Supplementary Information for

Switchable Chirality of Circularly Polarized Luminescence in Dilute Solution Based on the Solvent-dependent Helix Inversion of Poly(quinoxaline-2,3-diyl)s

Yuuya Nagata,[†] Tsuyoshi Nishikawa,[†] and Michinori Suginome^{*,†,‡}

[†] Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan

[‡]CREST, Japan Science and Technology Agency (JST), Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

*To whom correspondence should be addressed.

E-mail: suginome@sbchem.kyoto-u.ac.jp

Contents

- 1 General
- 2 Experimental Procedure and Spectral Data for New Compounds
- 3 Circularly Polarized Luminescence Measurement of Polymers 1(200)-3(200) and Monomeric Model Compound 4
- 4 Absolute Photoluminescence Quantum Yields of New Compounds
- 5 Photograph of 1-4 in dilute CHCl₃ and 1,1,1-TCE Solutions
- 6 Effect of Concentration of Polymer 3(200) in CHCl3 and 1,1,1-TCE Solutions
- 7 Optical Properties of Polymer 3(200) in Various Solvents
- 8 Reference

1 General

All reactions were carried out under an atmosphere of nitrogen with magnetic stirring. ¹H NMR spectra were recorded on a Varian 400-MR spectrometer at ambient temperature. ¹H NMR data are reported as follows: chemical shift in ppm downfield from tetramethylsilane (δ scale), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sex = sextet, m = multiplet and br = broad), coupling constant (Hz), and integration. The GPC analysis was carried out with TSKgel G4000H_{HR} or TSKgel GMH_{XL} (CHCl₃, polystyrene standards). Preparative GPC was performed on JAI LC-908 equipped with JAIGEL-1H and -2H columns in a series (CHCl₃). UV spectra were recorded on a JASCO V-500 spectrometer equipped with a JASCO ETC-505T temperature/stirring controller at 20 °C. Circular dichroism (CD) spectra were recorded on a JASCO J-750 spectrometer equipped with a JASCO PTC-423L temperature/stirring controller at 20 °C. Fluorescence spectra were recorded on a JASCO FP-6300 spectrofluorometer. Absolute quantum yields were measured by a Hamamatsu absolute PL quantum yield spectrometer C11347. Circularly polarized luminescence (CPL) spectra were recorded on a JASCO CPL-200S at room temperature. Flash chromatography was performed using a Biotage Isolera One flash purification system with silica gel flash cartridges.

Tetrahydrofurane (THF) was dried and deoxygenized using an alumina/catalyst o-TolNiCl(PMe₃)₂,¹ column system (Glass Contour Co.). 1,2-bis((*R*)-sec-butoxymethyl)-4,5-diisocyano-3,6-dimethylbenzene Q_{1}^{2} **Q**3,³ **2(200)**,⁴ 1,2-diisocyano-3,6-dimethyl-4,5-bis((S)-2-methylbutoxy)benzene 3,6-dimethyl-4,5-bis((*S*)-2-methylbutoxy)benzene-1,2-diamine,³ were prepared according to the reported procedures. Other chemical reagents were purchased from the commercial sources and were used without further purification.

2 Experimental Procedures and Spectral Data for New Compounds

Synthesis of polymer 1(200): Q₁ (48.6 mg, 148 µmol) was dissolved in THF (6 mL). A THF solution of *o*-TolNiCl(PMe₃)₂ (13.1 mM, 56.5 µL, 0.740 µmol) was added to the monomer solution with vigorous stirring. After 48 h, LiBH₄ (0.50 M, 283 µL, 142 µmol) was added to the reaction mixture and stirred for 2 h. 1N HCl aq (2 mL) was added to the solution and extracted with CH₂Cl₂ (20 ml). The organic layer was collected by using ISOLUTE[®] Phase Separator (3 mL), and the solvent was evaporated. The residue was subjected to preparative GPC to give 1(200) as a beige solid (41.1 mg, 84%). ¹H NMR (CDCl₃) δ 4.75 (H_{1-B}, 200×4H, br s), 3.40 (H_{1-C}, 200×2H, br s), 2.32 (H_{1-A} and H_{t-B}, (200×6+3)H, br s), 1.85–1.38 (H_{1-D}, 200×2H, br m), 1.21 (H_{1-F}, 200×6H, br s), 0.87 (H_{1-E}, 200×6H, br s), small peaks originated from end-group were observed in 10.02 (H_{t-A}, 1H, s) and 7.85–7.67 ppm (H_{t-C}, 4H, m); GPC (CHCl₃, g/mol): $M_n = 6.93 \times 10^4$, $M_w/M_n = 1.11$.

Figure S1. Structure of polymer 1(200) with ¹H NMR assignment.

Synthesis of polymers 3(n):

Figure S2. Structure of polymer 3(n) with ¹H NMR assignment.

Synthesis of polymer 3(30): Q₃ (19.71 mg, 60.0 µmol) was dissolved in THF (2 mL). A THF solution of *o*-TolNiCl(PMe₃)₂ (8.96 mM, 223.3 µL, 2.00 µmol) was added to the monomer solution with vigorous stirring. After 120 h, NaBH₄ (15.9 mg, 420 µmol) was added to the reaction mixture and stirred for 1 h. Water (20 mL) was added to the solution and extracted with CH₂Cl₂ (20 ml). The organic extract was washed with brine (20 mL), dried over Na₂SO4, and the solvent was evaporated. The residue was subjected to preparative GPC to give 3(30) as a beige solid (18.4 mg, 94%). ¹H NMR (CDCl₃) δ 4.54–3.25 (H_{3-B}, 30×4H, br m), 2.15 (H_{3-A} and H_{t-B}, (30×6+3)H, br s), 1.83 (H_{3-C}, 30×2H, br s), 1.59–1.49 (H_{3-D}, 30×2H, br s), 1.27–1.09 (H_{3-D}, 30×2H, br m), 1.01 (H_{3-F}, 30×6H, d, *J* = 6.0 Hz), 0.91 (H_{3-E}, 30×6H, t, *J* = 6.8 Hz), small peaks originated from end-group were observed in 9.95 (H_{t-A}, 1H, s) and 7.83–7.10 ppm (H_{t-C}, 4H, m); GPC (CHCl₃, g/mol): $M_n = 6.81 \times 10^3$, $M_w/M_n = 1.13$.

Synthesis of polymer 3(40): Q₃ (19.71 mg, 60.0 μmol) was dissolved in THF (2 mL). A THF solution of *o*-TolNiCl(PMe₃)₂ (8.96 mM, 167.5 μL, 1.50 μmol) was added to the

monomer solution with vigorous stirring. After 120 h, NaBH₄ (15.9 mg, 420 µmol) was added to the reaction mixture and stirred for 1 h. Water (20 mL) was added to the solution and extracted with CH₂Cl₂ (20 ml). The organic extract was washed with brine (20 mL), dried over Na₂SO₄, and the solvent was evaporated. The residue was subjected to preparative GPC to give **3(40)** as a beige solid (17.1 mg, 87%). ¹H NMR (CDCl₃) δ 4.53–3.33 (H_{3-B}, 40×4H, br m), 2.16 (H_{3-A} and H_{t-B}, (40×6+3)H, br s), 1.83 (H_{3-C}, 40×2H, br s), 1.55 (H_{1-D}, 40×2H, br s), 1.29–1.08 (H_{3-D}, 40×2H, br m), 1.02 (H_{3-F}, 40×6H, d, *J* = 6.0 Hz), 0.91 (H_{3-E}, 40×6H, t, *J* = 6.8 Hz), small peaks originated from end-group were observed in 9.94 (H_{t-A}, 1H, s) and 7.84–7.10 ppm (H_{t-C}, 4H, m); GPC (CHCl₃, g/mol): $M_n = 9.55 \times 10^3$, $M_w/M_n = 1.12$.

Scheme S3. Synthesis of polymer 3(40)

Synthesis of polymer 3(60): Q₃ (19.71 mg, 60.0 µmol) was dissolved in THF (2 mL). A THF solution of *o*-TolNiCl(PMe₃)₂ (8.96 mM, 111.7 µL, 1.00 µmol) was added to the monomer solution with vigorous stirring. After 120 h, NaBH₄ (7.94 mg, 210 µmol) was added to the reaction mixture and stirred for 1 h. Water (20 mL) was added to the solution and extracted with CH₂Cl₂ (20 ml). The organic extract was washed with brine (20 mL), dried over Na₂SO4, and the solvent was evaporated. The residue was subjected to preparative GPC to give 3(60) as a beige solid (18.3 mg, 93%). ¹H NMR (CDCl₃) δ 4.38–3.20 (H_{3-B}, 60×4H, br m), 3.59 (H_{3-B}, 60×2H, br s), 2.17 (H_{3-A} and H_{t-B}, (60×6+3)H, br s), 1.84 (H_{3-C}, 60×2H, br s), 1.56 (H_{3-D}, 60×2H, br s), 1.35–1.14 (H_{3-D}, 60×2H, br m), 1.02 (H_{3-F}, 60×6H, d, *J* = 6.0 Hz), 0.92 (H_{3-E}, 60×6H, t, *J* = 6.8 Hz), small peaks originated from end-group were observed in 9.94 (H_{t-A}, 1H, s) and 7.83–7.11 ppm (H_{t-C}, 4H, m); GPC (CHCl₃, g/mol): $M_n = 1.41 \times 10^4$, $M_w/M_n = 1.12$.

Scheme S4. Synthesis of polymer 3(60)

Synthesis of polymer 3(80): Q₃ (29.56 mg, 90.0 µmol) was dissolved in THF (3 mL). A THF solution of *o*-TolNiCl(PMe₃)₂ (8.96 mM, 125.6 µL, 1.13 µmol) was added to the monomer solution with vigorous stirring. After 120 h, NaBH₄ (8.93 mg, 236 µmol) was added to the reaction mixture and stirred for 1 h. Water (20 mL) was added to the solution and extracted with CH₂Cl₂ (20 ml). The organic extract was washed with brine (20 mL), dried over Na₂SO4, and the solvent was evaporated. The residue was subjected to preparative GPC to give 3(80) as a beige solid (28.3 mg, 96%). ¹H NMR (CDCl₃) δ 3.83 (H_{3-B}, 80×2H, br s), 3.59 (H_{3-B}, 80×2H, br s), 2.17 (H_{3-A} and H_{t-B}, (80×6+3)H, br s), 1.84 (H_{3-C}, 80×2H, br s), 1.57 (H_{3-D}, 80×2H, br s), 1.32–1.13 (H_{3-D}, 80×2H, br m), 1.02 (H_{3-F}, 80×6H, d, *J* = 6.0 Hz), 0.92 (H_{3-E}, 80×6H, t, *J* = 7.2 Hz), small peaks originated from end-group were observed in 10.00 (H_{t-A}, 1H, s) and 7.82–7.11 ppm (H_{t-C}, 4H, m); GPC (CHCl₃, g/mol): $M_n = 2.36 \times 10^4$, $M_w/M_n = 1.09$.

Synthesis of polymer 3(100): Q₃ (29.56 mg, 90.0 μ mol) was dissolved in THF (3 mL). A THF solution of *o*-TolNiCl(PMe₃)₂ (8.96 mM, 100.5 μ L, 0.90 μ mol) was added to the monomer solution with vigorous stirring. After 120 h, NaBH₄ (7.15 mg, 189 μ mol) was added to the reaction mixture and stirred for 1 h. Water (20 mL) was added to the

solution and extracted with CH₂Cl₂ (20 ml). The organic extract was washed with brine (20 mL), dried over Na₂SO4, and the solvent was evaporated. The residue was subjected to preparative GPC to give **3(100)** as a beige solid (24.5 mg, 83%). ¹H NMR (CDCl₃) δ 3.83 (H_{3-B}, 100×2H, br s), 3.59 (H_{3-B}, 100×2H, br s), 2.17 (H_{3-A} and H_{t-B}, (100×6+3)H, br s), 1.84 (H_{3-C}, 100×2H, br s), 1.57 (H_{3-D}, 100×2H, br s), 1.30–1.15 (H_{3-D}, 100×2H, br m), 1.02 (H_{3-F}, 100×6H, d, *J* = 5.6 Hz), 0.92 (H_{3-E}, 100×6H, t, *J* = 6.8 Hz), small peaks originated from end-group were observed in 10.06 (H_{t-A}, 1H, s) and 7.82–7.11 ppm (H_{t-C}, 4H, m); GPC (CHCl₃, g/mol): $M_n = 3.09 \times 10^4$, $M_w/M_n = 1.10$.

Synthesis of polymer 3(150): Q₃ (29.56 mg, 90.0 µmol) was dissolved in THF (3 mL). A THF solution of *o*-TolNiCl(PMe₃)₂ (8.96 mM, 67.0 µL, 0.60 µmol) was added to the monomer solution with vigorous stirring. After 120 h, NaBH₄ (4.77 mg, 126 µmol) was added to the reaction mixture and stirred for 1 h. Water (20 mL) was added to the solution and extracted with CH₂Cl₂ (20 ml). The organic extract was washed with brine (20 mL), dried over Na₂SO₄, and the solvent was evaporated. The residue was subjected to preparative GPC to give 3(150) as a beige solid (28.1 mg, 95%). ¹H NMR (CDCl₃) δ 3.83 (H_{3-B}, 150×2H, br s), 3.59 (H_{3-B}, 150×2H, br s), 2.17 (H_{3-A} and H_{t-B}, (150×6+3)H, br s), 1.84 (H_{3-C}, 150×2H, br s), 1.56 (H_{3-D}, 150×2H, br s), 1.22 (H_{3-D}, 150×2H, br s), 1.02 (H_{3-F}, 150×6H, br s), 0.92 (H_{3-E}, 150×6H, br s), small peaks originated from end-group were observed in 10.02 (H_{t-A}, 1H, s) and 7.82–7.11 ppm (H_{t-C}, 4H, m); GPC (CHCl₃, g/mol): $M_n = 5.26 \times 10^4$, $M_w/M_n = 1.08$.

Synthesis of polymer 3(200): Q₃ (29.56 mg, 90.0 µmol) was dissolved in THF (3 mL). A THF solution of *o*-TolNiCl(PMe₃)₂ (8.96 mM, 50.3 µL, 0.450 µmol) was added to the monomer solution with vigorous stirring. After 120 h, NaBH₄ (3.57 mg, 94.5 µmol) was added to the reaction mixture and stirred for 1 h. Water (20 mL) was added to the solution and extracted with CH₂Cl₂ (20 ml). The organic extract was washed with brine (20 mL), dried over Na₂SO4, and the solvent was evaporated. The residue was subjected to preparative GPC to give 3(200) as a beige solid (26.1 mg, 88%). ¹H NMR (CDCl₃) δ 3.83 (H_{3-B}, 200×2H, br s), 3.59 (H_{3-B}, 200×2H, br s), 2.16 (H_{3-A} and H_{t-B}, (200×6+3)H, br s), 1.84 (H_{3-C}, 200×2H, br s), 1.56 (H_{3-D}, 200×2H, br s), 1.22 (H_{3-D}, 200×2H, br s), 1.02 (H_{3-F}, 200×6H, br s), 0.92 (H_{3-E}, 200×6H, br s), small peaks originated from end-group were observed in 10.06 (H_{t-A}, 1H, s) and 7.83–7.11 ppm (H_{t-C}, 4H, m); GPC (CHCl₃, g/mol): $M_n = 8.15 \times 10^4$, $M_w/M_n = 1.07$.

Scheme S8. Synthesis of polymer 3(200)

Synthesis of monomeric model compound 4:

To a solution of 3,6-dimethyl-4,5-bis((*S*)-2-methylbutoxy)benzene-1,2-diamine (92.1 mg, 0.299 mmol) and acetic acid (1.7 μ L, 29.9 μ mol) in toluene was added benzil (69.1 mg, 0.329 mmol). The mixture was stirred at 120 °C for 41 h. The reaction mixture was concentrated under reduced pressure. The residue was purified with silica gel column chromatography (hexane/AcOEt = 95/5) to give **4** (121.3 mg, 84%) as orange solid. ¹H

NMR (CDCl₃) δ 7.58–7.56 (4H, m), 7.35–7.31 (6H, m), 3.95 (2H, dd, J = 6.0, 9.2 Hz), 3.83 (2H, dd, J = 6.4, 8.8 Hz), 2.73 (6H, s), 2.01–1.89 (2H, m), 1.73–1.63 (2H, m), 1.38–1.26 (2H, m), 1.12 (6H, d, J = 6.4 Hz), 1.00 (6H, t, J = 7.6 Hz); ¹³C NMR (CDCl₃): δ 153.1, 150.0, 139.8, 138.6, 130.1, 128.3, 128.0, 126.0, 78.7, 36.0, 26.3, 16.7, 11.5, 10.0; IR(ATR) 2961, 1348, 1200, 1132, 698 cm⁻¹; HRMS(APCI) m/z calcd for C₃₂H₃₈N₂O₂ (M+H⁺): 483.3006, Found: 483.2994; [α]_D^{24.1}+12.46 (c 1.33, CHCl₃).

Scheme S9. Synthesis of monomeric model compound 4

3,6-dimethyl-4,5-bis((3)-2methylbutoxy)benzene-1,2-diamine

3 Circularly Polarized Luminescence (CPL) Measurement of Polymers 1(200)–3(200) and Monomeric Model Compound 4

The CPL spectra were recorded at room temperature on a JASCO CPL-200 with an SQ-grade quartz cuvette (a path length of 10 mm). A scanning rate of 50 nm/min, an excitation bandwidth of 3000 μ m, a monitoring bandwidth of 3000 μ m, a response time of 8 seconds, and 20 times accumulation were employed. The CPL dissymmetry factor g_{lum} is defined as $g_{\text{lum}} = 2(I_{\text{L}} - I_{\text{R}})/(I_{\text{L}} + I_{\text{R}})$, where I_{L} and I_{R} are the fluorescence intensities of the right- and left-handed circularly polarized light, respectively. The value of g_{lum} can be calculated on a JASCO CPL-200 as follows.

$$g_{\text{lum}} = [\text{PL ellipticity (mdeg)}] / [\text{PL intensity (V)}] / (1000 \times 180 / 4\pi)$$
$$= [\text{PL ellipticity (mdeg)}] / [\text{PL intensity (V)}] \times (6.98 \times 10^{-5})$$

The validity of the coefficient (6.98×10^{-5}) was also confirmed by the measurement of previously reported CPL materials⁵ (europium(III) ions coordinated by chiral *N*,*N*'-bis(1-phenylethyl)-2,6-pyridinedicarboxamide in MeCN). For a curve fitting of observed CPL spectra, following equation was adopted on the basis of the supposition that the CPL signals are expressed as a linear combination of two Gaussian distribution functions of the wavenumber.

$$I_{\rm L} - I_{\rm R} = [a_1 \times \exp(b_1 / (\lambda - c_1)^2)] + [a_2 \times \exp(b_2 / (\lambda - c_2)^2)]$$

where λ is the wavelength (i.e. $1/\lambda$ is the wavenumber), a_1 , a_2 , b_1 , b_2 , c_1 , and c_2 are variables for the curve fitting. Nonlinear least-squares fitting of $I_L - I_R$ versus λ was performed by using the Solver Function in Microsoft Office Excel 2013. Sums of the squares of the deviation were minimized by varying 6 parameters (a_1 , a_2 , b_1 , b_2 , c_1 , and c_2).

Figure S3. CPL and PL spectra of polymer 1(200) in dilute $(2.12 \times 10^{-2} \text{ g/L})$ CHCl₃ solution ($\lambda_{ex} = 300.0 \text{ nm}$).

Figure S4. CPL and PL spectra of polymer 2(200) in dilute $(1.98 \times 10^{-2} \text{ g/L}) \text{ CHCl}_3$ solution ($\lambda_{ex} = 300.0 \text{ nm}$).

Figure S5. CPL and PL spectra of polymer **3(200)** in dilute (2.98×10^{-2} g/L) CHCl₃ and 1,1,1-TCE solutions ($\lambda_{ex} = 300.0$ nm).

Figure S6. CPL and PL spectra of **4** in dilute (4.82×10^{-3} g/L) CHCl₃ and 1,1,1-TCE solutions ($\lambda_{ex} = 300.0$ nm).

4 Absolute Photoluminescence Quantum Yields of New Compounds

Table S1. Absolute photoluminescence (PL) quantum yields of compounds in CHCl₃ or 1,1,1-TCE.

Compound	Solvent	Concentration	Excitation	PL
		(g/L)	wavelength	quantum
			(nm)	yield (%)
1(200)	CHCl ₃	$1.60 imes 10^{-2}$	350.0	0.3
1(200)	1,1,1-TCE	$1.60 imes 10^{-2}$	350.0	0.3
2(200)	CHCl ₃	2.36×10^{-2}	356.5	0.3
2(200)	1,1,1-TCE	2.36×10^{-2}	357.0	0.4
3(200)	CHCl ₃	2.12×10^{-2}	356.5	0.7
3(200)	1,1,1-TCE	2.12×10^{-2}	359.5	0.8
4	CHCl ₃	$4.82 imes 10^{-3}$	362.0	3.3

5 Photograph of 1(200)-3(200) and 4 in dilute CHCl₃ and 1,1,1-TCE solutions

Figure S7. Photograph of 1(200)-3(200) and 4 in CHCl₃ and 1,1,1-TCE (1.0×10^{-5} M) under ambient light.

Figure S8. Photograph of **1(200)-3(200)** and **4** in CHCl₃ and 1,1,1-TCE (1.0×10^{-5} M) under UV light irradiation ($\lambda_{ex} = 365$ nm).

6 Effect of Concentration of Polymer 3(200) in CHCl₃ and 1,1,1-TCE Solutions

Figure S9. UV-absorption spectra of polymer 3(200) at various concentrations (1.3×10^{-5} , 6.5×10^{-5} , and 3.2×10^{-4} M) in CHCl₃.

Figure S10. CD spectra of polymer 3(200) at various concentrations $(1.3 \times 10^{-5}, 6.5 \times 10^{-5}, and 3.2 \times 10^{-4} \text{ M})$ in CHCl₃.

Figure S11. CPL and PL spectra of polymer 3(200) in CHCl₃ (1.3×10^{-5} M, $\lambda_{ex} = 300.0$ nm).

Figure S12. CPL and PL spectra of polymer 3(200) in CHCl₃ (3.2×10^{-4} M, $\lambda_{ex} = 300.0$ nm).

Figure S13. UV-absorption spectra of polymer 3(200) at various concentrations (1.3×10^{-5} , 6.5×10^{-5} , and 3.2×10^{-4} M) in 1,1,1-TCE.

Figure S14. CD spectra of polymer 3(200) at various concentrations $(1.3 \times 10^{-5}, 6.5 \times 10^{-5}, and 3.2 \times 10^{-4} \text{ M})$ in 1,1,1-TCE.

Figure S15. CPL and PL spectra of polymer 3(200) in 1,1,1-TCE (1.3×10^{-5} M, $\lambda_{ex} = 300.0$ nm).

Figure S16. CPL and PL spectra of polymer **3(200)** in 1,1,1-TCE (3.2×10^{-4} M, $\lambda_{ex} = 300.0$ nm).

7 Optical Properties of Polymer 3(200) in Various Solvents

Figure S17. Dissymmetry factors g at 366.0 nm of polymer **3(200)** in various solvents. DCE: dichloroethane, DCP: dichloropropane, DCB: dichlorobutane, TCE: trichloroethane, MTBE: methyl *tert*-butyl ether, and CPME: cyclopentyl methyl ether.

Figure S18. CPL and PL spectra of polymer 3(200) in dilute $(2.22 \times 10^{-2} \text{ g/L}) \text{ CH}_2\text{Cl}_2$ solution ($\lambda_{ex} = 300.0 \text{ nm}$).

Figure S19. CPL and PL spectra of polymer 3(200) in dilute $(2.22 \times 10^{-2} \text{ g/L})$ THF solution ($\lambda_{ex} = 300.0 \text{ nm}$).

Figure S20. CPL and PL spectra of polymer 3(200) in dilute $(2.22 \times 10^{-2} \text{ g/L})$ toluene solution ($\lambda_{ex} = 300.0 \text{ nm}$).

8 References

1. Carmona, E.; Paneque, M.; Poveda, M. L. Polyhedron 1989, 8, 285.

2. Yamada, T.; Nagata, Y.; Suginome, M. Chem. Commun. 2010, 46, 4914.

3. Nagata, Y.; Nishikawa, T.; Suginome, M. Chem. Commun. 2012, 48, 11193.

4. Nagata, Y.; Yamada, T.; Adachi, T.; Akai, Y.; Yamamoto, T.; Suginome, M. J. Am. Chem. Soc. 2013, 135, 10104.

5. Bonsall, S. D.; Houcheime, M.; Straus, D. A.; Muller, G. Chem. Commun. 2007, 35, 3676.