Supplementary Information for

Switchable Chirality of Circularly Polarized Luminescence in Dilute

Solution Based on the Solvent-dependent Helix Inversion of

Poly(quinoxaline-2,3-diyl)s

Yuuya Nagata,[†] Tsuyoshi Niahikawa,[†] and Michinori Suginome^{*,†,‡}

[†]Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering,

Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 Japan, and [‡]CREST, Japan Science and

Technology Agency (JST), Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

E-mail: suginome@sbchem.kyoto-u.ac.jp

Contents

1	NMR Spectra of New Compounds	S25
	¹ H NMR spectrum of $1(200)$ in CDCl ₃	. S25
	¹ H NMR spectrum of $3(30)$ in CDCl ₃	. S26
	¹ H NMR spectrum of $3(40)$ in CDCl ₃	. S27
	¹ H NMR spectrum of 3(60) in CDCl_3	. S28
	¹ H NMR spectrum of 3(80) in $CDCl_3$. S29
	¹ H NMR spectrum of 3 (100) in $CDCl_3$. S30
	¹ H NMR spectrum of 3 (150) in $CDCl_3$. S 31
	¹ H NMR spectrum of 3(200) in CDCl_3	. S32
	¹ H NMR spectrum of 4 in $CDCl_3$. S33
	¹³ C NMR spectrum of 4 in $CDCl_3$. S34

 $\ensuremath{^*\text{To}}$ whom correspondence should be addressed

[†]Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University [‡]JST, CREST

2	UV-vis and CD Spectra of New Compounds	S35
	UV-vis absorption spectrum of $1(200)$ in CHCl ₃	. S35
	CD spectrum of $1(200)$ in CHCl ₃	. S35
	UV-vis absorption spectrum of $1(200)$ in 1,1,1-TCE	. S36
	CD spectrum of 1(200) in 1,1,1-TCE	. S36
	UV-vis absorption spectrum of $2(200)$ in CHCl ₃	. S37
	CD spectrum of $2(200)$ in CHCl ₃	. S37
	UV-vis absorption spectrum of $2(200)$ in 1,1,1-TCE	. S38
	CD spectrum of 2(200) in 1,1,1-TCE	. S38
	UV-vis absorption spectrum of $3(30)$ in CHCl ₃	. S39
	CD spectrum of $3(30)$ in CHCl ₃	. S39
	UV-vis absorption spectrum of $3(30)$ in 1,1,1-TCE	. S40
	CD spectrum of $3(30)$ in 1,1,1-TCE	. S40
	UV-vis absorption spectrum of $3(40)$ in CHCl ₃	. S41
	CD spectrum of $3(40)$ in CHCl ₃	. S41
	UV-vis absorption spectrum of $3(40)$ in 1,1,1-TCE	. S42
	CD spectrum of 3(40) in 1,1,1-TCE	. S42
	UV-vis absorption spectrum of $3(60)$ in CHCl ₃	. S43
	CD spectrum of $3(60)$ in CHCl ₃	. S43
	UV-vis absorption spectrum of $3(60)$ in 1,1,1-TCE	. S44
	CD spectrum of 3(60) in 1,1,1-TCE	. S44
	UV-vis absorption spectrum of $3(80)$ in CHCl ₃	. S45
	CD spectrum of $3(80)$ in CHCl ₃	. S45
	UV-vis absorption spectrum of 3(80) in 1,1,1-TCE	. S46
	CD spectrum of 3(80) in 1,1,1-TCE	. S46
	UV-vis absorption spectrum of $3(100)$ in $CHCl_3$. S47
	CD spectrum of $3(100)$ in CHCl ₃	. S47
	UV-vis absorption spectrum of 3(100) in 1,1,1-TCE	. S48
	CD spectrum of 3(100) in 1,1,1-TCE	. S48
	UV-vis absorption spectrum of $3(150)$ in $CHCl_3$. S49
	CD spectrum of $3(150)$ in CHCl ₃	. S49
	UV-vis absorption spectrum of $3(150)$ in 1,1,1-TCE	. S50
	CD spectrum of 3(150) in 1,1,1-TCE	. S50
	UV-vis absorption spectrum of $3(200)$ in $CHCl_3$. S51
	CD spectrum of $3(200)$ in CHCl ₃	. S51
	UV-vis absorption spectrum of 3(200) in 1,1,1-TCE	. S52
	CD spectrum of 3(200) in 1,1,1-TCE	. S52
	UV-vis absorption spectrum of 4 in $CHCl_3$. S53
	CD spectrum of 4 in $CHCl_3$. S53
	UV-vis absorption spectrum of 4 in 1,1,1-TCE	. S54
	CD spectrum of 4 in 1,1,1-TCE	. S54
	UV-vis absorption spectrum of 3(200) in 1-BuCl	. S55
	CD spectrum of 3(200) in 1-BuCl	. S55
	UV-vis absorption spectrum of 3(200) in 1-BuBr	. S56
	CD spectrum of 3(200) in 1-BuBr	. S56

