Synthesis of 3,3-Disubstituted Indoline-2-thiones Catalysed by N -Heterocyclic Carbene

Hideo Ikota, ${ }^{a}$ Takayuki Ishida, ${ }^{a}$ Chihiro Tsukano, ${ }^{a}$ and Yoshiji Takemoto ${ }^{a}$Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
E-mail: takemoto@pharm.kyoto-u.ac.jp
Tel: 075-753-4528; Fax: 075-753-4569
Supplementary Information
General S1
Typical Procedure for Preparation of Isothiocyanate-enal (2) S1
Synthesis of 3a-methyl-3,3a-dihydro-2H-thieno[2,3-b]indol-2-one (3a) S5
Synthesis of 3-methyl-3-(2-(N-methylamino)-2-oxoethyl)-indoline-2-thione (4a) S5
The X-ray structure of compound 4a (ORTEP) S6
Synthesis of 3-methyl-3-(2-(N-phenylamino)-2-oxoethyl)-indoline-2-thione (4b) S6
Synthesis of 3-methyl-3-(2-methoxy-2-oxoethyl)-indoline-2-thione (4c) S7
Synthesis of 3-methyl-3-(2-thiophenyl-2-oxoethyl)-indoline-2-thione (4d) S7
Synthesis of 3-methyl-3-(2-(methoxy(methyl)amino-2-oxoethyl)-indoline-2-thione (4e) S8
Typical Procedure for Preparation of 3,3-Disubstituted indoline-2-thione (4f-q) S8

General. Unless otherwise noted, all reactions were performed under argon atmosphere. Analytical thin-layer chromatography was performed with Merck Silica gel 60 and Merck 25 DC-Alufolein. Flash silica gel column chromatography was performed with Kanto Silica gel 60 N (spherical, neutral, 40-100 $\mu \mathrm{m}$) or Fuji Silysia NH silica gel. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded on a JEOL JNM-ECA500 KP at 500 MHz . Chemical shifts are reported relative to $\mathrm{Me}_{4} \mathrm{Si}(\delta 0.00 \mathrm{ppm})$, $\mathrm{DMSO}(\delta 2.50 \mathrm{ppm}$), and acetone ($\delta 2.05 \mathrm{ppm}$). Multiplicity is indicated by one or more of the following: s (singlet); d (doublet); dd (double doublet); ddd (double double doublet); t (triplet); q (quartet); m (multiplet); br (broad). Carbon nuclear magnetic resonance $\left({ }^{13} \mathrm{C} N M R\right)$ spectra were recorded on a JEOL JNM-ECA500 KP at 125 MHz . Chemical shifts are reported relative to $\mathrm{CDCl}_{3}(\delta 77.0 \mathrm{ppm})$, DMSO- d_{6} ($\delta 39.5 \mathrm{ppm}$), and acetone- d_{6} ($\delta 206.3 \mathrm{ppm}$). Infrared spectra were recorded on $\mathrm{FT} / \mathrm{IR}-4100$ Fourier-transform infrared ATR attenuated total resonance (JASCO). Low resolution mass spectra (LRMS) and high resolution mass spectra (HRMS) were recorded on JEOL JMS-700 (FAB+). X-ray crystallographic data were recorded on RIGAKU R-AXIS RAPID.

Typical Procedure for Preparation of Isothiocyanate-enal (2)

Typical procedure: To a solution of quinoline $1(10.0 \mathrm{mmol}, 1.00$ equiv.) and barium carbonate ($10.0 \mathrm{mmol}, 1.00$ equiv.) in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 10 mL of $\mathrm{H}_{2} \mathrm{O}$ at $0{ }^{\circ} \mathrm{C}$ was added thiophosgene ($10.0 \mathrm{mmol}, 1.00$ equiv.). After 40 min , the suspension was filtered through a pad of Celite and the filter cake was wash with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filterate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash silica gel column chromatography (hexane/ $\mathrm{AcOEt}=9 / 1$ to $8 / 2$) to give the enal 2 .

(Z)-3-(2-isothiocyanatophenyl)but-2-enal (2a)

2a Using a typical procedure, from $\mathbf{1 a}(1.31 \mathrm{~mL}, 10.0 \mathrm{mmol}), \mathbf{2 a}(1.62 \mathrm{~g}, 80 \%)$ was obtained as an yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right) ; 9.30(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.42-7.38(1 \mathrm{H}, \mathrm{m}), 7.35-7.31(2 \mathrm{H}, \mathrm{m}), 7.24-7.23(1 \mathrm{H}$, m), $6.22(1 \mathrm{H}, \mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}), 2.30(3 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 191.7,157.7,137.2$, 135.0, 130.7, 129.5, 129.2, 128.7, 127.1, 126.7, 25.8; IR (ATR): 2056, $1679 \mathrm{~cm}^{-1}$; HRMS (MH ${ }^{+}$) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NOS}: 204.0483$. Found: 204.0481.

(Z)-3-(2-isothiocyanatophenyl)pent-2-enal (2f)

$\mathrm{cm}^{-1} ;$ HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{12} \mathrm{H}_{12}$ NOS: 218.0640. Found: 218.0644

(Z)-3-(2-isothiocyanatophenyl)-5-phenylpent-2-enal (2g)

Using a typical procedure, from $\mathbf{1 g}(201 \mathrm{mg}, 862 \mu \mathrm{~mol}), 2 \mathrm{~g}(176 \mathrm{mg}, 70 \%)$ was obtained as an orange oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 9.31(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.39-7.36(1 \mathrm{H}, \mathrm{m}), 7.33-7.24(4 \mathrm{H}, \mathrm{m})$, $7.19(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 7.18-7.13(3 \mathrm{H}, \mathrm{m}), 6.23(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 2.91-2.84(2 \mathrm{H}, \mathrm{m}), 2.84-2.77$ $(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 192.1,161.0,139.9,137.6,134.3,130.2,129.83,129.77,129.4$, 128.5, 128.2, 127.1, 126.8, 126.3, 40.6, 33.2; IR (ATR): 2062, $1677 \mathrm{~cm}^{-1} ;$ HRMS (MH^{+}) calcd for $\mathrm{C}_{18} \mathrm{H}_{16}$ NOS: 294.0953. Found: 294.0955.

(Z)-3-(2-isothiocyanatophenyl)hepta-2,6-dienal (2h)

2h

Using a typical procedure, from $\mathbf{1 h}(178 \mathrm{mg}, 971 \mu \mathrm{~mol}), \mathbf{2 h}(157 \mathrm{mg}, 67 \%)$ was obtained as an orange oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 9.31(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.42-7.38(1 \mathrm{H}, \mathrm{m}), 7.35-7.31(2 \mathrm{H}, \mathrm{m})$, 7.22-7.19 $(1 \mathrm{H}, \mathrm{m}), 6.22(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 5.83-5.75(1 \mathrm{H}, \mathrm{m}), 5.08-5.01(2 \mathrm{H}, \mathrm{m}), 2.67(2 \mathrm{H}, \mathrm{t}, J=$ $7.3 \mathrm{~Hz}), 2.29-2.21(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 192.0,160.9,137.5,136.3,134.3,130.3,129.8$, 129.7, 129.3, 127.0, 126.8, 116.0, 38.3, 30.9; IR (ATR): 2064, $1677 \mathrm{~cm}^{-1}$; HRMS (MH ${ }^{+}$) calcd for $\mathrm{C}_{14} \mathrm{H}_{13}$ NOS: 243.0718. Found: 243.0710 .

(Z)-3-(2-isothiocyanatophenyl)-4-methylpent-2-enal (2i)

$2 i$

Using a typical procedure, from $\mathbf{1 i}(47.3 \mathrm{mg}, 276 \mu \mathrm{~mol}), \mathbf{2 i}(50.5 \mathrm{mg}, 79 \%)$ was obtained as a yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 9.29(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.41-7.37(1 \mathrm{H}, \mathrm{m}), 7.35-7.30(2 \mathrm{H}, \mathrm{m}), 7.17(1 \mathrm{H}, \mathrm{d}, J=8.0$ $\mathrm{Hz}), 6.21(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 2.78-2.70(1 \mathrm{H}, \mathrm{m}), 1.21(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 1.14(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta\right): 192.8,167.5,136.9,134.8,129.9,129.54,129.49,127.9,126.9,126.5,36.7,20.8,20.4 ;$ IR (ATR): 2070, $1680 \mathrm{~cm}^{-1}$; HRMS (MH^{+}) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NOS}: 232.0796$. Found: 232.0793.
(Z)-3-(2-isothiocyanatophenyl)-4,4-dimethylpent-2-enal (2j)

2j Using a typical procedure, from $\mathbf{1 j}(150 \mathrm{mg}, 810 \mu \mathrm{~mol}), \mathbf{2 j}(156 \mathrm{mg}, 78 \%)$ was obtained as a yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 9.13(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.41-7.36(1 \mathrm{H}, \mathrm{m}), 7.35-7.29(2 \mathrm{H}, \mathrm{m}), 7.18-7.15(1 \mathrm{H}, \mathrm{m})$, $6.31(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 1.21(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 193.3,169.6,136.5,133.9,130.2,130.1$, 129.2, 128.5, 126.6, 126.2, 38.1, 28.8; IR (ATR): 2075, $1673 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{14} \mathrm{H}_{16}$ NOS: 246.0953. Found: 246. 0955.
(Z)-3-(2-isothiocyanatophenyl)-3-phenylacrylaldehyde (2k)

2k Using a typical procedure, from $\mathbf{1 k}(216 \mathrm{mg}, 1.05 \mathrm{mmol}), \mathbf{2 k}(209 \mathrm{mg}, 75 \%)$ was obtained as a yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 9.45(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.51-7.43(2 \mathrm{H}, \mathrm{m}), 7.43-7.38(3 \mathrm{H}, \mathrm{m}), 7.38-7.33(4 \mathrm{H}$, m), $6.75(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 192.2,157.4,137.4,136.8,133.3,131.8,130.9,130.5$,
130.3, 128.9, 128.3, 127.4, 127.0, 126.7; IR (ATR): 2064, $1667 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NOS}: 266.0640$. Found: 266.0644.
tert-butyl (Z)-3-(1-(2-isothiocyanatophenyl)-3-oxoprop-1-en-1-yl)-1H-indole-1-carboxylate (2l)

Using a typical procedure, from $1 \mathbf{1 1}(243 \mathrm{mg}, 706 \mu \mathrm{~mol}), 21(225 \mathrm{mg}, 79 \%)$ was obtained as a yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 9.47(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 8.16(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz})$, $7.50(1 \mathrm{H}, \mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}), 7.46(1 \mathrm{H}, \mathrm{s}), 7.44-7.38(3 \mathrm{H}, \mathrm{m}), 7.35(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.30(1 \mathrm{H}$, dd, $J=7.7,7.7 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 1.66(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 191.9,150.8$, $149.0,137.9,136.4,133.7,131.4,130.8,130.3,129.1,127.3,127.1,127.0,126.5,125.4,123.8,120.7,120.0,115.6$, 85.1, 28.0; IR (ATR): 2979, 2056, 1735, 1666, $1450 \mathrm{~cm}^{-1}$; HRMS (MH^{+}) calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: 405.1273$. Found: 405.1268 .
(Z)-3-(2-isothiocyanato-5-methylphenyl)but-2-enal (2m)

2m

Using a typical procedure, from $\mathbf{1 m}(73.9 \mathrm{mg}, 470 \mu \mathrm{~mol}), \mathbf{2 m}(46.3 \mathrm{mg}, 45 \%)$ was obtained as a yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right)$: 9.32-9.30 $(1 \mathrm{H}, \mathrm{m}), 7.22-7.16(2 \mathrm{H}, \mathrm{m}), 7.03-7.00(1 \mathrm{H}, \mathrm{m})$, 6.23-6.19 $(1 \mathrm{H}, \mathrm{m}), 2.37(3 \mathrm{H}, \mathrm{s}), 2.29(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 192.2,158.3,137.6,136.9,135.1,131.1$, 130.9, 130.4, 130.0, 126.7, 26.0, 21.1; IR (ATR); 2074, $1676 \mathrm{~cm}^{-1}: \operatorname{HRMS}\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NOS:}$ 218.0640. Found: 218.0635 .

(Z)-3-(2-isothiocyanato-5-methoxyphenyl)but-2-enal (2n)

2n

Using a typical procedure, from $\mathbf{1 n}(179 \mathrm{mg}, 1.03 \mathrm{mmol}), \mathbf{2 n}(92.7 \mathrm{mg}, 39 \%)$ was obtained as a yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 9.34(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{dd}, J$ $=8.9,2.9 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}), 6.21(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 3.83(3 \mathrm{H}, \mathrm{s}), 2.30(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta\right): 192.0,158.2,157.8,136.6,136.3,130.9,128.1,121,3,114.9,114.8,55.7,25.9$; IR (ATR): 2066, $1679 \mathrm{~cm}^{-1}$; HRMS (MH ${ }^{+}$) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{2} \mathrm{~S}: 234.0589$. Found: 234.0594.
(Z)-3-(5-(dimethylamino)-2-isothiocyanatophenyl)but-2-enal (2o)
 111.8, 40.2, 26.0; IR (ATR): 2120, $1681 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{OS}: 247.0905$. Found: 247.0909.

(Z)-3-(5-chloro-2-isothiocyanatophenyl)but-2-enal (2p)

2p

Using a typical procedure, from $\mathbf{1 p}(178 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathbf{2 p}(162 \mathrm{mg}, 68 \%)$ was obtained as a yellow amorphous; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 9.33(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.36(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}), 7.26$ $(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 6.23(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 2.29(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, ס): $191.4,156.2,138.9,136.7,133.0,131.4,130.0,129.3,128.0,127.9,25.9$; IR (ATR): 2045, 1682 cm^{-1}; HRMS (MH^{+}) calcd for $\mathrm{C}_{11} \mathrm{H}_{9}{ }^{35} \mathrm{ClNOS}: ~ 238.0093$. Found: 238.0099.
(Z)-3-(5-bromo-2-isothiocyanatophenyl)but-2-enal (2q)

2q

Using a typical procedure, from $\mathbf{1 q}(222 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathbf{2 q}(153 \mathrm{mg}, 54 \%)$ was obtained as a yellow amorphous; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 9.33(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.51(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}), 7.37$ $(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 7.19(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.23(1 \mathrm{H}, \mathrm{dd}, J=8.3 \mathrm{~Hz}), 2.29(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 191.4,156.1,139.0,136.9,132.8,132.1,131.4,128.4,128.2,120.7,25.9 ;$ IR (ATR): 2042, $1683 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{11} \mathrm{H}_{9}{ }^{79} \mathrm{BrNOS}: 281.9588$. Found: 281.9594.

Synthesis of 3a-methyl-3,3a-dihydro-2H-thieno[2,3-b]indol-2-one (3a)

To a solution of 1,3-bis(2,6-diisopropylphenyl) imidazolium chloride ($7.5 \mathrm{mg}, 22.1 \mu \mathrm{~mol}$) in 1 mL of toluene at ambient temperature was added potassium tert-butoxide (1.0 M sol. in $\mathrm{THF}, 22.1 \mu \mathrm{~L}, 22.1 \mu \mathrm{~mol}$). After 15 min , enal $\mathbf{2 a}$ (45.0 mg , $221 \mu \mathrm{~mol}$) was added to the reaction mixture. After additional 5 min , the reaction mixture was warmed to $80^{\circ} \mathrm{C}$ and stirred for additional 3 h . The resulting mixture was gradually cooled to ambient temperature and concentrated under reduced pressure. The crude was purified by flash silica gel column chromatography (hexane $/ \mathrm{CHCl}_{3}=5 / 5$ to $0 / 10$) to give the indolenine $3 \mathrm{a}(7.0 \mathrm{mg}, 16 \%)$ as an yellow amorphous; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 7.65(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.0 \mathrm{~Hz})$, 7.43-7.40(2H, m), 7.27-7.23(1H, m), $3.10(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 2.56(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 1.47(3 \mathrm{H}, \mathrm{d}, J=0.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \delta\right): 201.9,187.2,156.0,141.5,128.9,125.6,122.9,120.7,61.7,52.0,26.0$; IR (ATR): 3369, 1248, 1192, 997, 793, $747 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{11} \mathrm{H}_{10}$ NOS: 204.0483. Found: 204.0480.

Synthesis of 3-methyl-3-(2-(N-methylamino)-2-oxoethyl)-indoline-2-thione (4a)

To a solution of 1,3 -bis(2,6-diisopropylphenyl) imidazolium chloride ($85.1 \mathrm{mg}, 0.20 \mathrm{mmol}$) in 10 mL of toluene at ambient temperature was added potassium tert-butoxide (1.0 M sol. in THF, $200 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$). After 15 min , enal 2a
$(407 \mathrm{mg}, 2.00 \mathrm{mmol})$ was added to the reaction mixture. After additional 5 min , the reaction mixture was warmed to $80^{\circ} \mathrm{C}$ and stirred for additional 3 h . The reaction mixture was gradually cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{MeNH}_{2}(2.0 \mathrm{M}$ sol. in THF, $2.0 \mathrm{~mL}, 4.00 \mathrm{mmol}$) was added. After additional 10 min , the reaction mixture was concentrated under reduced pressure. The crude was purified by flash silica gel column chromatography (hexane/ $\mathrm{AcOEt}=4 / 6$ to $2 / 8$) to give the indoline-2-thione $\mathbf{4 a}(354 \mathrm{mg}, 75 \%)$ as an yellow amorphous; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 9.83(1 \mathrm{H}, \mathrm{s}), 7.36(1 \mathrm{H}, \mathrm{d}, J=7.4$ $\mathrm{Hz}), 7.25-7.22(1 \mathrm{H}, \mathrm{m}), 7.15(1 \mathrm{H}, \mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 5.62(1 \mathrm{H}, \mathrm{s}), 2.98(1 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz})$, $2.86(1 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}), 2.59(3 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 1.45(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 211.8,169.3,141.6,138.0,128.1$, 124.1, 123.7, 110.3, 57.3, 46.2, 28.3, 26.1; IR (ATR): 3343, 3063, 1637, 1544, $1473 \mathrm{~cm}^{-1}$; HRMS (MH ${ }^{+}$) calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{OS}: 235.0905$. Found: 235.0907 .

The X-ray structure of compound 4a (ORTEP)

Thermal ellipsoids are shown at the 50\% probability level.
The crystallographic data reported in this manuscript have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC-992277. Copies of the data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html. (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge, CB21EZ, U.K.; fax +44 1223 336033; or deposit@ccdc.camac.uk).

Synthesis of 3-methyl-3-(2-(N-phenylamino)-2-oxoethyl)-indoline-2-thione (4b)

To a solution of 1,3-bis(2,6-diisopropylphenyl) imidazolium chloride ($17.0 \mathrm{mg}, 40.0 \mu \mathrm{~mol}$) in 2 mL of toluene at ambient temperature was added potassium tert-butoxide (1.0 M sol. in THF, $40.0 \mu \mathrm{~L}, 40.0 \mu \mathrm{~mol}$). After 15 min , enal 2a ($81.3 \mathrm{mg}, 400 \mu \mathrm{~mol}$) was added to the reaction mixture. After additional 5 min , the reaction mixture was warmed to
$80^{\circ} \mathrm{C}$ and stirred for additional 3 h . The reaction mixture was gradually cooled to $0^{\circ} \mathrm{C}$ and aniline ($74.5 \mathrm{mg}, 800 \mu \mathrm{~mol}$) and N, N-dimethyl-4-aminopyridine $(48.9 \mathrm{mg}, 400 \mu \mathrm{~mol})$ were added. After additional 15 min , the reaction mixture was warmed to ambient temperature. After additional 9 h , the reaction mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was extracted with CHCl_{3} twice. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash silica gel column chromatography (hexane/ $\mathrm{AcOEt}=8 / 2$ to $7 / 3$ to $6 / 4$) to give the indoline-2-thione $\mathbf{4 b}(74.1 \mathrm{mg}, 62 \%)$ as an yellow amorphous; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 10.37(1 \mathrm{H}, \mathrm{s})$, $7.76(1 \mathrm{H}, \mathrm{s}), 7.37(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 7.27-7.24(2 \mathrm{H}, \mathrm{m}), 7.19-7.15(3 \mathrm{H}, \mathrm{m}), 7.13-7.10(1 \mathrm{H}, \mathrm{m}), 7.00(1 \mathrm{H}, \mathrm{dd}, J=7.3$, $7.3 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 3.17(1 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}), 2.98(1 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}), 1.47(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $\delta): 211.2,167.1,141.5,137.7,137.4,128.8,128.2,124.3,124.2,123.6,119.9,110.7,57.6,47.0,28.4$, IR (ATR): 3309, 1671, $1469 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{OS}$: 297.1062. Found: 297.1059.

Synthesis of 3-methyl-3-(2-methoxy-2-oxoethyl)-indoline-2-thione (4c)

To a solution of 1,3-bis(2,6-diisopropylphenyl) imidazolium chloride ($17.0 \mathrm{mg}, 40.0 \mu \mathrm{~mol}$) in 2 mL of toluene at ambient temperature was added potassium tert-butoxide (1.0 M sol. in THF, $40.0 \mu \mathrm{~L}, 40.0 \mu \mathrm{~mol}$). After 15 min , enal 2a ($81.3 \mathrm{mg}, 400 \mu \mathrm{~mol}$) was added to the reaction mixture. After additional 5 min , the reaction mixture was warmed to $80^{\circ} \mathrm{C}$ and stirred for additional 3 h . The reaction mixture was gradually cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{MeOH}(5.0 \mathrm{~mL})$ and N, N-dimethyl-4-aminopyridine ($48.9 \mathrm{mg}, 400 \mu \mathrm{~mol}$) were added. After additional 15 min , the reaction mixture was warmed to ambient temperature. After additional 9 h , the reaction mixture was quenched with saturated aq. NaHCO_{3}. The aqueous layer was extracted with CHCl_{3} twice. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash silica gel column chromatography (hexane/AcOEt $=8 / 2$ to $7 / 3)$ to give the indoline-2-thione $4 \mathrm{c}(55.4 \mathrm{mg}, 59 \%)$ as an yellow amorphous; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 9.93(1 \mathrm{H}$, s), 7.28-7.25 ($2 \mathrm{H}, \mathrm{m}$), $7.13(1 \mathrm{H}, \mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 3.47(3 \mathrm{H}, \mathrm{s}), 3.20(1 \mathrm{H}, \mathrm{d}, J=16.6 \mathrm{~Hz})$, $3.00(1 \mathrm{H}, \mathrm{d}, J=16.6 \mathrm{~Hz}), 1.43(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 211.3,170.1,142.3,137.8,127.9,123.6,122.6,110.4$, 55.9, 51.4, 43.6, 27.7; IR (ATR): 1733, 1150, $1014 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{~S}: 236.0746$. Found: 236.0746 .

Synthesis of 3-methyl-3-(2-thiophenyl-2-oxoethyl)-indoline-2-thione (4d)

To a solution of 1,3-bis(2,6-diisopropylphenyl) imidazolium chloride ($17.0 \mathrm{mg}, 40.0 \mu \mathrm{~mol}$) in 2 mL of toluene at
ambient temperature was added potassium tert-butoxide (1.0 M sol. in THF, $40.0 \mu \mathrm{~L}, 40.0 \mu \mathrm{~mol}$). After 15 min , enal 2a $(81.3 \mathrm{mg}, 400 \mu \mathrm{~mol})$ was added to the reaction mixture. After additional 5 min , the reaction mixture was warmed to $80^{\circ} \mathrm{C}$ and stirred for additional 3 h . The reaction mixture was gradually cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{PhSH}(49.1 \mu \mathrm{~L}, 480 \mu \mathrm{~mol})$ was added. After additional 15 min , the reaction mixture was warmed to ambient temperature. After additional 6 h , the reaction mixture was quenched with water. The aqueous layer was extracted with CHCl_{3} twice. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash silica gel column chromatography (hexane $/ \mathrm{AcOEt}=8 / 2$ to $7 / 3$) to give the indoline-2-thione $\mathbf{4 d}(59.5 \mathrm{mg}, 48 \%$) as an yellow amorphous; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 10.33(1 \mathrm{H}, \mathrm{s}), 7.30-7.25(4 \mathrm{H}, \mathrm{m}), 7.22-7.17(3 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{dd}, J=7.3,7.3 \mathrm{~Hz})$, $6.94(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 3.49(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 3.36(1 \mathrm{H}, \mathrm{d}, J=16.3 \mathrm{~Hz}), 1.44(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 210.8$, $193.5,142.1,137.3,134.3,129.3,129.0,128.2,127.1,123.8,123.3,110.5,56.7,52.3,27.8$; IR (ATR): $1698,1197 \mathrm{~cm}^{-1}$; HRMS (MH^{+}) calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NOS}_{2}$: 314.0673. Found: 314.0673.

Synthesis of 3-methyl-3-(2-(methoxy(methyl)amino-2-oxoethyl)-indoline-2-thione (4e)

To a solution of 1,3-bis(2,6-diisopropylphenyl) imidazolium chloride ($17.0 \mathrm{mg}, 40.0 \mu \mathrm{~mol}$) in 2 mL of toluene at ambient temperature was added potassium tert-butoxide (1.0 M sol. in THF, $40.0 \mu \mathrm{~L}, 40.0 \mu \mathrm{~mol}$). After 15 min , enal 2a ($81.3 \mathrm{mg}, 400 \mu \mathrm{~mol}$) was added to the reaction mixture. After additional 5 min , the reaction mixture was warmed to $80{ }^{\circ} \mathrm{C}$ and stirred for additional 3 h . The reaction mixture was gradually cooled to $0{ }^{\circ} \mathrm{C}$ and N, O-dimethylhydroxylamine hydrochloride ($78.0 \mathrm{mg}, 800 \mu \mathrm{~mol}$) and triethylamine ($223 \mu \mathrm{~L}, 1.60 \mathrm{mmol}$) were added. After additional 15 min , the reaction mixture was warmed to ambient temperature. After additional 10 h , the reaction mixture was quenched with water. The aqueous layer was extracted with CHCl_{3} twice. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash silica gel column chromatography (hexane/ $\mathrm{AcOEt}=6 / 4$ to $5 / 5$) to give the indoline-2-thione $\mathbf{4 e}(53.1 \mathrm{mg}, 50 \%)$ as an yellow amorphous; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 10.09(1 \mathrm{H}, \mathrm{s}), 7.23-7.20(2 \mathrm{H}, \mathrm{m}), 7.10(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 3.71(3 \mathrm{H}, \mathrm{s})$, $3.34(1 \mathrm{H}, \mathrm{d}, J=16.9 \mathrm{~Hz}), 3.22(1 \mathrm{H}, \mathrm{d}, J=16.9 \mathrm{~Hz}), 3.01(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 212.1,170.2$, $142.5,139.1,127.6,123.4,122.2,110.6,61.1,55.8,41.6,31.8,28.5$; IR (ATR): 2939, 1653, 1198, $1007 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$: 265.1011. Found: 265.1004.

Typical Procedure for Preparation of 3,3-Disubstituted indoline-2-thione (4f-q)

Typical procedure: To a solution of 1,3-bis(2,6-diisopropylphenyl) imidazolium chloride ($0.04 \mathrm{mmol}, 0.100$ equiv.) in 2 mL of toluene at ambient temperature was added potassium tert-butoxide (1.0 M sol. in THF, 0.100 equiv.). After 15 \min, enal $2 \mathbf{f}-\mathbf{q}(0.4 \mathrm{mmol}, 1.00$ equiv.) was added to the reaction mixture. After additional 5 min , the reaction mixture was warmed to $80^{\circ} \mathrm{C}$ and stirred for additional 3 h . The reaction mixture was gradually cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{MeNH}_{2}(2.0$ M sol. in THF, 2.00 equiv.) was added. After additional 10 min , the reaction mixture was concentrated under reduced pressure. The crude was purified by flash silica gel column chromatography (hexane $/ \mathrm{AcOEt}=2 / 8$ to $0 / 10$) to give the corresponding indoline-2-thione 4f-q.

3-ethyl-3-(2-(N-methylamino)-2-oxoethyl)-indoline-2-thione (4f)

Using a typical procedure, from $2 \mathbf{f}(96.0 \mathrm{mg}, 442 \mu \mathrm{~mol}), 4 \mathrm{f}(72.6 \mathrm{mg}, 66 \%)$ was obtained as a yellow amorphous; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 11.15(1 \mathrm{H}, \mathrm{s}), 7.33(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{dd}, J=$ $7.4,7.4 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{t}, J=7.4,7.4 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 6.01(1 \mathrm{H}, \mathrm{s}), 3.01(1 \mathrm{H}, \mathrm{d}, J=$ $14.3 \mathrm{~Hz}), 2.93(1 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}), 2.54(3 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 1.99-1.95(2 \mathrm{H}, \mathrm{m}), 0.46(3 \mathrm{H}, \mathrm{t}, J=$ $7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 210.0,169.8,143.0,135.7,128.0,123.8,123.7,110.5,62.1,45.9,34.6,26.1,7.6$; IR (ATR): 3019, 1654, $1469 \mathrm{~cm}^{-1}$; HRMS (MH^{+}) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{OS}: 249.1062$. Found: 249.1057.

3-phenethyl-3-(2-(N-methylamino)-2-oxoethyl)-indoline-2-thione (4g)

Using a typical procedure, from $2 \mathrm{~g}(175 \mathrm{mg}, 596 \mu \mathrm{~mol}), \mathbf{4 g}(129 \mathrm{mg}, 67 \%)$ was obtained as a yellow amorphous; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 11.10(1 \mathrm{H}, \mathrm{s}), 7.38(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 7.24-7.09(5 \mathrm{H}, \mathrm{m})$, 6.99-6.97 ($3 \mathrm{H}, \mathrm{m}$), $5.91(1 \mathrm{H}, \mathrm{s}), 2.99(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}), 2.91(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}), 2.53(3 \mathrm{H}, \mathrm{d}, J$ $=4.6 \mathrm{~Hz}), 2.31-2.17(3 \mathrm{H}, \mathrm{m}), 1.80(1 \mathrm{H}, \mathrm{td}, J=12.2,4.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 209.6,169.5$, $143.0,141.1,135.7,128.3,128.22,128.21,125.8,124.0,123.7,110.7,61.5,46.3,43.3,29.6,26.2 ;$ IR (ATR): 3026, 1651, $1468 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{OS}: 325.1374$. Found: 325.1376.

3-(4-butenyl)-3-(2-(N-methylamino)-2-oxoethyl)-indoline-2-thione (4h)

Using a typical procedure, from $2 \mathrm{~h}(150 \mathrm{mg}, 616 \mu \mathrm{~mol}), 4 \mathrm{~h}(131 \mathrm{mg}, 78 \%)$ was obtained as a yellow amorphous; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 11.15(1 \mathrm{H}, \mathrm{s}), 7.34(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{dd}, J=$ 7.7, 7.7 Hz), $7.12(1 \mathrm{H}, \mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 6.00(1 \mathrm{H}, \mathrm{s}), 5.64-5.56(1 \mathrm{H}$, $\mathrm{m}), 4.87-4.80(2 \mathrm{H}, \mathrm{m}), 3.00(1 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}), 2.93(1 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}), 2.55(3 \mathrm{H}, \mathrm{d}, J=4.9$ $\mathrm{Hz}), 2.07-2.00(2 \mathrm{H}, \mathrm{m}), 1.79-1.69(1 \mathrm{H}, \mathrm{m}), 1.37-1.29(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 209.7,169.6$, $142.3,137.2,135.7,128.1,123.9,123.7,114.8,110.7,61.2,46.2,40.5,27.5,26.2$; IR (ATR): 3313, 3079, 1652, 1469 cm^{-1}; HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OS}: 275.1218$. Found: 275.1214.

3-isopropyl-3-(2-(N-methylamino)-2-oxoethyl)-indoline-2-thione (4i)

Using a typical procedure, from $2 \mathbf{i}(54.8 \mathrm{mg}, 237 \mu \mathrm{~mol}), 4 \mathrm{i}(42.0 \mathrm{mg}, 68 \%)$ was obtained as a
m), $7.15(1 \mathrm{H}, \mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 5.71(1 \mathrm{H}, \mathrm{s}), 3.08(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}), 2.98(1 \mathrm{H}, \mathrm{d}, J=14.0$ $\mathrm{Hz}), 2.53(3 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 2.24-2.19(1 \mathrm{H}, \mathrm{m}), 1.10(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.54(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, ס): $211.0,169.7,142.9,134.4,128.1,124.7,123.6,110.2,64.9,44.1,38.9,26.1,17.1,16.5$; IR (ATR): 3300, 3101, 1644, $1468 \mathrm{~cm}^{-1}$; HRMS (MH^{+}) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OS}: 263.1218$. Found: 263.1220.

3-tert-butyl-3-(2-(N-methylamino)-2-oxoethyl)-indoline-2-thione (4j)

Using a typical procedure, from $\mathbf{2 j}(150 \mathrm{mg}, 611 \mu \mathrm{~mol}), \mathbf{4 j}(58.5 \mathrm{mg}, 35 \%)$ was obtained as a colorless amorphous; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 10.02(1 \mathrm{H}, \mathrm{s}), 7.36(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}, J$ $=7.7,7.7 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 5.76(1 \mathrm{H}, \mathrm{s}), 3.29(1 \mathrm{H}, \mathrm{d}, J$ $=13.7 \mathrm{~Hz}), 2.98(1 \mathrm{H}, \mathrm{d}, J=13.7 \mathrm{~Hz}), 2.45(3 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 1.04(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right)$: $210.7,170.1,142.7,134.6,128.1,127.4,122.8,109.5,67.1,40.8,37.7,26.1,25.1$; IR (ATR): 3330, 2959, 1658, 1429 cm^{-1}; HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{OS}: 277.1374$. Found: 277.1375.

3-phenyl-3-(2-(N-methylamino)-2-oxoethyl)-indoline-2-thione (4k)

Using a typical procedure, from $2 \mathbf{k}(207 \mathrm{mg}, 780 \mu \mathrm{~mol}), 4 \mathbf{k}(206 \mathrm{mg}, 89 \%)$ was obtained as a colorless amorphous; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 10.60(1 \mathrm{H}, \mathrm{s}), 7.28-7.20(5 \mathrm{H}, \mathrm{m}), 7.20-7.16(2 \mathrm{H}, \mathrm{m})$, $7.11(1 \mathrm{H}, \mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 5.87(1 \mathrm{H}, \mathrm{s}), 3.64(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz})$, $3.34(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}), 2.56(3 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta\right): 209.34,169.5,143.1$, $140.8,137.4,128.5,128.3,127.5,126.4,124.9,124.0,111.0,64.4,45.0,26.2 ;$ IR (ATR): $3263,1666,1436 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{OS}: 297.1061$. Found: 297.1067.

3-(N-Boc-indolyl)-3-(2-(N-methylamino)-2-oxoethyl)-indoline-2-thione (4l)

Using a typical procedure, from $21(220 \mathrm{mg}, 544 \mu \mathrm{~mol}), 41(142 \mathrm{mg}, 60 \%)$ was obtained as a yellow amorphous; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 10.61(1 \mathrm{H}, \mathrm{s}), 8.08-8.04(1 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}, \mathrm{s})$, 7.29-7.27 ($1 \mathrm{H}, \mathrm{m}$), 7.19-7.16 ($2 \mathrm{H}, \mathrm{m}$), $7.07(2 \mathrm{H}, \mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{dd}, J=7.6 .7 .6$ $\mathrm{Hz}), 6.67(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 5.78(1 \mathrm{H}, \mathrm{s}), 3.57(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 3.40(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz})$, $2.59(3 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 1.68(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 208.3,168.6,149.5,142.9,136.0$, 135.7, 128.9, 127.6, 124.9, 124.5, 123.9, 122.6, 120.5, 119.6, 115.3, 110.7, 84.2, 60.5, 45.5, 28.2, 26.4; IR (ATR): 3277, 3087, 1729, 1651, $1447 \mathrm{~cm}^{-1}$; HRMS (MH^{+}) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: 436.1694$. Found: 436.1696.

3,5-dimethyl-3-(2-(N-methylamino)-2-oxoethyl)-indoline-2-thione (4m)

Using a typical procedure, from $\mathbf{2 m}(42.7 \mathrm{mg}, 197 \mu \mathrm{~mol}), \mathbf{4 m}(35.6 \mathrm{mg}, 73 \%)$ was obtained as a yellow amorphous; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 10.60(1 \mathrm{H}, \mathrm{s}), 7.18(1 \mathrm{H}, \mathrm{s}), 7.02(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz})$, $6.87(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 5.84(1 \mathrm{H}, \mathrm{s}), 2.98(1 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}), 2.86(1 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}), 2.59$ $(3 \mathrm{H}, \mathrm{s}), 2.32(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 210.8,169.6,139.5,138.2,133.8$, $128.5,124.4,110.2,57.3,46.0,28.3,26.1,21.2$; IR (ATR): 3018, 1654, $1474 \mathrm{~cm}^{-1} ; \mathrm{HRMS}_{\left(\mathrm{MH}^{+}\right) \text {calcd for }}$

5-methoxy-3-methyl-3-(2-(N-methylamino)-2-oxoethyl)-indoline-2-thione (4n)

Using a typical procedure, from $2 \mathbf{n}(77.5 \mathrm{mg}, 332 \mu \mathrm{~mol}), 4 \mathrm{n}(65.5 \mathrm{mg}, 75 \%)$ was obtained as a yellow amorphous; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 10.69(1 \mathrm{H}, \mathrm{s}), 6.97(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 6.89(1 \mathrm{H}, \mathrm{d}$, $J=8.6 \mathrm{~Hz}), 6.74(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}), 2.99(1 \mathrm{H}, \mathrm{d}, J=14.3$ $\mathrm{Hz}), 2.87(1 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}), 2.60(3 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 1.44(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \delta\right):$ $210.0,169.6,157.2,139.8,135.5,112.9,111.0,110.5,57.5,55.7,45.9,28.2,26.2$; IR (ATR): 3393, $1670,1488 \mathrm{~cm}^{-1}$; HRMS (MH ${ }^{+}$) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$: 265.1011. Found: 265.1005.

5-dimethylamino-3-methyl-3-(2-(N-methylamino)-2-oxoethyl)-indoline-2-thione (4o)

Using a typical procedure, from $2 \mathbf{2 0}(35.1 \mathrm{mg}, 142 \mu \mathrm{~mol}), 4 \mathbf{4}(17.2 \mathrm{mg}, 44 \%)$ was obtained as a yellow amorphous; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, \delta\right): 12.26(1 \mathrm{H}, \mathrm{s}), 7.58(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 6.81$ $(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.79(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 6.56(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}), 2.83(6 \mathrm{H}, \mathrm{s}), 2.75$ $(1 \mathrm{H}, \mathrm{d}, J=14.9 \mathrm{~Hz}), 2.53(1 \mathrm{H}, \mathrm{d}, J=14.9 \mathrm{~Hz}), 2.40(3 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 1.25(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, \delta\right): 208.5,169.0,147.6,140.3,133.6,111.2,110.2,109.1,56.0,44.1,40.9,27.6,25.2$; IR (ATR): 3486, 1699, $1490 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{OS}: 278.1327$. Found: 278.1331.

5-chloro-3-methyl-3-(2-(N-methylamino)-2-oxoethyl)-indoline-2-thione (4p)

Using a typical procedure, from $\mathbf{2 p}(80.0 \mathrm{mg}, 337 \mu \mathrm{~mol}), \mathbf{4 p}(38.9 \mathrm{mg}, 43 \%)$ was obtained as a yellow amorphous; ${ }^{1} \mathrm{H}$ NMR (acetone- $\left.d_{6}, \delta\right): 11.47(1 \mathrm{H}, \mathrm{s}), 7.46(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.24(1 \mathrm{H}$, dd, $J=8.3,2.0 \mathrm{~Hz}), 7.05(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{s}), 2.96(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 2.83(1 \mathrm{H}$, d, $J=15.5 \mathrm{~Hz}), 2.52(3 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}), 1.35(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (acetone- $\left.d_{6}, \delta\right): 213.4,169.7$, $143.0,142.4,129.0,128.3,124.7,111.9,57.4,45.7,28.2,25.8$; IR (ATR): $3187,2970,1651,1459 \mathrm{~cm}^{-1} ; \mathrm{HRMS}^{\left(\mathrm{MH}^{+}\right)}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{14}{ }^{35} \mathrm{ClN}_{2} \mathrm{OS}: 269.0515$. Found: 269.0520.

5-bromo-3-methyl-3-(2-(N-methylamino)-2-oxoethyl)-indoline-2-thione (4q)

$4 q$

Using a typical procedure, from $2 \mathbf{q}(67.7 \mathrm{mg}, 240 \mu \mathrm{~mol}), \mathbf{4 q}(20.0 \mathrm{mg}, 27 \%)$ was obtained as a yellow amorphous; ${ }^{1} \mathrm{H}$ NMR (acetone- $\left.d_{6}, \delta\right): 11.42(1 \mathrm{H}, \mathrm{s}), 7.56(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.36(1 \mathrm{H}$, dd, $J=8.3,2.0 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{s}), 2.92(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 2.79(1 \mathrm{H}$, d, $J=15.5 \mathrm{~Hz}), 2.49(3 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 1.32(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (acetone- $\left.d_{6}, \delta\right): 213.4,169.7$, $143.5,142.8,131.2,127.5,116.5,112.4,57.4,45.7,28.2,25.8$; IR (ATR): $3503,1654,1457 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{MH}^{+}\right)$calcd for $\mathrm{C}_{12} \mathrm{H}_{14}{ }^{79} \mathrm{BrN}_{2} \mathrm{OS}: 313.0010$. Found: 313.0014.

