1cPalladium-Catalyzed Intramolecular Acylcyanation of Alkenes Using α-Iminonitriles

Naveen, R. Rondla, Jodi M. Ogilvie, Zhongda Pan, Christopher J. Douglas,*

> Department of Chemistry, University of Minnesota – Twin Cities, 207 Pleasant St. SE, Minneapolis, MN 55455 *cdouglas@umn.edu* (612) 625-0922

Supporting Information

(125 Pages)

Section A contains general experimental procedures

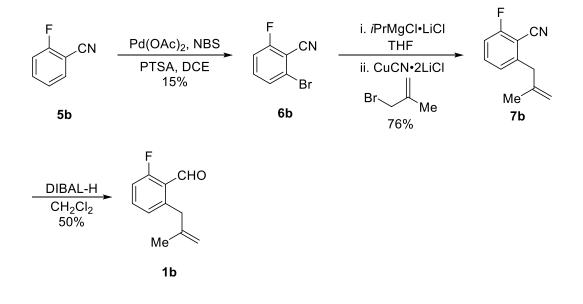
Section B contains experimental procedures for the preparation of 1b to 1k, 2a to 2l,

3a to 3l, 5a to 5k, and 6b to 6k, 7b to 7j with tabulated characterization data for these new compounds.

Section C contains copies of NMR spectra for new compounds described in section B.

Section A

General Details: All reactions were carried out using flame-dried glassware under nitrogen. Acetonitrile, toluene, dichloromethane and THF (tetrahydrofuran) were dried according to published procedures.¹ After drying toluene and dichloromethane were further deoxygenated by bubbling a stream of argon through the liquid for 30 min in a Strauss flask and then stored in a nitrogen-filled glove box. Pd(PPh₃)₄ was purchased from Strem Chemicals. All palladium-catalyzed reactions were carried out in a Vacuum Atmospheres Co. nitrogen filled glove box in 1 or 4 dram vials sealed with PTFE lined caps. Heating was applied by aluminum block heaters. All other chemicals were purchased from commercial vendors and used as received.


Analytical thin layer chromatography (TLC) was carried out using 0.25 mm silica plates from Silacycle or 200 µm alumina plates from Sorbent Technologies. Eluted plates are visualized first with UV light and then by staining with potassium permanganate/potassium carbonate solution. Flash chromatography was performed using 230–400 mesh (particle size 0.04–0.063 mm) silica gel purchased from Silacycle or neutral alumina (particle size 50 to 200 µm) purchased from Sorbent Technologies. ¹H NMR (300 and 500 MHz), ¹³C NMR (75 and 126 MHz), and ¹⁹F NMR (471 MHz) spectra were obtained on Varian and Bruker FT NMR instruments. NMR spectra were reported as δ values in ppm relative to. chloroform, dichloromethane, hexafluorobenzene, tetramethylsilane or using instrument standard. ¹H NMR coupling constants are reported in Hz; multiplicity was indicated as follows; s (singlet); d (doublet); t (triplet); q (quartet); quint (quintet); m (multiplet); dd (doublet of doublets); ddd (doublet of doublet of doublets); dddd (doublet of doublet of doublet of doublets); dt (doublet of triplets); td (triplet of doublets); ddt (doublet of doublet of triplets); app Infrared (IR) spectra were obtained on a MIDAC FT-IR (apparent); br (broad). spectrometer as a thin-film on NaCl plates (prepared by evaporation from CH₂Cl₂ or CDCl₃). Low-resolution mass spectra (LRMS) in EI or CI experiments were performed on a Varian Saturn 2200 GC-MS system or on Bruker BioTOF II using electrospray ionization (ESI) method. The column used for GC-MS was a capillary column of 30

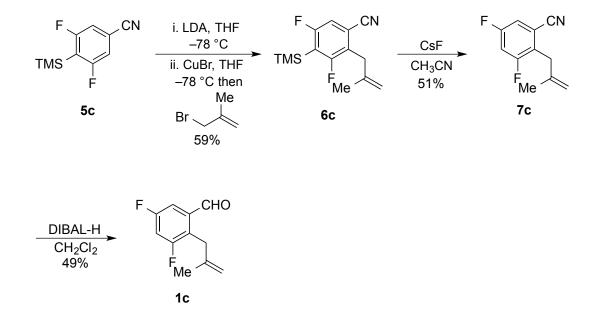
meters in length and 0.4 mm in diameter. The method used begins with initial temperature of 100 °C maintained for two min and increased at the rate of 5 °C per minute until 250 °C which was maintained for 5 min. High-resolution mass spectra (HRMS) with electrospray ionization (ESI) were performed on a Bruker BioTOF II and with chemical ionization (CI) were performed on a Finnigan MAT95 instrument.

Section B

Synthesis of Aldehydes:

2-fluoro-6-(2-methylallyl)benzaldehyde 1b:

2-(2-methylallyl)benzaldehyde 1b:


2-bromo-6-fluorobenzonitrile **6b** was prepared by slightly modifying the procedure reported by Sun.² To the mixture of 2-fluorobenzonitrile **5b** (1.06 g, 8.8 mmol), NBS (3.2 g, 18 mmol) and *p*-toluenesulfonic acid (1.35 g, 7.0 mmol) in 1,2-dichloroethane (30 mL), $Pd(OAc)_2$ (200 mg, 0.9 mmol) was added and the reaction mixture was heated at 80 °C under air for 14 hours. After cooling to room temperature, the reaction mixture was purified was concentrated to remove solvent and other volatiles. The crude material was purified

by flash column chromatography on silica (gradient from 20 to 30% EtOAc in hexanes) to give slightly impure 2-bromo-6-fluorobenzonitrile **6b** (0.25 g, 1.32 mmol, 15%). $R_f = 0.72$ (3:7 EtOAc:Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.52–7.44 (m, 2H), 7.20 (dt, J = 8.2, 1.4 Hz, 1H); ¹³C NMR (126MHz, CDCl₃) δ 163.8 (d, J = 263 Hz), 135.2 (app d, J = 10 Hz), 128.9, 125.8, 115.1 (d, J = 20 Hz), 112.4, 105.6; LRMS (GC-MS, CI, MeOH) *m/z* 201 (M+2+H)⁺ and 199 (M + H)⁺, t_R = 24.6 min. The material was of suitable purity to undergo next step.

2-bromo-6-fluorobenzonitrile, **6b** (250 mg, 1.26 mmol) was dissolved in THF (0.2 mL) and cooled to 0 °C. *i*PrMgCl•LiCl³ (1.2 mL of a 1.3 M solution in THF, 1.6 mmol) was added and the reaction mixture was stirred for one hour at 0 °C. CuCN•2LiCl (0.13 mL of 1M solution in THF, 0.13 mmol) and 3-bromo-2-methyl-1-propene (0.2 mL, 2 mmol) were added at 0 °C and the solution was allowed to warm to room temperature and stirred for 14 hours at room temp. The reaction was quenched by addition of aqueous saturated NH₄Cl solution (10 mL) and extracted with diethyl ether (2 × 30 mL). The organic layer was washed with brine (10 mL), dried over anhydrous Na₂SO₄ (15 g) and concentrated. The crude material was purified by flash column chromatography on silica (10% EtOAc in hexanes) to give 2-fluoro-6-(2-methylallyl)benzonitrile, **7b** (167 mg, 1.6 mmol, 76%) R_f = 0.50 (1:9 EtOAc:Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.52 (ddd, *J* = 8.1, 8.1, 5.8 Hz, 1H), 7.14 (d, *J* = 7.8 Hz, 1H), 7.07 (dt, *J* = 8.6, 1.0 Hz, 1H), 4.92–4.91 (m, 1H), 4.72–4.70 (m, 1H), 3.54 (s, 2H), 1.74 (s, 3H); LRMS (GC-MS, CI, MeOH) *m/z* 177 (M+H)⁺, t_R = 12.9 min.

DIBAL-H (1.4 mL of 1 M solution in toluene, 1.4 mmol) was added to a solution of 2fluoro-6-(2-methylallyl)benzonitrile, **7b** (165 mg, 0.93 mmol) in methylene chloride (5 mL) maintained at 0 °C under nitrogen. The reaction was allowed to warm to room temperature and stirred for 14 hours. The reaction mixture was diluted with diethyl ether (7 mL) and cooled to 0 °C. HCl (5 mL, 3N solution) was added. The reaction mixture was heated to reflux for 30 minutes. Diethyl ether (30 mL) was added to the reaction mixture and layers were separated. The aqueous layer was extracted with diethyl ether (30 mL) and the combined organic extracts were washed with brine (10 mL), dried over anhydrous Na₂SO₄ (10 g) and concentrated. The crude material was purified by flash column chromatography on silica (5% EtOAc in hexanes) to give **2-(2-methylallyl)benzaldehyde 1b** (84 mg, 1.26 mmol 50%) $R_f = 0.70$ (1:4 EtOAc:Hex); ¹H NMR (500 MHz, CDCl₃) δ 10.48 (s, 1H), 7.49 (ddd, J = 8.0, 8.0, 5.8 Hz, 1H), 7.08–7.03 (m, 2H), 4.81–4.79 (m, 1H), 4.43–4.42 (m, 1H), 3.73 (s, 2H), 1.78 (s, 3H); LRMS (GC-MS, CI, MeOH) m/z 179 (M+H)⁺, $t_R = 12.7$ min.

3,5-difluoro-2-(2-methylallyl)benzaldehyde 1c:

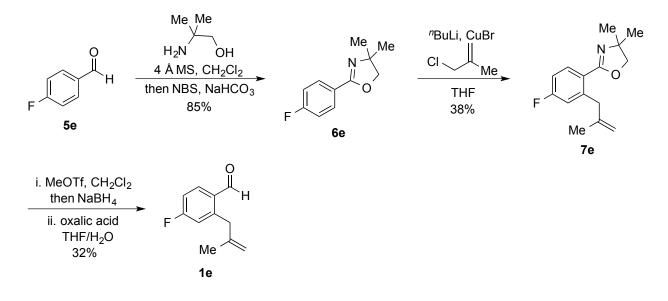
3,5-difluoro-4-(trimethylsilyl)benzonitrile **5c** is prepared using the reported procedure.⁴ A solution of diisopropyl amine (1.59 mL, 11.37 mmol) in THF (26 mL) was cooled to –78 °C under nitrogen. A solution of *n*-BuLi in hexanes (1.6 M hexanes, 4.55 mL, 11.37 mmol) was added dropwise and this solution was allowed to stir for 30 minutes. A solution of 3,5-difluoro-4-(trimethylsilyl)benzonitrile **5c** (2.23 g, 10.53 mmol) in THF (4 mL) was added dropwise to the LDA solution and this was allowed to stir at –78 °C for 2 hours. The solution was then transferred *via* cannula cold to a stirred suspension of CuBr (1.5 g, 10.42 mmol) in THF (20 mL) that was cooled at –78 °C. The resulting dark blue solution was allowed to stir for 30 minutes, at which point methallyl bromide (1.06 mL, 10.53 mmol) was added dropwise. The solution was then allowed to warm to room

temperature and was stirred for 15 hours. The reaction was quenched with saturated aqueous NH₄Cl (50 mL) and the aqueous layer was washed with Et₂O (2 × 40 mL). The organics were then washed with brine (80 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The product was purified by column chromatography (2% EtOAc in hexanes) to yield 3,5-difluoro-2-(2-methylallyl)-4-(trimethylsilyl)benzonitrile **6c** (1.66 g, 6.25 mmol, 59% yield) as an orange oil. R_f = 0.72 (1:9 EtOAc:Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.09 (dd, *J* = 7.7, 1.2 Hz, 1H), 4.84–4.83 (m, 1H), 4.57 (app s, 1H), 3.49 (s, 2H), 1.79 (s, 3H), 0.39 (t, *J* = 1.5 Hz, 9H); LRMS (GC-MS, CI, MeOH) *m/z* 266 (M+H)⁺, t_R = 15.1 min.

To a stirred solution of 3,5-difluoro-2-(2-methylallyl)-4-(trimethylsilyl)benzonitrile **6c** (1.6 g, 6.0 mmol) in distilled acetonitrile (22 mL) at room temperature was added anhydrous CsF (1.098 g, 7.2 mmol). This reaction was allowed to stir at room temperature until no starting material was observed by TLC (~12 hours). The reaction was then diluted with water and the layers were separated. The aqueous layer was extracted with Et₂O (2 × 20 mL) and then the combined organics were washed with brine (40 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude material was purified by flash column chromatography (2% EtOAc in hexanes) to yield 3,5-difluoro-2-(2-methylallyl)benzonitrile **7c** (0.60 g, 3.11 mmol, 51% yield) as an orange oil. R_f = 0.50 (1:9 EtOAc:Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.23–7.18 (m, 1H), 7.10 (td, *J* = 9.2, 2.4 Hz, 1H), 4.85 (m, 1H), 4.59 (m, 1H), 3.53 (s, 2H), 1.79 (s, 3H); LRMS (GC-MS, CI, MeOH) *m/z* 194 (M+H)⁺, t_R = 8.6 min.