	UV-vis absorption spectrum of $3(200)$ in CH_2Cl_2	S57
	CD spectrum of $3(200)$ in CH_2Cl_2	S57
	UV-vis absorption spectrum of 3(200) in trichloroethylene	S58
	CD spectrum of 3(200) in trichloroethylene	S58
	UV-vis absorption spectrum of 3(200) in THF	S59
	CD spectrum of 3(200) in THF	S59
	UV-vis absorption spectrum of 3(200) in MTBE	S60
	CD spectrum of 3(200) in MTBE	S60
	UV-vis absorption spectrum of 3(200) in CPME	S61
	CD spectrum of 3(200) in CPME	S61
	UV-vis absorption spectrum of $3(200)$ in toluene	S62
	CD spectrum of 3(200) in toluene	S62
	UV-vis absorption spectrum of $3(200)$ in NEt ₃	S63
	CD spectrum of $3(200)$ in NEt ₃	S63
3	PL Spectra of New Compounds	S64
	PL spectrum of $1(200)$ in CHCl ₃	S64
	PL spectrum of 1(200) in 1,1,1-TCE	S64
	PL spectrum of $2(200)$ in CHCl ₃	S65
	PL spectrum of 2(200) in 1,1,1-TCE	S65
	PL spectrum of $3(200)$ in CHCl ₃	S66
	PL spectrum of 3(200) in 1,1,1-TCE	S66
	PL spectrum of 4 in $CHCl_3$	S67
	PL spectrum of 4 in 1,1,1-TCE	S67

1 NMR Spectra of New Compounds

Figure S21. ¹H NMR spectrum of **1(200)** in CDCl₃.

Figure S22. ¹H NMR spectrum of **3(30)** in CDCl₃.

Figure S23. ¹H NMR spectrum of **3(40)** in CDCl₃.

Figure S24. ¹H NMR spectrum of **3(60)** in CDCl₃.

Figure S25. ¹H NMR spectrum of **3(80)** in CDCl₃.

Figure S26. ¹H NMR spectrum of **3(100)** in CDCl₃.

Figure S27. ¹H NMR spectrum of **3(150)** in CDCl₃.

Figure S28. ¹H NMR spectrum of **3(200)** in CDCl₃.

Figure S29. ¹H NMR spectrum of **4** in CDCl₃.

Figure S30. ¹³C NMR spectrum of **4** in CDCl₃.

2 UV-vis and CD Spectra of New Compounds

Figure S31. UV-vis absorption spectrum of 1(200) in CHCl₃ (1.60 × 10⁻² g/L, path length = 10 mm).

Figure S32. CD spectrum of 1(200) in CHCl₃ (1.60 × 10⁻² g/L, path length = 10 mm).

Figure S33. UV-vis absorption spectrum of 1(200) in 1,1,1-TCE (1.60 × 10⁻² g/L, path length = 10 mm).

Figure S34. CD spectrum of **1(200)** in 1,1,1-TCE (1.60×10^{-2} g/L, path length = 10 mm).

Figure S35. UV-vis absorption spectrum of 2(200) in CHCl₃ (2.36 × 10⁻² g/L, path length = 10 mm).

Figure S36. CD spectrum of **2(200)** in CHCl₃ (2.36×10^{-2} g/L, path length = 10 mm).

Figure S37. UV-vis absorption spectrum of 2(200) in 1,1,1-TCE (2.36×10^{-2} g/L, path length = 10 mm).

Figure S38. CD spectrum of **2(200)** in 1,1,1-TCE (2.36×10^{-2} g/L, path length = 10 mm).

Figure S39. UV-vis absorption spectrum of 3(30) in CHCl₃ (2.08 × 10⁻² g/L, path length = 10 mm).

Figure S40. CD spectrum of **3(30)** in CHCl₃ (2.08×10^{-2} g/L, path length = 10 mm).

Figure S41. UV-vis absorption spectrum of **3(30)** in 1,1,1-TCE (2.08×10^{-2} g/L, path length = 10 mm).

Figure S42. CD spectrum of **3(30)** in 1,1,1-TCE (2.08×10^{-2} g/L, path length = 10 mm).

Figure S43. UV-vis absorption spectrum of **3(40)** in CHCl₃ (2.09×10^{-2} g/L, path length = 10 mm).

Figure S44. CD spectrum of **3(40)** in CHCl₃ (2.09×10^{-2} g/L, path length = 10 mm).

Figure S45. UV-vis absorption spectrum of 3(40) in 1,1,1-TCE (2.09×10^{-2} g/L, path length = 10 mm).

Figure S46. CD spectrum of **3(40)** in 1,1,1-TCE (2.09×10^{-2} g/L, path length = 10 mm).

Figure S47. UV-vis absorption spectrum of **3(60)** in CHCl₃ (2.70×10^{-2} g/L, path length = 10 mm).

Figure S48. CD spectrum of **3(60)** in CHCl₃ (2.70×10^{-2} g/L, path length = 10 mm).

Figure S49. UV-vis absorption spectrum of **3(60)** in 1,1,1-TCE (2.70×10^{-2} g/L, path length = 10 mm).

Figure S50. CD spectrum of **3(60)** in 1,1,1-TCE (2.70×10^{-2} g/L, path length = 10 mm).

Figure S51. UV-vis absorption spectrum of **3(80)** in CHCl₃ (2.90×10^{-2} g/L, path length = 10 mm).

Figure S52. CD spectrum of **3(80)** in CHCl₃ (2.90×10^{-2} g/L, path length = 10 mm).

Figure S53. UV-vis absorption spectrum of **3(80)** in 1,1,1-TCE (2.90×10^{-2} g/L, path length = 10 mm).

Figure S54. CD spectrum of **3(80)** in 1,1,1-TCE (2.90×10^{-2} g/L, path length = 10 mm).

Figure S55. UV-vis absorption spectrum of **3(100)** in CHCl₃ (3.29×10^{-2} g/L, path length = 10 mm).

Figure S56. CD spectrum of **3(100)** in CHCl₃ (3.29×10^{-2} g/L, path length = 10 mm).

Figure S57. UV-vis absorption spectrum of **3(100)** in 1,1,1-TCE (3.29×10^{-2} g/L, path length = 10 mm).

Figure S58. CD spectrum of **3(100)** in 1,1,1-TCE (3.29×10^{-2} g/L, path length = 10 mm).

Figure S59. UV-vis absorption spectrum of **3(150)** in CHCl₃ (2.83×10^{-2} g/L, path length = 10 mm).

Figure S60. CD spectrum of **3(150)** in CHCl₃ (2.83×10^{-2} g/L, path length = 10 mm).

Figure S61. UV-vis absorption spectrum of **3(150)** in 1,1,1-TCE (2.83×10^{-2} g/L, path length = 10 mm).

Figure S62. CD spectrum of **3(150)** in 1,1,1-TCE (2.83×10^{-2} g/L, path length = 10 mm).

Figure S63. UV-vis absorption spectrum of **3(200)** in CHCl₃ (2.12×10^{-2} g/L, path length = 10 mm).

Figure S64. CD spectrum of **3(200)** in CHCl₃ (2.12×10^{-2} g/L, path length = 10 mm).

Figure S65. UV-vis absorption spectrum of **3(200)** in 1,1,1-TCE (2.12×10^{-2} g/L, path length = 10 mm).

Figure S66. CD spectrum of **3(200)** in 1,1,1-TCE (2.12×10^{-2} g/L, path length = 10 mm).

