Zinc-Catalyzed Synthesis of 2-Alkenylfurans via Cross-Coupling of Enynones and Diazo Compounds

Jesús González, Luís A. López* and Rubén Vicente*

Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica "Enrique Moles". Universidad de Oviedo. c/ Julián Clavería 8, 33007 Oviedo, Spain. Tel: +34 985103075; E-mail: vicenteruben@uniovi.es, lalg@uniovi.es

General remarks.	$\mathrm{S}-2$
Screening summary.	$\mathrm{S}-3$
Zinc-catalyzed synthesis of 2-alkenylfuran derivatives 6a-q.	$\mathrm{S}-4$
Zinc-catalyzed synthesis of 2-alkenylfuran derivative 6r.	$\mathrm{S}-16$
Zinc-catalyzed synthesis of trifluoromethyl substituted 2-alkenylfuran derivatives 6s-v.	$\mathrm{S}-17$
Calculated relative stabilities of 2-alkenylfurans 6.	$\mathrm{S}-20$
${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra.	$\mathrm{S}-23$

General remarks.

All reactions were carried out under argon using standard Schlenck techniques. Dichloromethane and 1,2-dichloroethane were distilled from CaH_{2} under nitrogen atmosphere. Solvents for column chromatography were obtained from commercial suppliers and used without further purification. TLC was performed on aluminum-backed plates coated with silica gel 60 with F254 indicator. Flash column chromatography was carried out on silica gel (230-240 mesh). ${ }^{1} \mathrm{H}-\mathrm{NMR}(300,400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(75.5$ and 100 MHz) spectra were recorded at room temperature in CDCl_{3} on a Bruker DPX-300, or Bruker AVANCE-300 MHz and 400 MHz instruments. Chemical shifts (δ) are given in ppm relative to TMS (${ }^{1} \mathrm{H}, 0.0 \mathrm{ppm}$) or $\mathrm{CDCl}_{3}\left({ }^{13} \mathrm{C}, 77.0 \mathrm{ppm}\right)$. Carbon multiplicities were assigned by DEPT experiments. 2D-NMR experiments were recorded on a Bruker AVANCE-400 MHz. High-resolution mass spectra were recorded in an Agilent 6520Q-TOF and a Finnigan Mat95 spectrometers.
This study was carried out using enynes 1 and diazocompounds 5 (Figure S1). Enynes 1a-n, ${ }^{1}$ and diazoketone $5 \mathbf{d}^{2}$ were prepared according to literature procedures. Trifluoromethyl diazomethane $\mathbf{5 e}$ was generated in situ as described in the literature. ${ }^{3}$ Anhydrous zinc salts and the rest of the reagents were purchased of the best commercial grade available and used without further purification. All zinc salts were stored in Schlenk flask under an inert atmosphere of argon.

1n

3a $\left(X=S M e_{2}\right) \quad$ 4a

	$5 \mathrm{a}\left(\mathrm{EWG}=\mathrm{CO}_{2} \mathrm{Et}\right)$
	5b (EWG $=\mathrm{CO}_{2}{ }^{\text {t }} \mathrm{Bu}$)
	5 c (EWG $=\mathrm{CO}_{2} \mathrm{Bn}$)
	5d (EWG = COMe)
	5e (EWG = CF ${ }_{3}$)

Figure S1. Starting materials used in this work.

[^0]
Screening summary.

Entry	ZnX ${ }_{2}$ ($\mathrm{x} \mathrm{mol} \%$)	5a (n equiv.)	Yield 6a (Z:E) ${ }^{[a]}$
1	ZnCl_{2} (10 mol\%)	6.0	89 (8.5:1)
2	ZnBr_{2} (10 mol\%)	6.0	82 (6:1)
3	ZnI_{2} (10 mol\%)	6.0	$53(2: 1)^{[b]}$
4	$\mathrm{Zn}(\mathrm{OTf})_{2}(10 \mathrm{~mol} \%)$	6.0	n.r.
5	$\mathrm{ZnCl}_{2}(10 \mathrm{~mol} \%)$	3.0	91 (8:1)
6	$\mathrm{ZnCl}_{2}(10 \mathrm{~mol} \%)$	1.2	84 (7.5:1)
7	$\mathrm{ZnCl}_{2}(5.0 \mathrm{~mol} \%)$	1.2	87 (6.5:1)
8	$\mathrm{CuBr}(5.0 \mathrm{~mol} \%)^{[\mathrm{cc]}}$	1.2	$43(1.4: 1)^{[b]}$
9	$\left[\left(\operatorname{IPrAu}\left(\mathrm{NTf}_{2}\right)\right]^{[\mathrm{c]}}\right.$ ($5.0 \mathrm{~mol} \%$)	1.2	$71(1.7: 1)^{[b]}$

$[$ [a] Isolated yield. $\mathrm{Z}: E$ ratio was determined by NMR analysis of the crude mixture and it
was unaltered after purification by chromatography. ${ }^{[b]}$ Estimated using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as
internal standard. (n.r. = no reaction). (IPr $=1,3$-bis(2,6-diisopropylphenyl)imidazol-2-
ylidene). ${ }^{[c]} 24 \mathrm{~h}$.

The use of lower reaction temperatures did not improve the Z / E selectivity but diminished yield and extended reaction times. Moreover, Z / E selectivity was not significantly affected during SiO_{2}-flash column chromatography purification.

Zinc-catalyzed synthesis of 2-alkenylfuran derivatives 6a-q. ${ }^{4}$

Representative procedure for zinc-catalyzed synthesis of compound 6a (Scheme 2).

To a solution of the enyne 1a ($42 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethyl diazoacetate (5 a) ($27 \mathrm{mg}, 0.24$ mmol, 1.2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added $\mathrm{ZnCl}_{2}(1.4 \mathrm{mg}, 0.01 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$). The mixture was stirred at room temperature until disappearance of 1 a (checked by TLC; 1 h). The solvent was removed under reduced pressure and the resulting residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane:EtOAc $=10: 1$) to yield 6 a ($52 \mathrm{mg}, 87 \% ; Z / E=6.5: 1$) as a pale yellow oil. The same procedure was followed for the reaction at 10 mmol scale ($6 \mathbf{a}, 2.56 \mathrm{~g}$, $86 \%, Z / E=5.8: 1)$.

6a
Ethyl 3-(4-acetyl-5-methylfuran-2-yl)-3-phenylacrylate (6a): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Z}\right.$ isomer): $1.32\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{16}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{9}\right), 2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{10}\right), 4.25(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}_{15}\right), 6.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 6.88\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 7.38-7.43\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{12-14}\right)$; (E-isomer, only clearly assignable signals are listed): $1.11\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{16}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{9}\right), 2.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{10}\right), 4.04(\mathrm{q}, \mathrm{J}=7.2$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{15}\right), 6.26\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 6.51\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, Z-isomer $)$: $14.6\left(\mathrm{CH}_{3}, \mathrm{C}_{10}\right), 15.0\left(\mathrm{CH}_{3}, \mathrm{C}_{16}\right), 29.5\left(\mathrm{CH}_{3}, \mathrm{C} 9\right)$, $61.0\left(\mathrm{CH}_{2}\right.$, C_{15}), $115.3\left(\mathrm{CH}, \mathrm{C}_{5}\right), 118.7\left(\mathrm{CH}, \mathrm{C}_{2}\right), 123.3\left(\mathrm{C}, \mathrm{C}_{6}\right), 128.9\left(\mathrm{CH}, \mathrm{C}_{12}\right), 129.1\left(\mathrm{CH}, \mathrm{C}_{13}\right), 129.9\left(\mathrm{CH}, \mathrm{C}_{14}\right)$,

HR-MS (EI) calc. for $\left[\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}\right]^{+}$298.1205, found 298.1203.

