem. Chem. Phys., 2012, 14, 1156-1165.
[10] TURBOMOLE V6. 4 2012, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from
http://www.turbomole.com.