Figure S67. UV-vis absorption spectrum of **4** in CHCl₃ (4.82×10^{-3} g/L, path length = 10 mm).

Figure S68. CD spectrum of **4** in CHCl₃ (4.82×10^{-3} g/L, path length = 10 mm).

Figure S69. UV-vis absorption spectrum of **4** in 1,1,1-TCE (4.82×10^{-3} g/L, path length = 10 mm).

Figure S70. CD spectrum of **4** in 1,1,1-TCE (4.82×10^{-3} g/L, path length = 10 mm).

Figure S71. UV-vis absorption spectrum of **3(200)** in 1-BuCl (2.22×10^{-2} g/L, path length = 10 mm).

Figure S72. CD spectrum of **3(200)** in 1-BuCl (2.22×10^{-2} g/L, path length = 10 mm).

Figure S73. UV-vis absorption spectrum of **3(200)** in 1-BuBr (2.22×10^{-2} g/L, path length = 10 mm).

Figure S74. CD spectrum of **3(200)** in 1-BuBr (2.22×10^{-2} g/L, path length = 10 mm).

Figure S75. UV-vis absorption spectrum of **3(200)** in CH_2Cl_2 (2.22 × 10⁻² g/L, path length = 10 mm).

Figure S76. CD spectrum of **3(200)** in CH_2Cl_2 (2.22 × 10⁻² g/L, path length = 10 mm).

Figure S77. UV-vis absorption spectrum of **3(200)** in trichloroethylene (2.22×10^{-2} g/L, path length = 10 mm).

Figure S78. CD spectrum of **3(200)** in trichloroethylene (2.22×10^{-2} g/L, path length = 10 mm).

Figure S79. UV-vis absorption spectrum of **3(200)** in THF (4.44×10^{-2} g/L, path length = 10 mm).

Figure S80. CD spectrum of 3(200) in THF (4.44×10^{-2} g/L, path length = 10 mm).

Figure S81. UV-vis absorption spectrum of **3(200)** in MTBE (4.44×10^{-2} g/L, path length = 10 mm).

Figure S82. CD spectrum of 3(200) in MTBE (4.44×10^{-2} g/L, path length = 10 mm).

Figure S83. UV-vis absorption spectrum of **3(200)** in CPME (2.22×10^{-2} g/L, path length = 10 mm).

Figure S84. CD spectrum of **3(200)** in CPME (2.22×10^{-2} g/L, path length = 10 mm).

Figure S85. UV-vis absorption spectrum of **3(200)** in toluene (2.22×10^{-2} g/L, path length = 10 mm).

Figure S86. CD spectrum of 3(200) in toluene $(2.22 \times 10^{-2} \text{ g/L}, \text{ path length} = 10 \text{ mm})$.

Figure S87. UV-vis absorption spectrum of **3(200)** in NEt₃ (2.22×10^{-2} g/L, path length = 10 mm).

Figure S88. CD spectrum of **3(200)** in NEt₃ (2.22×10^{-2} g/L, path length = 10 mm).

3 PL Spectra of New Compounds

Figure S89. PL spectrum of 1(200) in CHCl₃ (1.6 × 10⁻² g/L, excited at 350.0 nm).

Figure S90. PL spectrum of **1(200)** in 1,1,1-TCE (1.6×10^{-2} g/L, excited at 350.0 nm).

Figure S91. PL spectrum of **2(200)** in CHCl₃ (2.36×10^{-2} g/L, excited at 356.5 nm).

Figure S92. PL spectrum of **2(200)** in 1,1,1-TCE (2.36×10^{-2} g/L, excited at 357.0 nm).

Figure S93. PL spectrum of **3(200)** in CHCl₃ (2.12×10^{-2} g/L, excited at 356.5 nm).

Figure S94. PL spectrum of **3(200)** in 1,1,1-TCE (2.12×10^{-2} g/L, excited at 359.5 nm).

Figure S95. PL spectrum of **4** in CHCl₃ (4.82×10^{-3} g/L, excited at 362.0 nm).

Figure S96. PL spectrum of **4** in 1,1,1-TCE (4.82×10^{-3} g/L, excited at 359.5 nm).