A flame-dried flask under N₂ was charged with 3,5-difluoro-2-(2-methylallyl)benzonitrile **7c** (0.5985 g, 3.1 mmol) and dichloromethane (21 mL). The solution was cooled to 0 °C and a solution of DIBAL-H in toluene (1M, 3.7 mL, 3.7 mmol) was added dropwise. The reaction was allowed to warm to room temperature over 15 h. The reaction mixture was then diluted with Et₂O (18 mL) and HCl (3N, 18 mL) was added. The reaction was headed to reflux for 1 h, after which it was cooled to room temperature and was diluted with more Et₂O (18 mL). The organics were separated and washed with H₂O (50 mL), saturated aqueous NaHCO₃ (50 mL), brine (50 mL) and then dried over Na₂SO₄, filtered and concentrated. The crude material was purified by flash column chromatography

(2% EtOAc in Hexanes) to yield **3,5-difluoro-2-(2-methylallyl)benzaldehyde 1c** (0.2969 g, 1.51 mmol, 49% yield) as a yellow oil. $R_f = 0.5$ (1:9 EtOAc:Hex); ¹H NMR (500 MHz, CDCl₃) δ 10.17 (d, J = 2.6 Hz, 1H), 7.43 (ddd, J = 8.4, 2.6, 1.3 Hz, 1H), 7.07 (ddd, J = 9.3, 8.2, 2.7 Hz, 1H), 4.83 (dt, J = 2.5, 1.2 Hz, 1H), 4.38 (app s, 1H), 3.70 (s, 2H), 1.83 (s, 3H); LRMS (GC-MS, CI, MeOH) *m/z* 197 (M+H)⁺, t_R = 9.5 min.


i. Mg, I₂(cat) ΟĤ p-TsOH THF Dean-Stark Me Me ii. 56% Me Me Br Br CI Me 5d 6d Cul 7d 50% p-TsOH acetone/H₂O Me 90% Me 1d

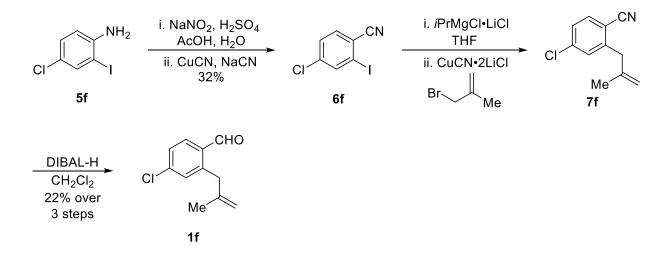
A solution of 2-bromo-4-methylbenzaldehyde, **5d** (1.51 g, 7.6 mmol), ethylene glycol (0.86 mL, 15.2 mmol) benzene (4.2 mL) and *p*-TsOH (29 mg, 0.15 mmol) was heated to reflux for 14 hours with a Dean-Stark trap. The reaction was neutralized with saturated aqueous NaHCO₃ solution (20 mL) and extracted twice with diethyl ether (2 × 50 mL). The combined organic extracts were washed with brine (20 mL), dried over anhydrous Na₂SO₄ (25 g) and concentrated. The crude material was purified by flash column chromatography on silica (gradient from 5 to 10% EtOAc in hexanes) to give 2-(2-bromo-4-methylphenyl)-1,3-dioxolane, **6d** (1.05 g, 4.32 mmol, 56%) R_f = 0.72 (1:4 EtOAc:Hex); ¹H NMR (300 MHz, CDCl₃) δ 7.47 (d, *J* = 7.9 Hz, 1H), 7.39 (d, *J* = 0.8 Hz, 1H), 7.14 (app d, *J* = 8.5 Hz, 1H), 6.07 (s, 1H), 4.18–4.03 (m, 4H), 2.33 (s, 3H); LRMS (GC-MS, CI, MeOH) *m/z* 245 (M+2+H)⁺ and 243 (M+H)⁺, t_R = 10.0 min.

2-(2-methylallyl)benzaldehyde, 1d:

A round-bottom flask equipped with a reflux condenser and magnetic stir bar under nitrogen was charged with Mg turnings (121 mg, 5.04 mmol) and a small crystal of I₂. The flask was flame-dried under vacuum. A solution of THF (2.5 mL) and 2-(2-bromo-4methylphenyl)-1,3-dioxolane 6d (1.02 g, 4.2 mmol) was slowly added. After complete addition the mixture was maintained at reflux for two hours. The resulting solution was allowed to cool to room temperature then added dropwise to a stirred suspension of isobutenyl chloride (0.62 mL, 6.3 mmol) and Cul (80 mg, 0.42 mmol) in THF (3 mL) maintained at 0 °C. The reaction mixture was stirred for 2 h at 0 °C, allowed to warm to room temperature and stirred overnight. CH₂Cl₂ (15 mL) was added and the mixture was washed with a saturated aqueous NH₄Cl (10 mL) solution. The organic phase was washed with brine (10 mL), dried over anhydrous Na₂SO₄ (10 g) and concentrated in vacuo. The crude material was purified by flash column chromatography on silica (4% EtOAc in hexanes) to give 2-(4-methyl-2-(2-methylallyl) phenyl)-1,3-dioxolane, 7d (453 mg, 2.12 mmol, 50%) as colorless oil. $R_f = 0.51$ (1:9 EtOAc:Hex); ¹H NMR (300 MHz, CDCl₃) δ 7.47 (d, J = 7.9 Hz, 1H), 7.06 (app d, J = 8.0 Hz, 1H), 6.99 (app s, 1H), 5.95 (s, 1H), 4.86-4.81 (m, 1H), 4.58-4.53 (m, 1H), 4.16-3.98 (m, 4H), 3.44 (s, 2H), 2.32 (s, 3H), 1.74 (s, 3H); LRMS (GC-MS, CI, MeOH) m/z 219 (M+H)⁺, t_R = 13.5 min.

A solution of 2-(4-methyl-2-(2-methylallyl) phenyl)-1,3-dioxolane, **7d** (450 mg, 2.10 mmol) in water (8 mL), acetone (8 mL) and *p*-TsOH (22 mg, 0.11 mmol) was heated to reflux and maintained for 45 minutes. The reaction mixture was allowed to cool to room temperature and extracted with CH₂Cl₂ (40 mL). The organic phase was dried over Na₂SO₄ (10 g) and concentrated *in vacuo*. The crude reaction mixture was purified by flash column chromatography on silica (4% EtOAc in hexanes) to give compound **2-(2-methylallyl)benzaldehyde, 1d** (322 mg, 1.85 mmol, 90%) as a colorless oil R_f = 0.54 (1:9 EtOAc:Hex); ¹H NMR (300 MHz, CDCl₃) δ 10.18 (s, 1H), 7.77 (d, *J* = 7.9 Hz, 1H), 7.19 (app d, *J* = 7.5 Hz, 1H), 7.08 (app s, 1H), 4.84–4.83 (m, 1H), 4.48–4.44 (m, 1H), 3.70 (s, 2H), 2.40 (s, 3H), 1.78 (s, 3H); LRMS (GC-MS, CI, MeOH) *m/z* 175 (M+H)⁺, t_R = 9.9 min.