[^1]

Ethyl 3-(4-acetyl-5-methylfuran-2-yl)-3-(4-methoxyphenyl)acrylate (6b): The representative procedure was followed using enyne $\mathbf{1 b}$ ($48 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethyl diazoacetate (5 a) (27 mg , $0.24 \mathrm{mmol})$. After 1 h , purification by flash chromatography (SiO_{2}, hexane:EtOAc $=10: 1$) yielded $\mathbf{6 b}$ ($46 \mathrm{mg}, 70 \% ; Z / E=4.6: 1$) as a pale yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, Z\right.$-isomer): $1.28(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}), 4.21(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H})$; (E-isomer): $1.15(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, Z-isomer): $14.2\left(\mathrm{CH}_{3}\right), 14.5\left(\mathrm{CH}_{3}\right), 29.1\left(\mathrm{CH}_{3}\right), 55.3\left(\mathrm{CH}_{3}\right), 60.4\left(\mathrm{CH}_{2}\right)$, 113.9 (CH), 114.6 (CH), 116.9 (CH), 122.8 (C), 130.2 (CH), 131.1 (C), 141.6 (C), 148.7 (C), 159.3 (C), $160.9(\mathrm{C}), 166.1(\mathrm{C}), 194.0(\mathrm{C})$; (E-isomer): $14.1\left(\mathrm{CH}_{3}\right), 14.7\left(\mathrm{CH}_{3}\right), 55.2\left(\mathrm{CH}_{3}\right), 60.0\left(\mathrm{CH}_{2}\right)$, 113.3 (CH), 113.4 (CH), 114.8 (CH), 123.6 (C), 127.6 (C), 130.16 (CH), 143.5 (C), 151.8 (C), 159.8 (C), 160.4 (C), 165.9 (C), 193.6 (C) (CH_{3} signal is missing probably due to overlapping).

HR-MS (EI) calc. for $\left[\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5}\right]^{+}$328.1311, found 328.1313.

6c

Ethyl 3-(4-acetyl-5-methylfuran-2-yl)-3-(2-methoxyphenyl)acrylate (6c): The representative procedure was followed using enyne $\mathbf{1 c}(48 \mathrm{mg}, 0.2 \mathrm{mmol})$ and ethyl diazoacetate (5a) (27 mg , $0.24 \mathrm{mmol})$. After 1 h , purification by flash chromatography (SiO_{2}, hexane: $\mathrm{EtOAc}=10: 1$) yielded 6 c ($36 \mathrm{mg}, 55 \%, Z / E=11: 1$, yellow oil) and compound $\mathbf{6 c}$ ($9 \mathrm{mg}, 11 \%$, pale yellow solid, yield calculated with respect to $1 \mathbf{c}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, Z\right.$-isomer $): 1.32(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}$, $3 \mathrm{H}), 4.25(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}$, $1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=8.0 \mathrm{~Hz} 1 \mathrm{H})$; (E-isomer, only clearly assignable signals are listed): $1.10(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.24(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (100 MHz, CDCl ${ }_{3}$, Z-isomer): $14.3\left(\mathrm{CH}_{3}\right)$, $14.5\left(\mathrm{CH}_{3}\right)$, $29.1\left(\mathrm{CH}_{3}\right)$, $55.7\left(\mathrm{CH}_{3}\right), 60.5\left(\mathrm{CH}_{2}\right)$, 111.2 (CH), 114.5 (CH), 118.6 (CH), 120.5 (CH), 122.9 (C), 128.4 (C), 130.3 (CH), 130.6 (CH), 139.1 (C), 148.9 (C), 157.3 (C), 158.9 (C), 166.1 (C), 194.3 (C)

HR-MS (EI) calc. for $\left[\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5}\right]^{+}$328.1311, found 328.1312.

(Z)-Diethyl 2-((4-acetyl-5-methylfuran-2-yl)(2-methoxyphenyl)methyl)maleate (6c'): (Yellow solid, M. p. $=89-91{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.24(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}$, $3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.16-4.22(\mathrm{~m}, 4 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.5\left(\mathrm{CH}_{3}\right), 14.6\left(\mathrm{CH}_{3}\right), 14.9\left(\mathrm{CH}_{3}\right), 29.5\left(\mathrm{CH}_{3}\right), 49.4(\mathrm{CH}), 56.0\left(\mathrm{CH}_{3}\right)$, $60.9\left(\mathrm{CH}_{2}\right), 61.7\left(\mathrm{CH}_{2}\right), 111.2(\mathrm{CH}), 114.6(\mathrm{CH}), 118.8(\mathrm{CH}), 121.2(\mathrm{CH}), 123.4(\mathrm{C}), 124.5(\mathrm{C}), 129.6$ (CH), 129.7 (CH), 138.8 (C), 148.8 (C), 157.3 (C), 159.0 (C), 166.6 (C), 171.8 (C), 194.1 (C).
HR-MS (EI) calc. for $\left[\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{7}\right]^{+} 414.1679$, found 414.1677.

6d

Ethyl 3-(4-acetyl-5-methylfuran-2-yl)-3-(4-nitrophenyl)acrylate (6d): The representative procedure was followed using enyne 1d ($51 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethyl diazoacetate (5 a) (27 mg , 0.24 mmol). After 6 h , purification by flash chromatography (SiO_{2}, hexane:EtOAc $=10: 1$) yielded $6 \mathbf{d}$ ($56 \mathrm{mg}, 81 \%, Z / E=10: 1$) as a yellow solid (m. p. $=103-105{ }^{\circ} \mathrm{C}$ C).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, Z\right.$-isomer): $1.33(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 4.26(\mathrm{q}, \mathrm{J}$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$; $(\mathrm{E}-$ isomer): $1.18(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H})$, $6.59(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.34(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, Z-isomer): $14.2\left(\mathrm{CH}_{3}\right), 14.6\left(\mathrm{CH}_{3}\right), 29.1\left(\mathrm{CH}_{3}\right), 61.0\left(\mathrm{CH}_{2}\right), 116.0(\mathrm{CH})$, 120.0 (CH), 123.1 (C), 123.7 (CH), 129.7 (CH), 139.3 (C), 145.4 (C), 147.2 (C), 148.3 (C), 160.0 (C), 165.4 (C), 193.7 (C).

HR-MS (EI) calc. for $\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{6}\right]^{+} 343.1056$, found 343.1059.

6
Ethyl 3-(4-acetyl-5-methylfuran-2-yl)-3-(cyclohex-1-en-1-yl)acrylate (6e): The representative procedure was followed using enyne $\mathbf{1 e}$ ($43 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethyl diazoacetate ($\mathbf{5 a}$) (27 mg , $0.24 \mathrm{mmol})$. After 1 h , purification by flash chromatography (SiO_{2}, hexane:EtOAc $=10: 1$) yielded separately $(Z)-6 e(31 \mathrm{mg}, 52 \%)$ and (E)-6e ($7.0 \mathrm{mg}, 11 \%$) (63% combined yield, $Z: E=$ 4.6:1) as pale yellow oils.
(Z-6e): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.22\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{18}\right), 1.62-1.77\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{7-8}\right), 2.21-2.23$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{H}_{6,9}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{15}\right), 2.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{16}\right), 4.12\left(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{17}\right), 5.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 6.03$ (br s, 1H, H_{5}), $6.65\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{11}\right)$.
${ }^{13} \mathrm{C}$-NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.2\left(\mathrm{CH}_{3}, \mathrm{C}_{18}\right), 14.5\left(\mathrm{CH}_{3}, \mathrm{C}_{16}\right), 21.8\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right)$, $26.4\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{3}, \mathrm{C}_{15}\right), 60.2\left(\mathrm{CH}_{2}, \mathrm{C}_{17}\right), 111.8\left(\mathrm{CH}, \mathrm{C}_{11}\right), 116.6\left(\mathrm{CH}, \mathrm{C}_{2}\right), 122.5\left(\mathrm{C}, \mathrm{C}_{12}\right), 134.7$ (CH, C C_{5}), $136.2\left(\mathrm{C}, \mathrm{C}_{4}\right), 144.6\left(\mathrm{C}, \mathrm{C}_{3}\right), 147.4\left(\mathrm{C}, \mathrm{C}_{10}\right)$, $158.3\left(\mathrm{C}, \mathrm{C}_{13}\right), 166.3\left(\mathrm{C}, \mathrm{C}_{1}\right), 194.1\left(\mathrm{C}, \mathrm{C}_{14}\right)$.
HR-MS (EI) calc. for $\left[\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}\right]^{+} 302.1518$, found 302.1519.
($\mathrm{E}-6 \mathrm{e}$): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.31\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{18}\right), 1.72-1.81\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{7-8}\right), 2.18-2.22$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{H}_{6}, 9\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{15}\right), 2.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{16}\right), 4.19\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{17}\right), 5.59-5.61(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}_{5}\right), 6.23\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 6.68\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{11}\right)$.
${ }^{13} \mathrm{C}$-NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.4\left(\mathrm{CH}_{3}, \mathrm{C}_{18}\right), 14.8\left(\mathrm{CH}_{3}, \mathrm{C}_{16}\right), 21.8\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right)$, $28.7\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{3}, \mathrm{C}_{15}\right), 59.9\left(\mathrm{CH}_{2}, \mathrm{C}_{17}\right), 111.9\left(\mathrm{CH}, \mathrm{C}_{11}\right), 113.4\left(\mathrm{CH}, \mathrm{C}_{2}\right), 123.7\left(\mathrm{C}, \mathrm{C}_{12}\right), 126.3$ (CH, C C_{5}), $134.1\left(\mathrm{C}, \mathrm{C}_{4}\right), 146.5\left(\mathrm{C}, \mathrm{C}_{3}\right), 151.2\left(\mathrm{C}, \mathrm{C}_{13}\right), 160.4\left(\mathrm{C}, \mathrm{C}_{13}\right), 165.9\left(\mathrm{C}, \mathrm{C}_{1}\right), 193.7\left(\mathrm{C}, \mathrm{C}_{14}\right)$. HR-MS (EI) calc. for $\left[\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}\right]^{+} 302.1518$, found 302.1521.

(Z)-Ethyl 3-(4-acetyl-5-methylfuran-2-yl)oct-2-enoate (6f): The representative procedure was followed using enyne $\mathbf{1 f}$ ($41 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethyl diazoacetate (5 a) ($32 \mathrm{mg}, 0.24 \mathrm{mmol}$). After 1 h , purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane:EtOAc $=10: 1$) yielded $\mathbf{6 f}(54 \mathrm{mg}$, $93 \%, Z / E>20: 1$) as a colorless oil which solidifies upon standing (m. p. $=31-33{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.87\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{8}\right), 1.27-1.33\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{6,7,17}\right), 1.47-1.52(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}_{5}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{14}\right), 2.49\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{15}\right), 4.18\left(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{16}\right)$, $5.75\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 7.45\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{10}\right)$.
${ }^{13} \mathrm{C}$-NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $13.9\left(\mathrm{CH}_{3}, \mathrm{C}_{8}\right), 14.3\left(\mathrm{CH}_{3}, \mathrm{C}_{17}\right), 14.5\left(\mathrm{CH}_{3}, \mathrm{C}_{15}\right), 22.4\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right)$, $29.1\left(\mathrm{CH}_{3}, \mathrm{C}_{15}\right), 31.4\left(\mathrm{CH}_{2}, \mathrm{C}_{5}\right), 36.3\left(\mathrm{CH}_{2}, \mathrm{C}_{4}\right), 60.2\left(\mathrm{CH}_{2}, \mathrm{C}_{16}\right), 114.6\left(\mathrm{CH}, \mathrm{C}_{10}\right), 115.5\left(\mathrm{CH}, \mathrm{C}_{2}\right)$, 122.9 (C, C C_{11}), 143.1 (C, C C_{3}), 148.8 (C, C C_{12}), 158.6 (C, C9), 166.2 (C, C C_{1}), 194.3 (C, C C_{13}).

HR-MS (EI) calc. for $\left[\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}\right]^{+}$292.1675, found 292.1676.

6 g
Ethyl 3-(4-acetyl-5-methylfuran-2-yl)-5-phenylpent-2-enoate (6g): The representative procedure was followed using enyne $\mathbf{1 g}(48 \mathrm{mg}, 0.2 \mathrm{mmol})$ and ethyl diazoacetate (5a) (27 mg , $0.24 \mathrm{mmol})$. After 1 h , purification by flash chromatography (SiO_{2}, hexane:EtOAc $=10: 1$) yielded $6 \mathrm{~g}(55 \mathrm{mg}, 84 \%, Z / E=19: 1)$ as a white solid (m.p. $=95-97{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, Z\right.$-isomer): $1.32\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{18}\right), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{15}\right), 2.64(\mathrm{~s}, 3 \mathrm{H}$, H_{16}), $2.84\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{4-5}\right.$, accidental equivalence of the two methylene groups), $4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{H}_{17}\right), 5.78\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 7.19-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.55\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{11}\right)$; (E-isomer, only clearly assignable signals are listed): $6.37\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 6.74\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{11}\right)$.
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, Z-isomer): $14.3\left(\mathrm{CH}_{3}, \mathrm{C}_{18}\right), 14.5\left(\mathrm{CH}_{3}, \mathrm{C}_{16}\right), 29.1\left(\mathrm{CH}_{3}, \mathrm{C}_{15}\right), 35.6\left(\mathrm{CH}_{2}\right.$, $\left.\mathrm{C}_{4}\right), 38.4\left(\mathrm{CH}_{2}, \mathrm{C}_{5}\right), 60.3\left(\mathrm{CH}_{2}, \mathrm{C}_{17}\right), 115.2\left(\mathrm{CH}, \mathrm{C}_{11}\right), 115.9\left(\mathrm{CH}, \mathrm{C}_{2}\right), 123.0\left(\mathrm{C}, \mathrm{C}_{12}\right), 126.2\left(\mathrm{CH}, \mathrm{C}_{9}\right)$, 128.4 (CH), 128.5 (CH), 140.9 (C, C C_{6}), $142.0\left(\mathrm{C}, \mathrm{C}_{2}\right.$), 148.5 (C, C C_{10}), 158.8 (C, C C_{13}), $166.0\left(\mathrm{C}, \mathrm{C}_{1}\right)$, 194.2 (C, C 14).

HR-MS (EI) calc. for $\left[\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}\right]^{+} 326.1518$, found 326.1520.

(Z)-Ethyl 3-(4-acetyl-5-methylfuran-2-yl)-7-((tert-butyldimethylsilyl)oxy)hept-2-enoate (Z-6h): The representative procedure was followed using enyne 1 h ($64 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethyl diazoacetate (5 a) ($27 \mathrm{mg}, 0.24 \mathrm{mmol}$). After 1 h , purification by flash chromatography (SiO_{2}, hexane:EtOAc $=10: 1$) yielded $\mathbf{6 h}(55 \mathrm{mg}, 67 \%, \%, Z / E>20: 1)$ as a yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.03\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{8}\right), 0.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{10}\right), 1.29\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{19}\right), 1.56-$ $1.57\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{6-7}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{16}\right), 2.53\left(\mathrm{dd}, \mathrm{J}=7.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{5}\right), 2.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{17}\right), 3.61(\mathrm{t}, \mathrm{J}=$ $\left.5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 4.18\left(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{18}\right), 5.76\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 7.46\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{12}\right)$.
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -5.3 ($\left.\mathrm{CH}, \mathrm{C}_{8}\right), 14.2\left(\mathrm{CH}_{3}, \mathrm{C}_{19}\right), 14.5\left(\mathrm{CH}_{3}, \mathrm{C}_{16}\right), 18.3(\mathrm{C}, \mathrm{C} 9), 25.4\left(\mathrm{CH}_{2}\right)$, $25.9\left(\mathrm{CH}_{3}, \mathrm{C}_{10}\right), 29.1\left(\mathrm{CH}_{3}, \mathrm{C}_{17}\right), 32.3\left(\mathrm{CH}_{2}, \mathrm{C}_{4}\right), 36.1\left(\mathrm{CH}_{2}\right), 60.2\left(\mathrm{CH}_{2}, \mathrm{C}_{18}\right), 62.7\left(\mathrm{CH}_{2}, \mathrm{C}_{7}\right), 114.7$
 194.2 (C, C C 15).

HR-MS (EI) calc. for $\left[\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Si}^{+} 408.2332\right.$, found 408.2333 .

(Z)-Ethyl 3-(4-acetyl-5-methylfuran-2-yl)-3-cyclopropylacrylate (6i): The representative procedure was followed using enyne $\mathbf{1 i}$ ($35 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethyl diazoacetate ($\mathbf{2 a}$) (27 mg , 0.24 mmol) at 0 O C. After 1 h , purification by flash chromatography (SiO_{2}, hexane:EtOAc $=10: 1$) yielded $\mathbf{6 i}$ ($40 \mathrm{mg}, 76 \%, Z / E>20: 1$) as a pale yellow oil. (Note: A 5% of an unknown byproduct with identical mass (GC-MS analysis) was observed in the ${ }^{1} H$ NMR spectra. Although the structure is unknown, we believe that this byproduct could arise from the nucleophilic attack of the diazocompound with a concomitant cyclopropane ring opening).
${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.66-0.69 (m, 2H), 0.86-0.91 (m, 2H), $1.24\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{15}\right)$, 1.79-1.86 (m, 1H, H4), $2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{12}\right), 2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{13}\right), 4.14\left(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 5.59(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{H}_{2}\right), 7.25\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{8}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.4\left(\mathrm{CH}_{2}, \mathrm{C}_{5} 6\right), 14.2\left(\mathrm{CH}_{3}, \mathrm{C}_{15}\right), 14.5\left(\mathrm{CH}_{3}, \mathrm{C}_{13}\right), 16.0\left(\mathrm{CH}, \mathrm{C}_{4}\right), 29.1$ $\left(\mathrm{CH}_{3}, \mathrm{C}_{12}\right), 60.2\left(\mathrm{CH}_{2}, \mathrm{C}_{14}\right), 113.2\left(\mathrm{CH}, \mathrm{C}_{8}\right), 113.3\left(\mathrm{CH}, \mathrm{C}_{2}\right), 122.7\left(\mathrm{C}, \mathrm{C}_{9}\right), 143.5\left(\mathrm{C}, \mathrm{C}_{3}\right), 149.2(\mathrm{C}$, $\left.\mathrm{C}_{7}\right), 158.7\left(\mathrm{C}, \mathrm{C}_{10}\right), 166.5\left(\mathrm{C}, \mathrm{C}_{1}\right), 194.1\left(\mathrm{C}, \mathrm{C}_{11}\right)$.
HR-MS (EI) calc. for $\left[\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}\right]^{+}$262.1205, found 262.1205.

(Z)-Ethyl 3-(4-acetyl-5-methylfuran-2-yl)-3-cyclopentylacrylate (Z-6j): The representative procedure was followed using enyne $1 \mathrm{j}(41 \mathrm{mg}, 0.2 \mathrm{mmol})$ and ethyl diazoacetate (5 a) (27 mg , $0.24 \mathrm{mmol})$. After 1 h , purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane:EtOAc $\left.=10: 1\right)$ yielded 6 j ($46 \mathrm{mg}, 80 \%, Z / E>20: 1$) as a colourless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.25\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{15}\right), 1.46-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.75(\mathrm{~m}, 4 \mathrm{H})$, 1.90-1.93 (m, 2H), $2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{12}\right), 2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{13}\right), 2.99$ (quint, $\left.J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 4.15(\mathrm{q}, J=$ $\left.7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 5.81\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 7.11\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{8}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.2\left(\mathrm{CH}_{3}, \mathrm{C}_{15}\right), 14.5\left(\mathrm{CH}_{3}, \mathrm{C}_{13}\right), 25.0\left(\mathrm{CH}_{2}, \mathrm{C}_{6}\right), 29.1\left(\mathrm{CH}_{3}, \mathrm{C}_{12}\right), 32.1$ $\left(\mathrm{CH}_{2}, \mathrm{C}_{5}\right), 45.0\left(\mathrm{CH}, \mathrm{C}_{4}\right), 60.3\left(\mathrm{CH}_{2}, \mathrm{C}_{14}\right), 112.8\left(\mathrm{CH}, \mathrm{C}_{8}\right), 114.5\left(\mathrm{CH}, \mathrm{C}_{2}\right), 122.6\left(\mathrm{C}, \mathrm{C}_{9}\right), 146.0\left(\mathrm{C}, \mathrm{C}_{3}\right)$, $149.2\left(\mathrm{C}, \mathrm{C}_{7}\right), 158.3\left(\mathrm{C}, \mathrm{C}_{10}\right), 166.7\left(\mathrm{C}, \mathrm{C}_{1}\right), 194.1\left(\mathrm{C}, \mathrm{C}_{11}\right)$.
HR-MS (EI) calc. for $\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4}\right]^{+}$290.1518, found 290.1519.

6k

Ethyl 3-(5-ethyl-4-propionylfuran-2-yl)-3-phenylacrylate (6k): The representative procedure was followed using enyne 1 k ($48 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethyl diazoacetate (5a) ($27 \mathrm{mg}, 0.24$ $\mathrm{mmol})$. After 1 h , purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane:EtOAc $=10: 1$) yielded $\mathbf{6 k}$ ($48 \mathrm{mg}, 74 \%, Z / E=5.8: 1$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, Z\right.$-isomer $): 1.14(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.74(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H})$, $6.89(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.42(\mathrm{~m}, 5 \mathrm{H})$; (E-isomer, only clearly assignable signals are listed): $1.07(\mathrm{t}, \mathrm{J}=$
$7.3 \mathrm{~Hz}, 3 \mathrm{H}$, overlapped signal), $1.10(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, overlapped signal), $2.60(\mathrm{q}, J=7.3 \mathrm{~Hz}$, 2 H), 3.08 ($\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, overlapped signal), $4.02(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H})$, 7.26-7.29 (m, 3H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, Z-isomer $): 7.7\left(\mathrm{CH}_{3}\right)$, $11.9\left(\mathrm{CH}_{3}\right)$, $14.2\left(\mathrm{CH}_{3}\right)$, $21.9\left(\mathrm{CH}_{2}\right)$, $34.4\left(\mathrm{CH}_{2}\right)$, $60.5\left(\mathrm{CH}_{2}\right), 114.6(\mathrm{CH}), 117.9(\mathrm{CH}), 121.4(\mathrm{C}), 128.4(\mathrm{CH}), 128.7(\mathrm{CH}), 129.4(\mathrm{CH}), 139.0(\mathrm{C})$, $141.5(\mathrm{C}), 148.4(\mathrm{C}), 164.3(\mathrm{C}), 166.0(\mathrm{C}), 196.9(\mathrm{C})$; (E-isomer, only clearly assignable signals are listed): $7.6\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right), 60.0\left(\mathrm{CH}_{2}\right), 113.5(\mathrm{CH}), 128.0(\mathrm{CH}), 128.6$ (CH), 143.1 (C), 143.8 (C), 151.4 (C).
HR-MS (EI) calc. for $\left[\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}\right]^{+} 326.1518$, found 326.1522.

61

Ethyl 3-(4-ethoxycarbonyl-5-methylfuran-2-yl)-3-phenylacrylate (6I): The representative procedure was followed using enyne $11(48 \mathrm{mg}, 0.2 \mathrm{mmol})$ and ethyl diazoacetate (5a) (27 mg , $0.24 \mathrm{mmol})$. After 1 h , purification by flash chromatography (SiO_{2}, hexane:EtOAc $=10: 1$) yielded 61 ($54 \mathrm{mg}, 83 \%, Z / E=7.5: 1$) as a colorless oil. (Note: a byproduct of unknown structure was detected in the ${ }^{1} H$ NMR, estimated in ca. 3\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, Z\right.$-isomer $): 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$, 4.23 (q, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.28 ($\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $6.02(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.46(\mathrm{~m}, 5 \mathrm{H})$; $(E-$ isomer, only clearly assignable signals are listed): $1.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.28(\mathrm{bs}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, Z-isomer): $13.9\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{3}\right), 60.2\left(\mathrm{CH}_{2}\right), 60.5\left(\mathrm{CH}_{2}\right)$, 115.1 (CH), 115.4 (C), 118.1 (CH), 128.4 (CH), 128.7 (CH), 129,4 (CH), 138.9 (C), 141.3 (C), 148.6 (C), 160.1 (C), 163.7 (C), 166.1 (C).

HR-MS (EI) calc. for $\left[\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5}\right]^{+}$328.1311, found 328.1309.

6 m

Ethyl 3-(4-ethoxycarbonyl-5-methylfuran-2-yl)oct-2-enoate (6m): The representative procedure was followed using enyne 1 m ($47 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethyl diazoacetate (5a) (27 $\mathrm{mg}, 0.24 \mathrm{mmol})$. After 1 h , purification by flash chromatography (SiO_{2}, hexane:EtOAc = 10:1) yielded 6 m ($41 \mathrm{mg}, 63 \%, Z / E>20: 1$) as a colorless oil. (Note: a byproduct of unknown structure was detected in the ${ }^{1} H$ NMR, estimated in ca. 3\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 0.88-0.92 (m, 3H, H_{8}), 1.30-1.39 (m, 10H, $\mathrm{H}_{6-7,15,18}$), 1.49-1.54 (m, 2H, H_{5}), $2.48\left(\mathrm{dd}, J=7.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{16}\right), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 5.75\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 7.28\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{10}\right)$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 13.9\left(\mathrm{CH}_{3}, \mathrm{C}_{8}\right)$, $14.2\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 31.4$ $\left(\mathrm{CH}_{2}\right), 36.1\left(\mathrm{CH}_{2}, \mathrm{C}_{4}\right), 60.2\left(\mathrm{CH}_{2}, \mathrm{C}_{14,17}\right), 114.1\left(\mathrm{CH}, \mathrm{C}_{10}\right), 115.3\left(\mathrm{C}, \mathrm{C}_{11}\right), 115.7\left(\mathrm{CH}, \mathrm{C}_{2}\right), 142.2(\mathrm{C}$, $\left.\mathrm{C}_{3}\right), 149.0\left(\mathrm{C}, \mathrm{C}_{9}\right), 159.3\left(\mathrm{C}, \mathrm{C}_{12}\right), 163.8(\mathrm{C}), 166.4(\mathrm{C})\left(\mathrm{a} \mathrm{CH}_{3}\right.$ signal is missing due to overlapping). HR-MS (EI) calc. for $\left[\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{5}\right]^{+} 322.1780$, found 322.1777.

6n
tert-Butyl 3-(4-ethoxycarbonyl-5-methylfuran-2-yl)-3-phenylacrylate (6n): The representative procedure was followed using enyne 1a ($42 \mathrm{mg}, 0.2 \mathrm{mmol}$) and tert-butyl diazoacetate (5b) ($34 \mathrm{mg}, 0.24 \mathrm{mmol}$). After 5 h , purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane:EtOAc $=$ $10: 1$) yielded 6 n ($55 \mathrm{mg}, 84 \%, Z / E=17: 1$) as a pale yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, Z-isomer): $1.51\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{16}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{13}\right), 2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{14}\right), 6.00(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{H}_{2}\right), 6.73\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 7.38(\mathrm{bs}, 5 \mathrm{H})$; (E-isomer, only clearly assignable signals are listed): 1.25 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{H}_{16}$), $2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{13}\right), 2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{14}\right), 6.19\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 6.43\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{9}\right)$.
${ }^{13} \mathrm{C}-$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $14.6\left(\mathrm{CH}_{3}, \mathrm{C}_{14}\right), 28.1\left(\mathrm{CH}_{3}, \mathrm{C}_{16}\right), 29.1\left(\mathrm{CH}_{3}, \mathrm{C}_{13}\right), 80.9\left(\mathrm{C}, \mathrm{C}_{15}\right), 113.9$ $\left(\mathrm{CH}, \mathrm{C}_{9}\right), 120.6\left(\mathrm{CH}, \mathrm{C}_{2}\right), 122.9\left(\mathrm{C}, \mathrm{C}_{10}\right), 128.4(\mathrm{CH}), 128.6(\mathrm{CH}), 129.3\left(\mathrm{CH}, \mathrm{C}_{7}\right), 139.0\left(\mathrm{C}, \mathrm{C}_{4}\right)$, $139.8\left(\mathrm{C}, \mathrm{C}_{3}\right), 148.9\left(\mathrm{C}, \mathrm{C}_{8}\right), 159.2\left(\mathrm{C}, \mathrm{C}_{11}\right), 165.4\left(\mathrm{C}, \mathrm{C}_{1}\right), 193.9\left(\mathrm{C}, \mathrm{C}_{12}\right)$; (E-isomer, only clearly assignable signals are listed): $27.8\left(\mathrm{CH}_{3}\right), 114.2(\mathrm{CH}), 116.2(\mathrm{CH}), 128.0(\mathrm{CH}), 128.8(\mathrm{CH})$.
HR-MS (EI) calc. for $\left[\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}\right]^{+} 326.1518$, found 326.1517.

60

Benzyl 3-(4-acetyl-5-methylfuran-2-yl)oct-2-enoate (60): The representative procedure was followed using enyne 1 f ($41 \mathrm{mg}, 0.2 \mathrm{mmol}$) and benzyl diazoacetate (5 c) ($42 \mathrm{mg}, 0.24 \mathrm{mmol}$). After 1 h , purification by flash chromatography (SiO_{2}, hexane:EtOAc $=10: 1$) yielded $\mathbf{6 0}(55 \mathrm{mg}$, $77 \%, Z / E=16: 1$) as a pale yellow oil which solidifies upon standing ($\mathrm{m} . \mathrm{p} .=30-32{ }^{\circ} \mathrm{C}$)
${ }^{1} \mathrm{H}$-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, Z$-isomer): 0.89-0.93 (m, 3H, H_{8}), 1.33-1.36 (m, 4H, $\mathrm{H}_{6,7}$), 1.50-1.56 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{5}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{14}\right), 2.53\left(\mathrm{dd}, \mathrm{J}=8.0\right.$ and $\left.7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{15}\right), 5.20(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{H}_{16}\right), 5.84\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 7.35-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.51\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{10}\right)$; (E -isomer, only clearly assignable signals are listed): $2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{14}\right), 2.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{15}\right), 2.92\left(\mathrm{dd}, \mathrm{J}=7.9\right.$ and $\left.7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 6.40$ (s, 1H, H_{2}), $6.86\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{10}\right)$.
${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $13.9\left(\mathrm{CH}_{3}, \mathrm{C}_{8}\right), 14.4\left(\mathrm{CH}_{3}, \mathrm{C}_{15}\right), 22.4\left(\mathrm{CH}_{2}, \mathrm{C}_{6}\right), 28.8\left(\mathrm{CH}_{2}, \mathrm{C}_{7}\right), 29.1\left(\mathrm{CH}_{3}\right.$, $\left.\mathrm{C}_{14}\right), 31.4\left(\mathrm{CH}_{2}, \mathrm{C}_{5}\right), 36.4\left(\mathrm{CH}_{2}, \mathrm{C}_{4}\right), 66.1\left(\mathrm{CH}_{2}, \mathrm{C}_{16}\right), 115.0\left(\mathrm{CH}, \mathrm{C}_{10}+\mathrm{C}_{2}\right), 122.9\left(\mathrm{C}, \mathrm{C}_{11}\right), 128.2(\mathrm{CH})$, 128.6 (CH), 136.0 (C, C C_{17}), 144.0 (C, C C_{3}), 148.7 (C, C9), 158.7 (C, C C_{12}), 165.9 (C, C C_{1}), 194.2 (C, C C_{13}) (an aromatic CH signal is overlapped).
HR-MS (EI) calc. for $\left[\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4}\right]^{+} 354.1831$, found 354.2836 .

4-(4-Acetyl-5-methylfuran-2-yl)-4-phenylbut-3-en-2-one (3p): The representative procedure was followed using enyne 1 a ($42 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 1-diazopropan-2-one (5 d) ($20 \mathrm{mg}, 0.24$ mmol). After 1 h , purification by flash chromatography (SiO_{2}, hexane:EtOAc $=10: 1$) yielded 6 p ($45 \mathrm{mg}, 84 \%, Z / E=4: 1$) as a pale yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, Z-isomer): $2.27(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}$, $1 \mathrm{H}), 7.38-7.43(\mathrm{~m}, 5 \mathrm{H})$; (E-isomer): $1.89(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~s}$, 1H), 7.29-7.33 (m, 2H), 7.43-7.47 (m, 3H, overlapped signal).
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, Z-isomer): $14.9\left(\mathrm{CH}_{3}\right), 29.5\left(\mathrm{CH}_{3}\right), 31.0\left(\mathrm{CH}_{3}\right), 115.7(\mathrm{CH}), 123.5(\mathrm{C})$, 127.5 (CH), 128.9 (CH), 129.2 (CH), 129.9 (CH), 139.4 (C), 139.6 (C), 149.1 (C), 160.3 (C), 194.2 (C), 199.5 (C); (E-isomer, only clearly assignable signals are listed): $15.1\left(\mathrm{CH}_{3}\right), 31.1\left(\mathrm{CH}_{3}\right), 115.9$ (CH), 123.5 (CH), 129.4 (CH).
HR-MS (EI) calc. for [$\left.\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}\right]^{+}$268.1099, found 268.1103.

$6 q$
4-(4-Acetyl-5-methylfuran-2-yl)-non-3-en-2-one (6q): The representative procedure was followed using enyne $1 \mathrm{f}(41 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 1-diazopropan-2-one (5 d) ($20 \mathrm{mg}, 0.24 \mathrm{mmol}$). After 1 h , purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane:EtOAc $=10: 1$) yielded $\mathbf{6 q}(47 \mathrm{mg}$, $89 \%, Z / E=7.4: 1$) as a pale yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, Z\right.$-isomer $)$: 0.85-0.88 (m, 3H), 1.28-1.34 (m, 4H) 1.47-1.51 (m, 2H), 2.21 (s, 3H), 2.41 (s, 3H), 2.46 (dd, J = 8.0, $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.57 (s, 3H), $6.02(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H})$; $(E-$ isomer, only clearly assignable signals are listed): $2.26(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{dd}, \mathrm{J}=8.0,7.8$ HZ, 2H), 6.66 (s, 1H), 6.85 (s, 1H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, Z-isomer $): 13.9\left(\mathrm{CH}_{3}\right), 14.5\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{3}\right)$, $31.1\left(\mathrm{CH}_{3}\right), 31.4\left(\mathrm{CH}_{2}\right), 36.3\left(\mathrm{CH}_{2}\right), 114.9(\mathrm{CH}), 122.9(\mathrm{C}), 124.3(\mathrm{CH}), 140.7(\mathrm{C}), 149.2(\mathrm{C}), 159.1$ (C), 194.2 (C), 198.6 (C); (E-isomer, only clearly assignable signals are listed): $14.0\left(\mathrm{CH}_{3}\right), 14.7$ $\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{2}\right), 28.7,29.8,32.1,32.4\left(\mathrm{CH}_{2}\right), 112.2(\mathrm{CH}), 118.9(\mathrm{CH}), 193.4(\mathrm{C})$.
HR-MS (EI) calc. for $\left[\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}\right]^{+} 262.1569$, found 262.1566.

Zinc-catalyzed synthesis of 2-alkenylfuran derivative 6r (Scheme 3).

To a solution of the enyne $\mathbf{1 n}$ ($39 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethyl diazoacetate (5 a) ($27 \mathrm{mg}, 0.24$ $\mathrm{mmol})$ in $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(2 \mathrm{~mL})$ was added $\mathrm{Zn}(\mathrm{OTf})_{2}(7.3 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ until disappearance of $\mathbf{1 n}$ (checked by TLC; 12 h). The solvent was removed under reduced pressure and the resulting residue was purified by flash chromatography (SiO_{2}, hexane:EtOAc $=10: 1$) to yield $6 \mathrm{r}(28 \mathrm{mg}, 49 \% ; Z / E=1.2: 1)$ as a pale yellow oil.

Ethyl 3-(3-phenyl-5,6-dihydro-4H-cyclopenta[c]furan-1-yl)acrylate (6 r): ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , CDCl_{3}, only clearly distinguishable signals are assigned for Z / E isomers): $1.29-1.39(\mathrm{~m}, 6 \mathrm{H}, Z+E)$, 2.42-2.54 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{Z}+E$), 2.65-2.80 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{Z}+E$), 2.84-2.91 ($\mathrm{m}, 4 \mathrm{H}, Z+E$), 4.23-4.34 (m, 4H, Z+E), $5.71(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Z}), 5.71(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, E), 5.71(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, Z), 7.21-7.30(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Z}+\mathrm{E}$), 7.35-7.47 (m, 5H, Z+E), 7.62-7.68 (m, 4H, Z+E).
${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $14.36\left(\mathrm{CH}_{3}\right), 14.40\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2}\right), 31.8$ $\left(\mathrm{CH}_{2}\right), 60.3\left(\mathrm{CH}_{2}\right), 113.5(\mathrm{CH}), 113.6(\mathrm{CH}), 124.4(\mathrm{CH}), 127.11(\mathrm{CH}), 127.14(\mathrm{CH}), 127.4(\mathrm{CH})$, 128.67 (CH), 128.74 (CH), 130.5 (CH), 130.6 (C), 130.9 (C), 131.5 (C), 132.0 (C), 140.3 (C), 140.9 (C), 141.3 (C), 141.5 (C), 145.4 (C), 145.8 (C), 166.4 (C), 167.6 (C) (missing signals are probably overlapped).
HR-MS (EI) calc. for $\left[\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}\right]^{+}$282.1256, found 282.1260.

Zinc-catalyzed synthesis of trifluoromethyl substituted 2-alkenylfuran derivatives $\mathbf{6 s}$-v. ${ }^{5}$

Representative procedure for zinc-catalyzed synthesis of compound 6s (Scheme 4).
A solution of NaNO_{2} ($331 \mathrm{mg}, 4.8 \mathrm{mmol}, 24$ equiv.) and trifluoroethylamine hydrochloride ($542 \mathrm{mg}, 4.0 \mathrm{mmol}, 20$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(30: 1,10 \mathrm{~mL})$ was stirred at $0{ }^{\circ} \mathrm{C}$ during 1 h . The resulting yellow solution was carefully distilled by a steam of Ar and collected in a precooled Schlenk flask ($-78{ }^{\circ} \mathrm{C}$). To this solution were added the enyne $\mathbf{1 a}$ ($42 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ZnCl_{2} ($27 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) at room temperature and the flask was closed with a teflon-tapewrapped glass stopper. The mixture was stirred until disappearance of 1a (checked by TLC, 48 h). The solvent was removed under reduced pressure and the resulting residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane:EtOAc $\left.=10: 1\right)$ to yield $6 \mathrm{~s}(48 \mathrm{mg}, 81 \% ; \mathrm{Z} / E=4: 1)$ as a pale yellow oil.

6s
1-(4-Acetyl-5-methylfuran-2-yl)-3,3,3-trifluoro-1-phenylprop-1-ene (6 s): ${ }^{\mathbf{1}} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, CDCl_{3}, Z-isomer): $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 5.77(\mathrm{q}, \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.50(\mathrm{~m}$, 5 H , overlapped with signals from the E-isomer); (E-isomer, only clearly assignable signals are listed): $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 6.34(\mathrm{q}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, Z-isomer): $14.9\left(\mathrm{CH}_{3}\right), 29.5\left(\mathrm{CH}_{3}\right), 115.8(\mathrm{q}, \mathrm{J}=36.4 \mathrm{~Hz}, \mathrm{CH}), 116.0$ (CH), 123.4 (C), 123.8 (q, J = $270.3 \mathrm{~Hz}, \mathrm{C}$), 128.6 (CH), 129.0 (CH), 130.0 (CH), 138.6 (C), 140.4 ($q, J=6.0 \mathrm{~Hz}, \mathrm{C}$), 147.8 (C), 160.9 (C), $194.0(\mathrm{C})$; (E-isomer, only clearly assignable signals are listed) 112.6 ($q, J=34.4 \mathrm{~Hz}, \mathrm{CH}$), 114.6 (CH), 121.9 (C), 123.7 ($q, J=269.9 \mathrm{~Hz}, \mathrm{C}$), 123.9 (C), 129.2 (CH), 129.3 (CH), 134.2 (C), 140.0 (q, J = $5.7 \mathrm{~Hz}, \mathrm{C}$), 150.8 (C), 160.7 (C), 193.9 (C).

[^2]${ }^{19}$ F-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -57.0 (s, Z-isomer), -55.3 (s, E-isomer).
HR-MS (EI) calc. for $\left[\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{2}\right]^{+}$294.0868, found 294.0871.

$6 t$

1-(4-Acetyl-5-methylfuran-2-yl)-3,3,3-trifluoro-1-(4-methoxypheyl)prop-1-ene (6t): The representative procedure was followed using enyne 1 b ($48 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ZnCl_{2} (27 mg , $0.2 \mathrm{mmol}, 1.0$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 10 h , purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $: E t O A c=10: 1$) yielded $6 \mathrm{t}(52 \mathrm{mg}, 80 \%, Z / E=3: 1)$ as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, Z-isomer): $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 5.74(\mathrm{q}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, signal overlapped with the corresponding from $E-$ isomer), 7.32 ($\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, signal overlapped with the corresponding from E-isomer); (E isomer, only clearly assignable signals are listed): $2.33(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 6.25(\mathrm{~s}$, $1 \mathrm{H}), 6.29$ (q, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, only clearly distinguishable signals are assigned for Z / E isomers): $14.54\left(\mathrm{CH}_{3}\right.$, Z-isomer $), 14.60\left(\mathrm{CH}_{3}\right.$, E-isomer $), 29.1\left(\mathrm{CH}_{3}\right.$, signal from both isomers overlapping), $55.3\left(\mathrm{CH}_{3}\right.$, E-isomer), 55.4 ($\mathrm{CH}_{3}, ~ Z$-isomer), 111.97 (q, J = $34.1 \mathrm{~Hz}, \mathrm{CH}$, E-isomer), 113.6 (CH), 113.98 (CH, Z-isomer, signal overlapped), 114.04 (q, J = $36.2 \mathrm{~Hz}, \mathrm{CH}$, Z-isomer), 115.3 (CH), 122.8 ($q, J=270.1 \mathrm{~Hz}, \mathrm{C}$, Z-isomer), 122.9 (C, Z-isomer), 123.42 ($\mathrm{q}, \mathrm{J}=269.8 \mathrm{~Hz}, \mathrm{C}, ~ E$-isomer), 123.46 (C, E-isomer), 130.0 (CH, Z-isomer), 130.2 (CH), 130.4 (C, Z-isomer), 139.36 (d, J = 6.0 Hz , C, signal overlapping with the corresponding of the Z-isomer), 139.55 ($q, J=6.1 \mathrm{~Hz}, \mathrm{C}$, signal overlapping with the corresponding of the E-isomer), 147.6 (C, Z-isomer), 150.5 (C, E-isomer), 160.1 (C, E-isomer), 160.2 (C, E-isomer), 160.4 (C, Z-isomer), 160.9 (C, Z-isomer), 193.6 (C, Eisomer), 193.7 (C, Z-isomer).
${ }^{19} \mathrm{~F}$-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -56.6 (s, Z-isomer), -55.1 (s, E-isomer).
HR-MS (EI) calc. for $\left[\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{3}\right]^{+}$324.0973, found 324.0975.

3-(4-Acetyl-5-methylfuran-2-yl)-1,1,1-trifluorooct-2-ene (6u): The representative procedure was followed using enyne $1 \mathrm{f}\left(41 \mathrm{mg}, 0.2 \mathrm{mmol}\right.$) and ZnCl_{2} ($5.5 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%$). After

4 days, purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane:EtOAc $\left.=10: 1\right)$ yielded $\mathbf{6 u}(37 \mathrm{mg}$, $65 \%, Z / E=16: 1$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, Z-isomer): 0.84-0.95 (m, $3 \mathrm{H}, \mathrm{H}_{8}$), 1.27-1.41 (m, 4H, $\mathrm{H}_{5,7}$), 1.47-1.57 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{5}\right)$, 2.37-2.49 (m, 2 H , overlapped signal, H_{4}), $2.44\left(\mathrm{~s}, 3 \mathrm{H}\right.$, overlapped signal, $\left.\mathrm{H}_{14}\right), 2.64$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{15}\right), 5.54\left(\mathrm{q}, \mathrm{J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 6.85\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{10}\right)$; (E-isomer, only clearly assignable signals are listed): $6.10\left(q, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 6.75\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{10}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, Z-isomer): $13.9\left(\mathrm{CH}_{3}, \mathrm{C}_{8}\right), 14.5\left(\mathrm{CH}_{3}, \mathrm{C}_{15}\right), 22.3\left(\mathrm{CH}_{2}, \mathrm{C}_{7}\right), 28.38(\mathrm{q}, \mathrm{J}=$ $\left.0.9 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{C}_{4}\right), 29.0\left(\mathrm{CH}_{3}, \mathrm{C}_{14}\right), 31.2\left(\mathrm{CH}_{2}, \mathrm{C}_{6}\right), 35.5\left(\mathrm{CH}_{2}, \mathrm{C}_{5}\right), 112.6\left(\mathrm{q}, \mathrm{J}=2.7 \mathrm{~Hz}, \mathrm{CH}, \mathrm{C}_{10}\right), 113.7$ $\left(q, J=36.3 \mathrm{~Hz}, \mathrm{CH}, \mathrm{C}_{2}\right), 122.8\left(\mathrm{q}, J=270.1 \mathrm{~Hz}, \mathrm{C}_{1}, \mathrm{C}_{1}\right), 123.0\left(\mathrm{C}, \mathrm{C}_{11}\right), 139.9\left(\mathrm{q}, J=6.1 \mathrm{~Hz}, \mathrm{C}, \mathrm{C}_{3}\right)$, 147.4 ($q, J=1.3 \mathrm{~Hz}, \mathrm{C}, \mathrm{C}_{9}$), 159.4 (C, C 12), 193.6 (C, C 13).
${ }^{19}$ F-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -57.2 (s, Z-isomer), -56.1 (s, E-isomer).
HR-MS (EI) calc. for $\left[\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{2}\right]^{+}$288.1337, found 288.1340.

3-(4-Acetyl-5-methylfuran-2-yl)-5-phenyl-1,1,1-trifluoropent-2-ene (6v): The representative procedure was followed using enyne $1 \mathrm{~g}(48 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(5.5 \mathrm{mg}, 0.04 \mathrm{mmol}, 20$ mol\%). After 4 days, purification by flash chromatography (SiO_{2}, hexane:EtOAc $=10: 1$) yielded 6v (31 mg, 48\%, $Z / E=19: 1$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, Z-isomer) : $2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{15}\right), 2.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{16}\right), 2.73-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.81-$ $2.88(\mathrm{~m}, 2 \mathrm{H}), 5.48\left(\mathrm{q}, \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 6.87\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 7.17(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.25(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}_{9}\right), 7.30-7.33(\mathrm{~m}, 2 \mathrm{H})$; (E-isomer, only clearly assignable signals are listed): 6.17 (q, $J=8.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{2}$), 6.71 (s, 1H, H_{11}).
${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, Z-isomer): $14.6\left(\mathrm{CH}_{3}, \mathrm{C}_{16}\right), 29.1\left(\mathrm{CH}_{3}, \mathrm{C}_{15}\right), 35.1\left(\mathrm{q}, \mathrm{J}=1.2 \mathrm{~Hz}, \mathrm{CH}_{2}, \mathrm{C}_{4}\right)$, $37.4\left(\mathrm{CH}_{2}, \mathrm{C}_{5}\right), 112.9\left(\mathrm{q}, J=2.8 \mathrm{~Hz}, \mathrm{CH}, \mathrm{C}_{11}\right), 114.2\left(\mathrm{q}, J=36.4 \mathrm{~Hz}, \mathrm{CH}, \mathrm{C}_{2}\right), 122.6(\mathrm{q}, J=270.3 \mathrm{~Hz}$, C, C_{1}), $123.0\left(\mathrm{C}, \mathrm{C}_{12}\right), 126.4(\mathrm{CH}), 128.4\left(\mathrm{CH}, \mathrm{C}_{9}\right), 128.5(\mathrm{CH}), 138.7(\mathrm{q}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{C}), 140.3(\mathrm{C}$, $\left.\mathrm{C}_{10}\right), 147.1\left(\mathrm{q}, J=1.3 \mathrm{~Hz}, \mathrm{C}, \mathrm{C}_{3}\right), 159.6\left(\mathrm{C}, \mathrm{C}_{13}\right), 193.7\left(\mathrm{C}, \mathrm{C}_{14}\right)$.
${ }^{19}$ F-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -57.5 (s, Z-isomer), -56.3 (s, E-isomer).
HR-MS (EI) calc. for $\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{2}\right]^{+}$322.1181, found 322.1186.

Calculated relative stabilities of 2-alkenylfurans 6.

To gain insights into the origin of the Z / E selectivity in the formation of 2-alkenylfurans 6, the geometry of Z / E-isomer from two representative alkenylfuran derivatives were fully optimized at the B3LYP/6-31G* level of theory, and each stationary point was shown to be a minimum by performing the calculation of the harmonic vibrational frequencies (Total energy (HF) and Free energy (G, at 298.150 K and 1.0 Atm) are in Hartrees).

The computational study indicates that for both compounds (bearing an aryl or an alkyl substituents) E-isomer is thermodynamically more stable. According to the selectivity observed, which is in favour of Z-isomers, the stereochemical outcome is likely dependent on kinetic control.

(Z)-6f
$G=-962.832644 \mathrm{au}$
$\Delta \mathbf{G}=+7.2 \mathrm{kcal} \mathrm{mol}^{-1}$

(E)-6b

GP-1111.872532 au

(E)-6f
$G=-962.844062$ au

(Z)-6b

O	-1.8373	-1.7321	-0.1484
C	-2.5242	-2.8853	-0.2964
C	-1.7685	-3.7850	-1.0286
C	-0.5423	-3.1102	-1.3330
C	-0.6281	-1.8557	-0.7985
C	-3.8663	-2.9093	0.3559
H	0.2751	-3.5250	-1.9035
C	0.2817	-0.7158	-0.8036
C	-0.1244	0.5839	-0.8393
C	-2.0581	-5.1701	-1.4533
H	0.6171	1.3584	-0.6747
C	-1.4723	1.0901	-1.1577
C	-3.4015	-5.7909	-1.1070
O	-1.2203	-5.8053	-2.0798
H	-3.9202	-3.6564	1.1567
H	-4.6595	-3.1396	-0.3633
H	-4.0708	-1.9260	0.7858
H	-4.2247	-5.2213	-1.5553
H	-3.5664	-5.8035	-0.0230
H	-3.4223	-6.8137	-1.4878
O	-2.3998	0.4860	-1.6627
O	-1.5372	2.4181	-0.8559
C	-2.7816	3.0694	-1.1759
C	-2.6484	4.5292	-0.7821
H	-3.5942	2.5720	-0.6351
H	-2.9823	2.9498	-2.2461
H	-3.5778	5.0636	-1.0080
H	-1.8324	5.0095	-1.3318
H	-2.4454	4.6281	0.2893
C	1.7326	-1.0285	-0.7491
C	2.6583	-0.2543	-1.4652
C	4.0279	-0.5079	-1.4095
C	4.5051	-1.5624	-0.6201
C	3.5946	-2.3527	0.0985
C	2.2351	-2.0921	0.0280
H	2.2975	0.5472	-2.1029
H	4.7053	0.1060	-1.9918
O	5.8163	-1.9042	-0.4914
H	3.9804	-3.1649	0.7065
H	1.5475	-2.7100	0.5962
C	6.7858	-1.1448	-1.1986
H	6.7758	-0.0914	-0.8901
H	6.6313	-1.2058	-2.2837
	7.7516	-1.5858	-0.9465

(E)-6b

O	-1.8024	0.4675	0.0870
C	-3.1188	0.1493	0.0265
C	-3.2565	-1.2168	-0.1300
C	-1.9259	-1.7481	-0.1664
C	-1.0626	-0.6968	-0.0307
C	-4.0548	1.3063	0.1429
H	-1.6741	-2.7896	-0.2920
C	0.3907	-0.5881	-0.0289
C	0.9546	0.6462	-0.1307
C	-4.4680	-2.0575	-0.2502
H	0.3005	1.5039	-0.2371
C	2.3838	0.9850	-0.0292
C	-5.8384	-1.4020	-0.2084
O	-4.3582	-3.2684	-0.3820
H	-4.7517	1.1834	0.9791
H	-4.6534	1.4384	-0.7660
H	-3.4787	2.2201	0.3076
H	-5.9483	-0.6604	-1.0087
H	-5.9970	-0.8807	0.7435
H	-6.5993	-2.1756	-0.3256
O	3.3356	0.2379	0.1030
O	2.5213	2.3410	-0.0911
C	3.8702	2.8358	0.0132
C	3.8106	4.3490	-0.0900
H	4.4756	2.3937	-0.7856
H	4.2987	2.5065	0.9660
H	4.8198	4.7688	-0.0153
H	3.2010	4.7719	0.7152
H	3.3783	4.6589	-1.0470
C	1.1231	-1.8806	0.0593
C	2.0878	-2.2369	-0.8899
C	2.7453	-3.4642	-0.8341
C	2.4527	-4.3622	0.2004
C	1.4921	-4.0193	1.1629
C $=-11112.170059$	0.832532		
H	2.3287	-2.8008	1.0840
H	3.4813	-3.7544	-1.6896
O	3.0376	-5.5832	-1.5922
H	1.2798	-4.7239	1.9609
H	0.0928	-2.5488	1.8374
C	4.0294	-5.9801	-0.5775
H	4.8853	-5.2927	-0.5731
H	3.6227	-6.0434	-1.5954
H	4.3598	-6.9706	-0.2596

(Z)-6f

O	-2.3444	-0.9246	0.3321
C	-3.5808	-1.4640	0.2599
C	-3.5035	-2.7238	-0.3067
C	-2.1155	-2.9434	-0.5856
C	-1.4415	-1.8180	-0.2023
C	-4.6765	-0.6052	0.7977
H	-1.7142	-3.8369	-1.0399
C	-0.0256	-1.4679	-0.2181
C	0.4658	-0.2097	-0.3030
C	-4.5537	-3.7202	-0.5995
H	1.5334	-0.0617	-0.1902
C	-0.2701	1.0347	-0.6181
C	-6.0035	-3.3910	-0.2843
O	-4.2518	-4.7991	-1.0929
H	-5.1612	-1.0574	1.6712
H	-5.4533	-0.4253	0.0467
H	-4.2590	0.3598	1.0940
H	-6.3381	-2.5107	-0.8466
H	-6.1379	-3.1673	0.7808
H	-6.6235	-4.2477	-0.5548
O	-1.3563	1.1488	-1.1507
O	0.5011	2.1058	-0.2810
C	-0.0534	3.3984	-0.5965
C	0.9558	4.4467	-0.1651
H	-1.0103	3.5123	-0.0758
H	-0.2597	3.4447	-1.6712
H	0.5715	5.4484	-0.3871
H	1.9051	4.3167	-0.6949
H	1.1509	4.3828	0.9103
C	0.8969	-2.6727	-0.0927
C	2.4047	-2.4198	-0.1857
H	0.6113	-3.3897	-0.8765
H	0.6679	-3.1839	0.8534
H	2.7221	-1.7563	0.6305
H	2.6345	-1.8930	-1.1218
C	3.2206	-3.7182	-0.1209
C	4.7351	-3.4863	-0.1972
H	2.9141	-4.3830	-0.9420
H	2.9827	-4.2551	0.8094
H	5.0421	-2.8273	0.6273
H	4.9715	-2.9441	-1.1237
C	5.5474	-4.7840	-0.1439
H	5.2885	-5.4484	-0.9774
H	5.3583	-5.3329	0.7869
H	6.6235	-4.5841	-0.1995
HF=-963.1593624			
$\mathrm{G}=-962.832644$			

(E)-6f

O	-3.1010	-0.8005	-0.2226
C	-4.4524	-0.7536	-0.1308
C	-4.8990	0.4917	-0.5298
C	-3.7280	1.2362	-0.8872
C	-2.6476	0.4221	-0.6886
C	-5.0967	-2.0043	0.3675
H	-3.7339	2.2554	-1.2422
C	-1.2171	0.6055	-0.8585
C	-0.3709	-0.4147	-0.5626
C	-6.2659	1.0522	-0.6070
H	-0.7739	-1.3625	-0.2247
C	1.0941	-0.3625	-0.6701
C	-7.4511	0.1907	-0.2054
O	-6.4300	2.2013	-0.9929
H	-4.3438	-2.7929	0.4412
H	-5.8918	-2.3468	-0.3026
H	-5.5412	-1.8645	1.3605
H	-7.3482	-0.1760	0.8227
H	-7.5364	-0.6868	-0.8583
H	-8.3611	0.7877	-0.2884
O	1.7897	0.6016	-0.9490
O	1.6199	-1.5871	-0.3987
C	3.0574	-1.6797	-0.4587
C	3.4381	-3.1046	-0.1008
H	3.4905	-0.9520	0.2357
H	3.3899	-1.4072	-1.4662
H	4.5271	-3.2193	-0.1346
H	2.9945	-3.8166	-0.8044
H	3.0957	-3.3590	0.9075
C	-0.7762	1.9744	-1.3332
C	-0.4937	2.9460	-0.1674
H	-1.5508	2.3996	-1.9822
H	0.1342	1.8695	-1.9254
H	0.3015	2.5181	0.4543
H	-1.3864	3.0314	0.4678
C	-0.0713	4.3368	-0.6552
C	0.2101	5.3199	0.4885
H	-0.8559	4.7530	-1.3054
H	0.8270	4.2403	-1.2818
H	0.9901	4.9015	1.1401
H	-0.6894	5.4162	1.1132
C	0.6425	6.7058	-0.0013
H	-0.1327	7.1650	-0.6272
H	1.5585	6.6449	-0.6018
H	0.8382	7.3840	0.8372
$\begin{aligned} & \mathrm{HF}=-963.1702961 \\ & \mathrm{G}=-962.844060 \end{aligned}$			

6a

6b

$\mathrm{CO}_{2} \mathrm{Et}$

	1			17									1	1	1		1		1		
10	200	190	180	170	160	150	140	130	120	${ }^{110}$	$\begin{array}{r} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{array}$	90	80	70	60	50	40	30	20	10	0

6 g

61

6s

$6 s$
Z-isomer (major isomer)

[^0]: ${ }^{1}$ Compounds 1a-m: (a) G. Bartoli, M. Bosco, A. Carlone, R. Dalpozzo, P. Galzerano, P. Melchiorre, L. Sambri, Tetrahedron Lett. 2008, 49, 2555; (b) J. González, J. González, C. Pérez-Calleja, L. A. López, R. Vicente, Angew. Chem. Int. Ed. 2013, 52, 5853. Compound 1n: (c) K. Miki, F. Nishino, K. Ohe and S. Uemura, J. Am. Chem. Soc. 2002, 124, 5260.
 ${ }^{2}$ M. Kitamura, N. Tashiro, T. Okauchi, Synlett 2009, 2943.
 ${ }^{3}$ B. Morandi, E. M. Carreira, Angew. Chem. Int. Ed. 2011, 50, 9085.

[^1]: ${ }^{4}$ The stereochemistry of compounds $\mathbf{6 a - q}$ was established according to selective NOE or 2D-NOESY experiments. Selected experiments are showed in the NMR spectra section.

[^2]: ${ }^{5}$ The stereochemistry of compounds $6 \mathrm{~s}-\mathrm{v}$ was established according to selective NOE or 2D-NOESY experiments. Selected experiments are showed in the NMR spectra section.

