Supplementary information

Experimental details

Compounds 1 and 2 were prepared by a solid state procedure described in [1] starting from stoichiometric mixture of chemically grade $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}, \mathrm{CuO}$, and $\mathrm{BaCO}_{3}\left(2 \%\right.$ excess) or CaCO_{3} $(0.5 \%$ excess) correspondingly. The obtained powders were pressed in pellets, sintered in air at $1150^{\circ} \mathrm{C}$ and finally annealed at $900^{\circ} \mathrm{C}$ for 2 hours in flowing oxygen in order to enhance fraction of Cu^{3+}. Powder X-ray diffraction was conducted on a Rigaku D/MAX 2500 ($\mathrm{CuK} \alpha$ radiation, 2θ range $15-80$ deg., step 0.02 deg.). Crystal cell parameters were calculated in the full-profile refinement using JANA2006 program. Raman spectra were recorded on a Renishaw in Via Raman Microscope with a laser wavelength of 514 nm in the shift range $100-1400 \mathrm{~cm}^{-1}$. Magnetization was measured on a Quantum Design SQUID MPMS-VSM in the temperature range $1.8-100 \mathrm{~K}$ under de magnetic fields up to 70 kOe . The field was fixed at a certain value while the temperature was slowly increased and then decreased in the measurement diapason. Relaxation of magnetization was investigated by SQUID AC-susceptibility on the same device in the frequency range $0.1-945 \mathrm{~Hz}$ with an ac field amplitude of $2.5-3 \mathrm{Oe}$ in the temperature range $2-12 \mathrm{~K}$ and under dc fields of up to 10 kOe . Samples for the measurements were rectangular pieces of ceramics $30-60 \mathrm{mg}$ in weight fixed to a quartz sample holder by glue. Ac susceptibility of $\mathbf{1}$ was also measured on the powdered sample (ca. 190 mg) loaded in a quartz-glass tube in order to get higher precision. Magnetization values were corrected for core diamagnetism (Pascal's constants), susceptibility of the glue and the quartz-glass tube.
[1] P. E. Kazin, M. A. Zykin, Y. D. Tretyakov, M. Jansen, Russ. J. Inorg. Chem. 2008, 53, 362 - 366.

Figure S1. X-ray diffraction pattern of $\mathbf{1}$ and calculated positions of Bragg reflections below, space group $\mathrm{P6}_{3} / \mathrm{m}, a=10.1920(2) \AA, c=7.7218(2) \AA, V=694.66(3) \AA^{3}$.

Figure S2. X-ray diffraction pattern of $\mathbf{2}$ and calculated positions of Bragg reflections below, space group $\mathrm{P}_{3} / \mathrm{m}, a=9.4236(1) \AA, c=6.8892(1) \AA, V=529.82(1) \AA^{3}$. Arrows indicate the reflections of the admixture phase $\beta-\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.

Figure S3. Raman spectra of $\mathbf{1}$ and 2. A sharp peak at $934 \mathrm{~cm}^{-1}$ (1) and 962 (2) corresponds to v_{1} of PO_{4}-group.

Figure S4. Magnetization in $M(T)$-series in the temperature range $1.8-5 \mathrm{~K}$ under fixed dc fields from 10 to 70 kOe (brown, violet, magenta, re, orange, green, blue), step $10 \mathrm{kOe}, v s . H T^{-1}$ of $\mathbf{1}$. Experimental points, circles; fitted, lines.

Figure S5. Magnetization in $M(T)$-series in the temperature range $1.8-5 \mathrm{~K}$ under fixed dc fields from 10 to 70 kOe (brown, violet, magenta, re, orange, green, blue), step $10 \mathrm{kOe}, v s . H T^{-1}$ of $\mathbf{2}$.
Experimental points, circles. Insert: enlarged area of intermediate fields; experimental points, circles; lines drawn to guide the eye.

Figure S6. In-phase- (circles) and out-of-phase (triangles) susceptibility of $\mathbf{1 v s}$. ac field frequency under a dc field of 1.5 kOe in the temperature range $2-8 \mathrm{~K}$. Lines represent fitting curves for two relaxation pathways.

Figure S7. In-phase (top) and out-of-phase (bottom) susceptibility of $\mathbf{2} v s$. ac field frequency under a dc field of 6 kOe in the temperature range $2-12 \mathrm{~K}$. Lines represent fitting curves for single relaxation pathway ($\mathrm{T}=2-6 \mathrm{~K}$) and for two relaxation pathways ($\mathrm{T}>6 \mathrm{~K}$).

Figure S8. In-phase (circles) and out-of-phase (triangles) susceptibility of $\mathbf{2} v s$. ac field frequency at a temperature of 2 K under a dc field of 0.15 (blue), 0.5 (green), 1 (orange), and 5 (magenta) kOe. Lines represent fitting curves for single relaxation pathway ($0.5-5 \mathrm{kOe}$) and two relaxation pathways $(0.15$ kOe).

Figure S9. Arrhenius plots for $\mathbf{1}$ for the relaxation times τ (open squares), τ_{1} (filled top squares), and τ_{2} (filled bottom squares). Lines drawn to guide the eye.

Figure S10. Arrhenius plots for $\mathbf{2}$ for the relaxation times τ (open circles), τ_{1} (filled top circles), and τ_{2} (filled bottom circles). Lines drawn to guide the eye.