4-fluoro-2-(2-methylallyl)benzaldehyde 1e:

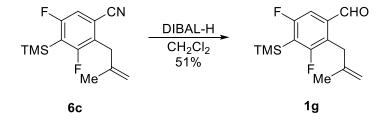

In analogy to the procedure reported by Glorius et al.⁵ 2-amino-2-methyl-1-propanol (1.6 mL, 16.6 mmol) and 4-fluorobenzaldehyde, **5e** (2.04 g, 16.4 mmol) were dissolved in CH₂Cl₂ (110 mL) and stirred over 4 Å Molecular Sieves (MS) (24 g) for 14 h. NBS (2.93 g, 16.6 mmol) was added and the solution was stirred for an additional 30 min. The mixture was filtered through Celite and washed with saturated aqueous NaHCO₃ (100 mL) and H₂O (50 mL). The organic layer was dried over anhydrous Na₂SO₄ (30 g) and concentrated in vacuo. The resulting residue was purified by flash column chromatography (gradient from 10 to 15% EtOAc in hexanes) to give 4,4-dimethyl-2-(4-fluoro)phenyl-2-oxazoline, **6e** (2.79 g, 14.5 mmol, 85%) R_f = 0.50 (1:4 EtOAc:Hex); ¹H NMR (300 MHz, CDCl₃) δ 7.96–7.91 (m, 2H), 7.12–7.04 (m, 2H), 4.11 (s, 2H), 1.38 (s, 6H); LRMS (ESI) *m/z* 193 (M+H)⁺.

In analogy to the reported procedure⁶ *n*-BuLi (2.5 M in hexanes, 3.8 mL, 9.5 mmol) was added dropwise to a solution of 4,4-dimethyl-2-(4-fluoro)phenyl-2-oxazoline **6e** (1.3 g, 6.74 mmol, 1.0 equiv) in THF (19 mL) maintained at 0 °C. The mixture was stirred at 0 °C for 3.5 hours and was transferred to a suspension of CuBr (960 mg, 6.1 mmol, 1.1

equiv) in THF (7 mL) *via* cannula. The resulting green mixture was stirred at 0 °C for 1.5 hours and isobutenyl chloride (0.76 mL, 6.1 mmol, 0.9 equiv) was added. The reaction mixture was stirred at room temperature overnight. The reaction was quenched with saturated aqueous NH₄Cl (20 mL) solution. The aqueous layer was extracted with diethyl ether (3 × 20 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ (15 g) and concentrated *in vacuo*. The crude material was purified by flash column chromatography on silica (gradient from 5 to 10% EtOAc in hexanes) to give 4,4-dimethyl-2-(4-fluoro-(2-(2-methylallyl))phenyl)-4,5-oxazoline, **7e** (660 g, 2.66 mmol, 38%) as a dark green oil R_f = 0.75 (1:4 EtOAc:Hex); ¹H NMR (300 MHz, CDCl₃) δ 7.74 (dd, *J* = 8.3, 5.9 Hz, 1H), 6.98–6.90 (m, 2H), 4.81 (app s, 1H), 4.55 (app s, 1H), 4.04 (s, 2H), 3.73 (s, 2H), 1.69 (s, 3H), 1.36 (s, 6H); LRMS (ESI) *m/z* 248 (M+H)⁺.

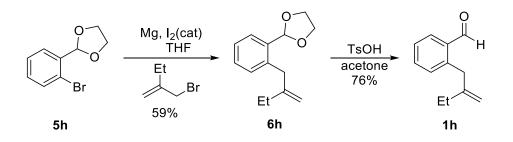
To a solution of 4,4-dimethyl-2-(4-fluoro-(2-(2-methylallyl))phenyl)-4,5-oxazoline, 7e (320 mg, 1.29 mmol) in 2.6 mL of CH₂Cl₂ was added methyl trifluoromethanesulfonate (0.31 mL, 2.7 mmol) in a nitrogen filled glove box and the solution was stirred for 2 hours at ambient temperature inside the nitrogen filled glove box. The solution was taken out of glove box and cooled to 0 °C. A solution of NaBH₄ (1.56 g, 4.12 mmol) in THF/MeOH (4:1, 37.5 mL) was added to the mixture. After stirring for 1 h at 0 °C, saturated aqueous NH₄CI (10 mL) was added and the mixture was extracted with diethyl ether (2×20 mL). The combined organic extracts were washed with saturated NaHCO₃ (10 mL), brine (10 mL), dried over anhydrous Na₂SO₄ (10 g) and concentrated in vacuo. The resulting residue was dissolved in a solution of THF/H₂O (4:1, 5 mL) and treated with oxalic acid dihydrate (1.05 g, 8.3 mmol). The solution was stirred at room temperature for 18 hours. Diethyl ether (30 mL) was added and the mixture was washed with saturated aqueous NaHCO₃ (10 mL) solution, brine (10 mL), dried over anhydrous Na₂SO₄ (15 g) and concentrated in vacuo. The resulting residue was purified by flash column chromatography on silica (gradient 5 to 10% EtOAc in hexanes) to give 4fluoro-2-(2-methylallyl)benzaldehyde, 1e (76 mg, 0.43 mmol, 32%) $R_f = 0.85$ (1:4 EtOAc:Hex); ¹H NMR (300MHz, CDCl₃) δ 10.17 (s, 1 H), 7.90 (dd, J = 8.6, 6.0 Hz, 1H), 7.07 (dt, J = 8.2, 2.5 Hz, 1H), 6.99 (dd, J = 9.5, 2.5 Hz, 1H), 4.89-4.88 (m, 1H), 4.50

(app s, 1H), 3.73 (s, 2H), 1.78 (s, 3H); LRMS (GC-MS, CI, MeOH) m/z 178 (M+H)⁺, t_R = 13.4 min.


4-chloro-2-(2-methylallyl)benzaldehyde 1f:

A solution of NaNO₂ (330 mg, 5 mmol) in water (1.2 mL) was added dropwise to a solution of 4-chloro-2-iodoaniline, **5f** (1.02 g, 4.1 mmol) in concentrated H₂SO₄ (1 mL), AcOH (4 mL) and water (2 mL) that was maintained at 0 °C. The mixture was stirred for 30 min at 0 °C. The resulting cold diazonium salt mixture was added to the solution of CuCN (390 mg, 4.5 mmol), NaCN (420 mg, 8.3 mmol) and NaHCO₃ (2.0 g) in water (4.3 mL) maintained at 0 °C in a very large round bottomed flask (1 L) to prevent the foam formed during the reaction from spilling. The reaction mixture was allowed to warm to room temperature and stirred for one hour. The brown precipitate that was formed was dissolved in dichloromethane (30 mL) and layers were separated. The aqueous layer was extracted again with dichloromethane (20 mL). The combined organic extracts were washed with water (20 mL), saturated NaHCO₃ (15 mL), brine (15 mL), dried over anhydrous Na₂SO₄ (20 g) and concentrated *in vacuo*. The resulting crude material was purified by flash column chromatography on silica (10% EtOAc in hexanes) to give 4chloro-2-iodobenzonitrile, **6f** (340 mg, 1.29 mmol, 32%) $R_f = 0.75$ (1.4 EtOAc:Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, J = 2.0 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.45 (dd, J = 8.4, 2.0 Hz, 1H); LRMS (GC-MS, CI, MeOH) m/z 264 (M+H)⁺, t_R = 15.5 min.

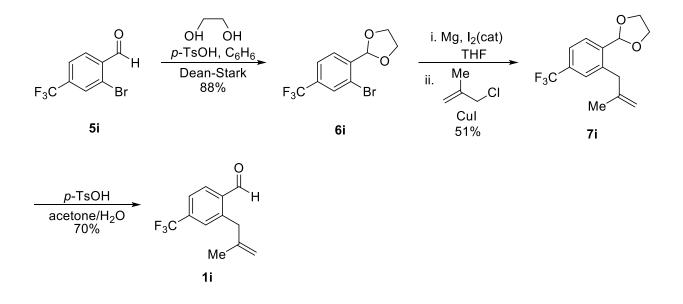
4-chloro-2-iodobenzonitrile, **6f** (316 mg, 1.20 mmol) was dissolved in THF (0.3 mL) and cooled to -10 °C. *i*PrMgCI•LiCl³ (2 mL of a 0.77 M solution in THF, 1.45 mmol) was added and the reaction mixture was stirred for 30 min at -10 °C. Then CuCN•2LiCl (0.1 mL of 1M solution in THF, 0.2 mmol) and 3-bromo-2-methyl-1-propene (0.18 mL, 1.8 mmol) were added to the reaction at -10 °C. The resulting mixture was slowly allowed to warm to room temperature and stirred for 14 hours. The reaction was quenched with saturated aqueous NH₄Cl solution (15 mL) and extracted using diethyl ether (2 × 30 mL). The combined organic extracts were washed with brine (10 mL), dried over anhydrous Na₂SO₄ (10 g) and concentrated. Attempted purification of the crude product provided mixture of 4-chloro-2-iodobenzonitrile (**7f**) and *p*-chlorobenzonitrile (~15%) which was taken to the next step.


DIBAL-H (1.0 mL of 1 M solution in toluene, 1.5 mmol) was added to a solution of 4chloro-2-(2-methylallyl)benzonitrile, **7f** (134 mg with ~15 mol % *p*-chlorobenzonitrile) in methylene chloride (2.8 mL) maintained at 0 °C under nitrogen. The reaction was slowly allowed to warm to room temperature and stirred for 14 hours. The reaction mixture was diluted with diethyl ether (5 mL) and cooled to 0 °C. HCl (4 mL of 3N solution) was slowly added at 0 °C and the mixture was refluxed for 30 minutes. Diethyl ether (30 mL) was added to the reaction mixture and layers were separated. The aqueous layer was extracted with diethyl ether (30 mL) and the combined organic layers were washed with brine (10 mL), dried over anhydrous Na₂SO₄ (10 g) and concentrated *in vacuo*. The crude material was purified by flash column chromatography (8% Et₂O in hexanes) on silica to give **4-chloro-2-(2-methylallyl)benzaldehyde, 1f** (50 mg, 0.26 mmol 22%) R_f = 0.80 (1:4 EtOAc:Hex); ¹H NMR (500 MHz , CDCl₃) δ 10.19 (s, 1H), 7.82 (d, *J* = 8.3 Hz, 1H), 7.37 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.28 (d, *J* = 2.1 Hz, 1H), 4.89–4.88 (m, 1H), 4.48-4.47 (m, 1H), 3.70 (s, 2H), 1.79 (d, *J* = 0.5 Hz, 3H); LRMS (GC-MS, CI, MeOH) *m/z* 195 (M + H)⁺, t_R = 14.8 min.

3,5-difluoro-2-(2-methylallyl)-4-(trimethylsilyl)benzaldehyde 1g:

A flame-dried flask under N₂ was charged with 3,5-difluoro-2-(2-methylallyl)-4-(trimethylsilyl)benzonitrile 6c (1.028 g, 3.87 mmol) and dichloromethane (22 mL). The solution was cooled to 0 °C and a solution of DIBAL-H in toluene (1M, 4.65 mL, 4.65 mmol) was added dropwise. The reaction was allowed to warm slowly to room temperature and was stirred for 15 h. The reaction mixture was then diluted with Et₂O (20 mL) and HCI (3N, 20 mL) was added. The reaction was headed to reflux for 1 h at which time it was cooled back down to room temperature and was diluted with more Et_2O (20 mL). The organics were separated and washed sequentially with H₂O (60 mL), saturated aqueous NaHCO₃ (60 mL), brine (60 mL) followed by drying over Na₂SO₄, filtration and concentration. The crude product was purified by column chromatography (2% EtOAc in Hexanes) to yield 3,5-difluoro-2-(2-methylallyl)-4-(trimethylsilyl)benzaldehyde 1g (0.5325 g, 1.98 mmol, 51% yield) as a yellow oil (Note: The product contains a minor, inseparable impurity observable in the ¹H NMR that we believe is the di-TMS protected product. As this impurity will also undergo the desired key reaction, we have deemed the purity level appropriate to carry on to the key step). $R_f = 0.6$ (1:9 EtOAc:Hex); ¹H NMR (500 MHz, CDCl₃) δ 10.12 (d, J = 2.5 Hz, 1H), 7.30 (dd, J = 8.5, 1.0 Hz, 1H), 4.80 – 4.79 (m, 1H), 4.35 (app s, 1H), 3.64 (s, 2H), 1.80 (s, 3H), 0.37 (t, J = 1.5 Hz, 9H); LRMS (GC-MS, CI, MeOH) m/z 269 (M+H)⁺, t_R = 15.4 min.

2-(2-methylenebutyl)benzaldehyde 1h:



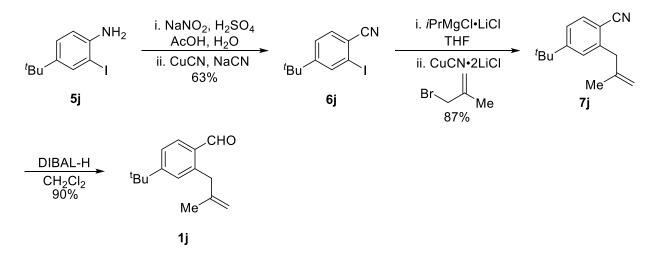
A round-bottom flask equipped with a reflux condenser and magnetic stir bar under nitrogen was charged with Mg (72 mg, 3.0 mmol) and a small crystal of I₂. The flask was flame-dried under high vacuum. Solution of 2-(2-bromophenyl)-1,3-dioxolane, 5h (570 ma. 2.5 mmol)⁷ and THF (2.5 mL) was slowly added to Mg at room temperature and the mixture was maintained at reflux for two hours. The resulting solution was allowed to cool to room temperature then added dropwise to a stirring suspension of 2-(bromomethyl) but-1-ene⁸(420 mg, 2.82 mmol) and Cul (50 mg, 0.26 mmol) in THF (3 mL) at 0 °C. The reaction mixture was stirred for 2 hours at 0 °C and then allowed to warm to room temperature and stirred overnight. Diethyl ether (30 mL) was added, and the mixture was washed with a saturated aqueous NH₄Cl solution (10 mL). The organic phase was separated, washed with brine (10 mL), dried over anhydrous Na_2SO_4 (10 g) and concentrated in vacuo. The crude material was purified by flash column chromatography on silica (4% EtOAc in hexanes) to give 2-(2-(2-methylenebutyl) phenyl)-1,3-dioxolane, **6h** (320 mg, 1.47 mmol, 59%) as colorless oil. $R_f = 0.75$ (1.9 EtOAc:Hex); ¹H NMR (300 MHz, CDCl₃) δ 7.59 (dd, J = 7.2, 1.9 Hz, 1H), 7.30–7.25 (m, 2H), 7.17 (dd, J = 7.2, 1.9 Hz, 1H), 5.96 (s, 1H), 4.85-4.84 (m, 1H), 4.52-4.51 (m, 1H), 4.16-4.00 (m, 4H), 3.50 (s, 2H), 2.05 (g, J = 7.3 Hz, 2H), 1.06 (t, J = 7.4 Hz, 3H) LRMS (GC-MS, CI, MeOH) m/z 219 (M+H)⁺, t_R = 16.5 min.

A solution of 2-(2-(2-methylenebutyl)phenyl)-1,3-dioxolane, **6h** (320 mg, 1.47 mmol) in water (5 mL), acetone (5 mL) and *p*-TsOH (10 mg, 0.05 mmol) was heated to reflux for 50 min. The reaction mixture was allowed to cool to room temperature and extracted with CH_2Cl_2 (30 mL). The organic phase was separated, washed with brine (10 mL), dried over Na₂SO₄ (10 g) and concentrated *in vacuo*. The resulting crude material was

purified by flash column chromatography (4% EtOAc in hexanes) on silica to give **2-(2-methylenebutyl)benzaldehyde, 1h** (193 mg, 1.11 mmol, 76%) as a colorless oil $R_f = 0.80$ (1:9 EtOAc:Hex); ¹H NMR (300 MHz, CDCl₃) δ 10.24 (s, 1H), 7.88 (dd, J = 7.7, 1.5 Hz, 1H), 7.53 (dt, J = 7.8, 1.5 Hz, 1H), 7.39 (dt, J = 7.5, 0.9 Hz, 1H), 7.30–7.28 (m, 1H), 4.86–4.85 (m, 1H), 4.42–4.41 (m, 1H), 3.75 (s, 2H), 2.10 (q, J = 7.5 Hz, 2H), 1.08 (t, J = 7.4 Hz, 3H); LRMS (GC-MS, CI, MeOH) m/z 175 (M+H)⁺, t_R = 13.5 min.

2-(2-methylallyl)-4-(trifluoromethyl)benzaldehyde 1i:

A solution of 2-bromo-4-(trifluoromethyl)benzaldehyde, **5i** (498 mg, 1.97 mmol), ethylene glycol (0.23 mL, 4.0 mmol), *p*-TsOH (8 mg, 0.04 mmol) in benzene (1.3 mL), was heated to reflux with a Dean-Stark trap for 14 hours. The reaction was neutralized with saturated aqueous NaHCO₃ solution and extracted with diethyl ether (2 × 30 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous Na₂SO₄ (10 g) and concentrated. The resulting crude material was purified by flash column chromatography on silica (10% EtOAc in hexanes) to give 2-(2-bromo-4-(trifluoromethyl)phenyl)-1,3-dioxolane, **6i** (496 mg, 1.67 mmol, 88%) as colorless oil R_f =


0.70 (1:4 EtOAc:Hex); ¹H NMR (300MHz, CDCl₃) δ 7.84 (d, J = 0.7 Hz, 1H), 7.73 (d, J = 8.3 Hz, 1H), 7.60 (ddd, J = 8.1, 1.2, 0.7 Hz, 1H), 6.10 (s, 1 H), 4.17–4.09 (m, 4H); LRMS (GC-MS, CI, MeOH) m/z 297 (M + H)⁺ and 299 (M+H)⁺, t_R = 10.5 min.

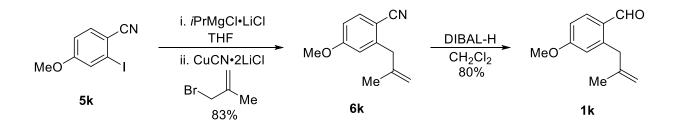
A round-bottom flask equipped with a reflux condenser and magnetic stir bar under nitrogen was charged with Mg (40 mg, 1.7 mmol) and a small crystal of I₂. The flask was flame-dried under high vacuum. A solution of THF (2 mL) and 2-(2-bromo-4-(trifluoromethyl)phenyl)-1,3-dioxolane 6i (390 mg, 1.30 mmol) was slowly added to Mg at room temperature and the mixture was maintained at reflux for two hours. The resulting solution was allowed to cool to room temperature then added dropwise to a suspension of isobutenyl chloride (0.2 mL, 2.1 mmol) and Cul (27 mg, 0.14 mmol) in THF (3 mL) at 0 °C. The reaction mixture was stirred for 2 h at 0 °C and then allowed to warm to room temperature overnight. Diethyl ether (30 mL) was added, and the mixture was washed with a saturated aqueous NH₄Cl solution (10 mL). The organic phase was separated, washed with brine (10 mL), dried over anhydrous Na₂SO₄ (10 g) and concentrated in vacuo. The crude material was purified by flash column chromatography on silica (4% EtOAc in hexanes) to give (2-(2-methylallyl)-4-(trifluoromethyl)phenyl)-1,3-dioxolane, 7i (140 mg, 0.51 mmol, 40%) as colorless oil. R_f = 0.70 (1:9 EtOAc:Hex); ¹H NMR (300MHz, CDCl₃) δ 7.71 (d, J = 8.1 Hz, 1H), 7.51 (app d, J = 8.1 Hz, 1H), 7.44 (app s, 1H), 6.00 (s, 1H), 4.90–4.86 (m, 1H), 4.56–4.52 (m, 1H), 4.15-4.03 (m, 4H), 3.53 (s, 2H), 1.75 (s, 3H); LRMS (GC-MS, CI, MeOH) m/z 273 $(M+H)^+$, t_R = 9.2 min.

A solution of (2-(2-methylallyl)-4-(trifluoromethyl)phenyl)-1,3-dioxolane, **7i** (140 mg, 0.51 mmol), *p*-TsOH (6 mg, 0.03 mmol), water (2.5 mL) and acetone (2.5 mL) was heated to refluxed for 50 min. The reaction mixture was allowed to cool to room temperature and extracted with CH_2Cl_2 (25 mL). The organic phase was washed with brine (10 mL), dried over anhydrous Na_2SO_4 (10 g) and concentrated *in vacuo*. The crude material was purified by flash column chromatograph on silica (4% EtOAc in hexanes) to give **2-(2-methylallyl)-4-(trifluoromethyl)benzaldehyde, 1i** (82 mg, 0.36 mmol, 70%) as a colorless oil R_f = 0.80 (1:9 EtOAc:Hex); ¹H NMR (300 MHz, CDCl₃) δ 10.29 (s, 1H), 7.99 (d, *J* = 8.1 Hz, 1H), 7.65 (app d, *J* = 8.0 Hz, 1H), 7.54 (app s, 1H), 4.91–4.90 (m, 1H),

4.44 (app s, 1H), 3.77 (s, 2H), 1.81 (s, 3H); LRMS (GC-MS, CI, MeOH) *m*/*z* 229 $(M+H)^+$, t_R = 9.5 min.

4-(tert-butyl)-2-(2-methylallyl)benzaldehyde 1j:

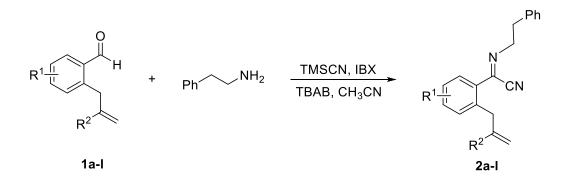
4-(*tert*-butyl)-2-iodoaniline **5j** was prepared using previously reported procedure.⁹ To a solution of 4-(*tert*-butyl)-2-iodoaniline **5j** (2.391g, 8.7 mmol), ice (10g), acetic acid (3.98 mL, 69.6 mmol) and H₂SO₄ (0.97 mL, 17.4 mmol) at 0 °C under N₂ was added a solution of NaNO₂ (0.659 g, 9.6 mmol) in H₂O (4 mL). This solution was stirred for 45 minutes at 0 °C. The resulting diazonium salt was then added at 0 °C to a stirred solution of CuCN (0.822 g, 9.14 mmol), NaCN (0.895 g, 18.3 mmol) and NaHCO₃ (21.93 g, 261 mmol) in H₂O (15 mL) in a 500 mL Erlenmeyer flask. Slow addition was necessary to control gas evolution and foaming. Deionized water (~50 mL total) was also added to control foaming and ensure the solid remained suspended in solution and not stuck to the side of the flask. After the addition was finished, the flask was allowed to warm to room temperature and was stirred for 1 hr.


Dichloromethane (50 mL) was added to dissolve the resulting brown precipitate and the layers were separated. The aqueous layer was washed again with dichloromethane (50 mL). The organic layers were combined, washed with brine (100 mL), dried over

Na₂SO₄ (20 g), filtered and concentrated *in vacuo*. The product was purified by column chromatography (5% EtOAc in Hexanes) to yield 4-(*tert*-butyl)-2-iodobenzonitrile **6**j (1.5644 g, 5.49 mmol, 63% yield) as a yellow oil. R_f = 0.40 (1:9 EtOAc:Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 1.7 Hz, 1H), 7.54 (d, *J* = 8.2 Hz, 1H), 7.48 (dd, *J* = 8.2, 1.7 Hz, 1H), 1.32 (s, 9H);); LRMS (GC-MS, CI, MeOH) *m/z* 286 (M+H)⁺, t_R = 16.3 min.

A flame-dried flask containing a stir bar under N₂ was charged with 4-(*tert*-butyl)-2iodobenzonitrile **6j** (1.3504 g, 4.47 mmol) and dry THF (2 mL). The solution was cooled to -10 °C. A solution of *i*PrMgCl·LiCl in THF (2.52 mL, 0.76M, 2.3 mmol) was added dropwise and the reaction was allowed to stir for 2 h at -10 °C. CuCN•2LiCl (0.34 mL, 1.12M in THF, 0.038 mmol) and 3-bromo-2-methyl-1-propene (0.29 mL, 2.9 mmol) were added and stirred at -10 °C for 1 h then the reaction was allowed to warm to room temperature and stirred for 15 hours. The reaction was quenched with a saturated aqueous solution of NH₄Cl (20 mL) and extracted with diethyl ether (2 × 20 mL). The organic layer was washed with brine (50 mL), dried over anhydrous Na₂SO₄ (10 g), filtered and concentrated *in vacuo*. The crude material was purified by flash column chromatography on silica (2% EtOAc in hexanes) to give 4-(*tert*-butyl)-2-(2methylallyl)benzonitrile **7j** (0.874 g, 4.1 mmol, 87%) as a yellow oil. R_f = 0.46 (9:1 Hex:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, *J* = 8.1 Hz, 1H), 7.36 – 7.32 (m, 2H), 4.87 (app s, 1H), 4.69 (app s, 1H), 3.53 (s, 2H), 1.74 (s, 3H), 1.32 (s, 9H); LRMS (GC-MS, CI, MeOH) *m/z* 214 (M+H)⁺, t_R = 15.6 min.

А flame-dried flask under N_2 was charged with 4-(*tert*-butyl)-2-(2methylallyl)benzonitrile, 7j (0.86 g, 4.03 mmol) and dichloromethane (23 mL). The solution was cooled to 0 °C and a solution of DIBAL-H in toluene (1M, 4.84 mL, 4.84 mmol) was added dropwise. The reaction was allowed to warm to room temperature and was stirred for 15 h. The reaction mixture was then diluted with Et₂O (20 mL) and HCI (3N, 20 mL) was added. The reaction was headed at reflux for 1 hour and was allowed to cool to room temperature. The mixture was diluted with more Et_2O (10 mL). The organic portion was separated and washed with H_2O (50 mL), saturated aqueous NaHCO₃ (50 mL), brine (50 mL) and were dried over Na₂SO₄ (10 g), filtered and concentrated. The product was purified by column chromatography (2% EtOAc in Hexanes) to yield 4-(*tert*-butyl)-2-(2-methylallyl)benzaldehyde **1j** (0.7878 g, 3.64 mmol, 90% yield) as a yellow oil. $R_f = 0.45$ (1:9 EtOAc:Hex); ¹H NMR (500 MHz , CDCl₃) δ 10.19 (s, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.41 (dd, J = 8.2, 1.9 Hz, 1H), 7.28 (d, J = 1.9 Hz, 1H), 4.83 (app s, 1H), 4.46 (app s, 1H), 3.73 (s, 2H), 1.79 (s, 3H), 1.34 (s, 9H); LRMS (GC-MS, CI, MeOH) *m/z* 217 (M+H)⁺, t_R = 15.7 min.

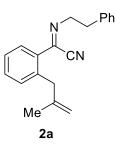

4-methoxy-2-(2-methylallyl)benzaldehyde 1k:

2-iodo-4-methoxybenzonitrile, **5k** (prepared using the procedure reported by Larock et al.¹⁰) (501 mg, 1.93 mmol) was dissolved in dry THF (0.5 mL) and cooled to -10 °C. *i*PrMgCl•LiCl (3 mL of 0.77 M solution in THF, 2.3 mmol) was added and the reaction mixture was stirred for one hour at -10 °C. CuCN•2LiCl (0.2 mL of 1M solution in THF, 0.2 mmol) and 3-bromo-2-methyl-1-propene (0.3 mL, 2.9 mmol) were added at -10 °C and the reaction mixture was allowed to warm to room temperature and stirred for 14 hours. The reaction was quenched with saturated NH₄Cl solution (15 mL) and extracted with diethyl ether (2 × 30 mL). The organic layer was washed with brine (10 mL), dried over anhydrous Na₂SO₄ (15 g) and concentrated *in vacuo*. The resulting crude material was purified by flash column chromatography on silica (6% EtOAc in hexanes) to give 4-methoxy-2-(2-methylallyl)benzonitrile, **6k** (300 mg, 1.6 mmol, 83%) as colorless oil. R_{*f*} = 0.75 (1:4 EtOAc:Hex); ¹H NMR (300 MHz, CDCl₃) δ 7.56 (dd, *J* = 6.2, 3.5 Hz, 1H), 6.84–6.80 (m, 2H), 4.92–4.87 (m, 1H), 4.75–4.69 (m, 1H), 3.85 (s, 3H), 3.51 (s, 2H), 1.74 (s, 3H); LRMS (GC-MS, CI, MeOH) *m/z* 188 (M+H)⁺, t_R = 14.1 min.

DIBAL-H (2.4 mL of 1 M solution in toluene, 2.4 mmol) was added to the solution of 4methoxy-2-(2-methylallyl)benzonitrile, **6k** (300 mg, 1.6 mmol) in methylene chloride (6.5 mL) maintained at 0 °C under nitrogen. The reaction was allowed to warm to room temperature and stirred for 14 hours. The reaction mixture was diluted with diethyl ether (11 mL) and cooled to 0 °C followed by the addition of HCl (8.5 mL of 3N solution). The reaction mixture was heated to reflux for 30 minutes. The reaction was allowed to cool to room temperature and diethyl ether (30 mL) was added to the reaction mixture and layers were separated. The aqueous layer was extracted again with diethyl ether (30 mL) and the combined organic extracts were washed with brine (10 mL), dried over anhydrous Na₂SO₄ (10 g) and concentrated. The crude material was purified by flash column chromatography on silica (5% EtOAc in hexanes) to give **4-methoxy-2-(2-methylallyl)benzaldehyde, 1k** (240 mg, 1.26 mmol 80%) R_f = 0.77 (1:4 EtOAc:Hex); ¹H NMR (300 MHz, CDCl₃) δ 10.10 (s, 1H), 7.84 (d, *J* = 8.6 Hz, 1H), 6.88 (dd, *J* = 8.6, 2.5 Hz, 1H), 6.77 (d, *J* = 2.6 Hz, 1H), 4.85–4.84 (m, 1H), 4.50 (app s, 1H), 3.88 (s, 3H), 3.71 (s, 2H), 1.78 (s, 3H); LRMS (GC-MS, CI, MeOH) *m/z* 191 (M+H)⁺, t_R = 14.3 min.

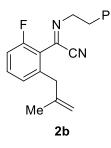
Synthesis of α-iminonitriles:

General Procedure


 α -Iminonitriles were synthesized by slight modification of procedure reported by Zhu¹¹ via two procedures.

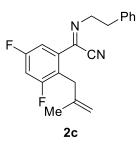
Procedure A: To the stirred solution of aldehyde (0.5 mmol), phenethylamine (0.5 mmol, 1.0 eq) in acetonitrile (0.5 mL, [RCHO] = 1.0 M) at room temperature, TMSCN

(0.55 mmol, 1.1 eq) was added and stirred for 15 minutes. Then finely powdered IBX¹² (0.75 mmol, 1.5 eq) and tetrabutylammonium bromide (0.33 mmol, 1.1 eq) were added. The heterogeneous reaction was stirred at room temperature for two hours. After ensuring complete consumption of starting material by TLC (on alumina plates) the mixture was filtered through Celite and concentrated. The crude product was purified by flash chromatography on neutral alumina (2% EtOAc in hexanes) to afford pure α -iminonitrile. The product appeared to decompose on column and was flushed as quickly as possible.

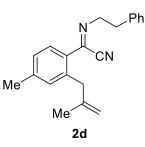

Procedure B: The aldehyde (0.5 mmol) and phenethylamine (0.5 mmol, 1 eq) were combined in a flask and stirred neat for 1 h at room temperature. At this point, a small (~1 mg) sample was removed to confirm complete conversion to the imine by ¹H NMR. The reaction mixture was then diluted with acetonitrile (0.5 mL, [RCHO] = 1.0 M) and TMSCN (0.55 mmol, 1.1 eq) was added dropwise via microsyringe. The reaction was then allowed to stir under nitrogen for 25 min. