Electronic Supplementary Information (ESI) For

Design and Preparation of Ethynyl-Pyrene Modified Platinum-Acetylide Gelators and Their Application in Dispersion of Graphene

Nai-Wei Wu, Jing Zhang, Xing-Dong Xu, Hai-Bo Yang*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry,

East China Normal University, 3663 N. Zhongshan Road Shanghai 200062, P. R. China

hbyang@chem.ecnu.edu.cn

Table of Contents

1. General Information	3
2. Synthetic Procedures and Characterizations	4
3. PM6 Semiempirical Simulated Molecular Models of 3a–b and 5a–b	7
4. Additional Gelation Tests	9
5. Additional UV-vis and Emission Spectra	10
6. Concentration-Dependent and Temperature-Dependent ¹ H NMR Spectra	14
7. Rheological Investigation of Native Gel 3a and Graphene-containing Hybrid Gel	18
8. Raman Spectrum of Graphene-containing Hybrid Gel	18
9. Multiple nuclear NMR (¹ H, ³¹ P and ¹³ C) Spectra and MALDI-TOF MS of New Compounds.	19
10. References	27

1. General Information

All solvents were dried according to the standard procedures and all of them were degassed under N₂ for 30 minutes before use. Reagents were used as purchased. All air-sensitive reactions were carried out under nitrogen atmosphere. ¹H NMR, ¹³C NMR, and ³¹P NMR spectra were recorded on Bruker 400 MHz Spectrometer (¹H: 400 MHz; ¹³C: 100 MHz; ³¹P: 161.9 MHz) at 298 K. The ¹H and ¹³C NMR chemical shifts are reported relative to the residual solvent signals, and ³¹P NMR resonances are referenced to an internal standard sample of 85% H₃PO₄ (δ 0.0). Coupling constants (*J*) are denoted in Hz and chemical shifts (δ) in ppm. Multiplicities are denoted as follows: s = singlet, d = doublet, m = multiplet, br = broad.

UV-Vis spectra were recorded on a Cary 50Bio UV-Visible spectrophotometer. Fluorescence spectra were measured on a Cary Eclipse fluorescence spectrophotometer. Samples for absorption and emission measurements were contained in $1 \text{ cm} \times 0.2 \text{ cm}$ quartz cuvettes. SEM images of the xerogels were obtained using a S-4800 (Hitachi Ltd.) with an accelerating voltage of 1.0-3.0 kV. Samples were prepared by dropping dilute gels onto a silicon wafer. TEM images were recorded on a Tecnai G² F30 (FEI Ltd.). The sample for TEM measurements was prepared by dropping the dilute gels onto a carbon-coated copper grid.

2. Synthetic Procedures and Characterizations

The precursors 1^1 , 4^2 , and $2a-b^3$ were prepared according to previously reported synthetic procedures and showed identical spectroscopic properties to those reported therein.

Scheme S1. Synthetic procedure of target molecules 3a-b.

Scheme S2. Synthetic procedure of target molecules 5a-b.

Synthesis of compound 3a. A 50ml of Schlenk flask was charged with the precursor 1 (100 mg, 0.068 mmol), 2a (116 mg, 0.15 mmol) and CuI (1.3 mg, 0.0068 mmol), degassed, and back-filled there times with N₂. A mixed solvent of dried THF (10 mL) and Et₂NH (10 ml) was added into the reaction flask by syringe. The reaction was stirred at room temperature for 2 hours. The solvent was removed by evaporation on a rotary evaporator and the residue was purified via column chromatography on silica gel (petroleum ether/acetone 5/1) to afford product 3a (173 mg, 92%) as pale yellow solid. R*f* = 0.54 (petroleum ether/acetone 3/1). Mp: 96 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.69$ (d, J = 9.2 Hz, 1H), 8.25-8.02 (m, 8H), 7.70 (s, 2H), 7.50 (d, J = 8.0 Hz, 4H), 7.39 (s, 2H),

7.30–7.26 (m, 5H), 7.03 (s, 4H), 4.04–3.99 (m, 12H), 2.22 (br, 24H), 1.85–1.71 (m, 12H), 1.47 (br, 12H), 1.30–1.22 (br, 132H), 0.92–0.89 (t, J = 5.6 Hz, 18H); ¹³C NMR (CDCl₃, 100 MHz): 165.49, 153.26, 141.40, 135.18, 133.64, 131.99, 131.55, 131.33, 131.21, 131.16, 130.76, 130.09, 129.64, 128.86, 128.28, 128.15, 127.34, 126.29, 125.74, 125.63, 125.16, 124.59, 124.41, 122.84, 119.85, 118.09, 109.24, 108.81, 108.52, 107.37, 105.78, 95.56, 87.90, 73.61, 69.47, 32.00, 30.38, 29.81, 29.78, 29.72, 29.66, 29.48, 29.45, 29.41, 26.15, 22.77, 16.43, 14.20, 8.48; ³¹P NMR (CDCl₃, 161.9 MHz): $\delta = 11.69$ ppm (s, $J_{Pt-P} = 2357.2$ Hz); MALDI-TOF-MS: m/z calcd for C₁₅₄H₂₃₆N₂O₈P₄Pt₂: 2757.64 [M + H]⁺; found: 2757.65. Anal. Calcd for C₁₅₄H₂₃₆N₂O₈P₄Pt₂: C, 67.08; H, 8.63; N, 1.02. Found: C, 66.92; H, 8.90; N, 1.05.

Synthesis of compound 3b. Following the procedure for the preparation of **3a**: the precursor **1** (100 mg, 0.068 mmol), **2b** (154 mg, 0.15 mmol) and CuI (1.3 mg, 0.0068 mmol), THF (10 mL), Et₂NH (10 mL). The product **3b** was obtained as a pale yellow solid (206 mg, 93%). R*f* = 0.43 (petroleum ether/acetone 4/1). Mp: 125 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 8.69 (d, *J* = 9.6 Hz, 1H), 8.25–8.02 (m, 8H), 7.63 (s, 2H), 7.48 (d, *J* = 8.0 Hz, 4H), 7.38 (s, 2H), 7.29–7.26 (m, 5H), 7.03 (s, 4H), 4.05–3.99 (m, 12H), 2.21 (br, 24H), 1.84–1.73 (m, 12H), 1.47 (br, 12H), 1.30–1.22 (m, 204H), 0.92–0.89 (t, *J* = 5.6 Hz, 18H); ¹³C NMR (CDCl₃, 100 MHz): 165.45, 153.07, 141.19, 135.21, 133.56, 131.85, 131.36, 131.19, 131.08, 131.01, 130.63, 129.95, 129.49, 128.72, 128.14, 128.01, 127.18, 126.15, 125.57, 125.49, 124.90, 124.43, 124.26, 122.76, 119.79, 117.93, 109.18, 108.69, 108.27, 106.97, 105.68, 95.38, 87.82, 73.45, 69.29, 67.87, 31.87, 29.67, 29.61, 29.36, 29.31, 26.02, 25.52, 22.63, 16.30, 14.06, 8.34; ³¹P NMR (CDCl₃, 161.9 MHz): *δ* = 11.49 ppm (s, *J*_{PLP} = 2365.4 Hz); MALDI-TOF-MS: m/z calcd for C₁₉₀H₃₀₈N₂O₈P₄Pt₂: 3262.20 [*M* + H]⁺; found: 3262.21. Anal. Calcd for C₁₉₀H₃₀₈N₂O₈F₄Pt₂: 3262.20 [*M* + H]⁺; found: 3262.21. Anal.

Synthesis of compound 5a. Following the procedure for the preparation of 3a or 3b: the precursor 4 (174 mg, 0.097 mmol), 2a (165 mg, 0.21 mmol) and CuI (1.8 mg, 0.0097 mmol), THF (10 mL), Et₂NH (10 mL). The product 5a was obtained as a yellow solid (191 mg, 64%). Rf = 0.45 (petroleum ether/acetone 3/1). Mp: 103 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 8.73 (d, J = 8.8 Hz, 2H), 8.26–8.02 (m, 16H), 7.91 (s, 2H), 7.64 (s, 2H), 7.48 (d, J = 8.0 Hz, 4H), 7.29–7.24 (m, 5H), 7.03 (s, 4H), 4.03–4.01 (m, 12H), 2.21 (br, 24H), 1.84–1.74 (m, 12H), 1.48 (br, 12H), 1.26 (br, 132H), 0.91 (br, 18H); ¹³C NMR (CDCl₃, 100 MHz): 165.39, 153.14, 141.30, 135.11, 134.15,

132.02, 131.48, 131.43, 131.18, 131.00, 130.73, 129.97, 129.66, 128.81, 128.51, 128.34, 127.19, 126.26, 125.73, 125.67, 125.39, 125.04, 124.52, 124.42, 124.33, 122.08, 119.75, 117.14, 108.56, 107.23, 105.69, 93.55, 91.12, 89.89, 87.11, 73.49, 69.36, 31.89, 31.28, 29.70, 29.67, 29.61, 29.55, 29.37, 29.34, 29.31, 26.04, 22.66, 16.33, 14.09, 8.37; ³¹P NMR (CDCl₃, 161.9 MHz): $\delta = 11.62$ ppm (s, $J_{Pt-P} = 2366.98$ Hz); MALDI-TOF-MS: m/z calcd for C₁₈₀H₂₄₈N₂O₈P₄Pt₂: 3082.74 [M + H]⁺; found: 3082.74. Anal. Calcd for C₁₈₀H₂₄₈N₂O₈P₄Pt₂: C, 70.15; H, 8.11; N, 0.91. Found: C, 69.87; H, 8.18; N, 0.91.

Synthesis of compound 5b. Following the same procedure for the preparation of **3a** or **3b**: the precursor **4** (128 mg, 0.071 mmol), **2b** (160 mg, 0.16 mmol) and CuI (1.4 mg, 0.0071 mmol), THF (10 mL), Et₂NH (10 mL). The product **5b** was obtained as a yellow solid (145 mg, 57%). R*f* = 0.54 (petroleum ether/acetone 3/1). Mp: 132 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 8.73 (d, *J* = 8.8 Hz, 2H), 8.26-8.02 (m, 16H), 7.91 (s, 2H), 7.64 (s, 2H), 7.48 (d, *J* = 7.6 Hz, 4H), 7.29-7.24 (m, 5H), 7.03 (s, 4H), 4.53-4.00 (m, 12H), 2.22 (br, 24H), 1.84-1.74 (m, 12H), 1.48 (br, 12H), 1.26 (br, 204H), 0.89 (t, *J* = 5.2 Hz, 18H); ¹³C NMR (CDCl₃, 100 MHz): 165.33, 153.22, 141.50, 135.09, 134.20, 133.91, 132.09, 131.54, 131.46, 131.24, 131.07, 130.71, 130.03, 129.71, 128.86, 128.56, 128.37, 127.23, 126.29, 125.77, 125.70, 125.45, 125.14, 124.55, 124.49, 124.39, 124.30, 122.10, 119.76, 117.21, 114.04, 109.18, 108.59, 107.28, 105.58, 93.60, 91.18, 89.92, 87.10, 73.53, 69.48, 31.91, 29.70, 29.65, 29.58, 29.40, 29.35. 26.07, 22.67, 16.41, 14.09, 8.39; ³¹P NMR (CDCl₃, 161.9 MHz): *δ* = 11.62 ppm (s, *J*_{PLP} = 2366.98 Hz); MALDI-TOF-MS: m/z calcd for C₂₁₆H₃₂₀N₂O₈P₄Pt₂: C, 72.33; H, 8.99; N, 0.78. Found: C, 72.03; H, 9.13; N, 0.86.

3. PM6 Semi-empirical Simulated Molecular Models of 3a-b and 5a-b.

Figure S1. PM6 semi-empirical simulated molecular model of 3a.

Figure S2. PM6 semi-empirical simulated molecular model of 3b.

Figure S3. PM6 semi-empirical simulated molecular model of 5a.

Figure S4. PM6 semi-empirical simulated molecular model of 5b.

4. Additional Gelation Tests.

solvent	3 a	3 b	5a	5b
cyclohexane	Р	G (36.0)	Ι	Ι
n-hexane	Р	Ι	Ι	Ι
n-decane	PG	Ι	Ι	Ι
dodecane	PG	Ι	Ι	Ι
benzene	S	S	S	S
toluene	S	S	S	S
xylenes	S	S	S	S
ethyl acetate	Р	Р	Р	Р
tetrahydrofuran	S	S	S	S
dioxane	S	Р	S	S
acetone	G (20.8)	Ι	Ι	Ι
n-propanol	Ι	Ι	Ι	Ι
2-propanol	Ι	Ι	Ι	Ι
cyclohexane/benzene (5/1, v/v)	G (7.8)	G (8.1)	Р	Р
cyclohexane/benzene (5/2, v/v)	G (11.2)	G (12.3)	G (19.6)	G (26.5)
n-hexane/benzene (5/1, v/v)	G (7.9)	G (15.0)	Р	Р
n-hexane/benzene (5/2, v/v)	G (19.8)	G (16.5)	G (18.5)	G (29.4)
n-decane/benzene (5/2 v/v)	G (16.0)	G (17.2)	G (19.3)	G (22.7)
dodecane/benzene (5/2 v/v)	G (16.0)	G (17.6)	G (25.4)	G (30.0)

Table S1. Solvents tested for gelation with complexes 3a-b and 5a-b.^[a]

[a] G = pale-yellow gel; PG = part gel; S = soluble; I = insoluble; P = precipitation. The values in parentheses are the critical gelation concentrations (CGCs) in mg/mL.

5. Additional UV-vis and Emission Spectra.

Figure S5. a) UV–vis absorption spectra and b) emission spectra of **3a–b** and **5a–b** at 298 K in CH_2Cl_2 (1.0 × 10⁻⁵ M).

Figure S6. Absorption (A) and emission (B) spectrum of 3a in the degassed dichloromethane solution at 1.0×10^{-5} M. The fluorescence lifetimes of 3a in the solution were determined to be 4.15 ns and 13.97 ns, respectively.

Table S2 . Photophysical properties of 3a–b and 5a–b at 298 K in CH_2Cl_2 (1.0 ×10 ⁻⁵ K	M).
---	---	----

Compound	$\lambda_{abs}(nm)$	$\epsilon (M^{-1}cm^{-1})$	$\lambda_F \ (nm)$	ΦF (%)
	393 353 295	58500 142000 103000	401	4.2
3b	393 353 295	53000 131000 94500	400	3.7
5a	395 353 297	146500 237000 235500	407 424	15
5b	395 353 297	132500 213500 215000	406 424	15

Figure S7. Emission spectra of a) **3b** in cyclohexane/benzene (5/1 v/v), b) **5a**, and c) **5b** in cyclohexane/benzene (5/2 v/v) at different concentrations.

Figure S8. Emission spectrum (A) and excitation spectra (normalized) (B) monitored at different wavelength of **3a** in the mixed solvent of cyclehexane and benzene (5/1 v/v) at $5.0 \times 10^{-3} \text{ M}$ (*gel*).

Figure S9. Emission spectrum (A) and excitation spectra (normalized) (B) monitored at different wavelength of **3a** in the mixed solvent of cyclehexane and benzene (5/1 v/v) at 1.0×10^{-5} M (*sol*).

Figure S10. Comparison of emission spectra of **3a** between native gel (black line) and graphenecontaining hybrid gel (red line). The inset shows the photographs of 3a in native gel (a) and hybrid gel (b) under UV light (365 nm), respectively.

Figure S11. Photograph and TEM images of **3a** from the native gel (A) and the hybrid gel with graphene (B) in cyclohexane/benzene (5/1 v/v) under day light.

6. Concentration-Dependent and Temperature-Dependent ¹H NMR Spectra.

Figure S12. Region of the ¹H NMR spectrum (400MHz, CDCl₃, 298 K) of compound **3a** at different concentrations.

Figure S13. Region of the ¹H NMR spectrum (400MHz, CDCl₃, 298 K) of compound **3b** at different concentrations.

Figure S14. Region of the ¹H NMR spectrum (400MHz, CDCl₃, 298 K) of compound 5a at different concentrations.

Figure S15. Region of the ¹H NMR spectrum (400MHz, CDCl₃, 298 K) of compound **5b** at different concentrations.

Figure S16. Partial ¹H NMR spectrum (500 MHz, CDCl₃, 25 mg/mL) of **3a** at variable temperature.

Figure S17. Partial ¹H NMR spectrum (500 MHz, CDCl₃, 25 mg/mL) of 5a at variable temperature.

Figure S18. Partial ¹H NMR spectrum (500 MHz, cyclehexane- d_{12} , 36 mg/mL) of **3b** at the variable temperature (343K–318 K).

Figure S19. Partial ¹H NMR spectrum (500 MHz, acetone- d_6 , 21 mg/mL) of **3a** at the variable temperature (343K–318 K).

7. Rheological Investigation of Native Gel 3a and Graphenecontaining Hybrid Gel

Figure S20. Frequency dependence of the dynamic storage moduli (G') and the loss moduli (G'') of native gel **3a** (red lines) and graphene-containing hybrid gel (blue lines) in cyclehexane/benzene (5/1 v/v).

8. Raman Spectrum of Graphene-containing Hybrid Gel

Figure S21. Raman spectrum of graphene (blue line) and graphene-containing hybrid xerogel (red line).

9. Multiple Nuclear NMR (¹H, ³¹P and ¹³C) Spectra and MALDI-TOF MS of new compounds

Figure S22. ¹H (A), ³¹P (B) ¹³C (C) NMR spectra and MALDI-TOF-MS (D) of **3a** in CDCl₃.

Figure S23. ¹H (A), ³¹P (B) and ¹³C (C) NMR spectra and MALDI-TOF-MS (D) of **3b** in CDCl₃.

Figure S24. ¹H (A), ³¹P (B) ¹³C (C) NMR spectra and MALDI-TOF-MS (D) of 5a in CDCl₃

Figure S25. ¹H (A), ³¹P (B) ¹³C (C) NMR spectra and MALDI-TOF-MS (D) of 5b in CDCl₃

10. References

1. N.-W. Wu, J. Zhang, D. Ciren, Q. Han, L.-J. Chen, L. Xu, H.-B, Yang. *Organometallics*, 2013, **32**, 2536.

2. M. He, Q. Han, J. He, Q. Li, Z. Abliz, H. Tan, L. Xu, H. Yang, Chin. J. Chem. 2013, 31, 663.

3. X.-D. Xu, J. Zhang, L.-J. Chen, X.-L. Zhao, D-X. Wang, H.-B. Yang, Chem. Eur. J. 2012, 18, 1659.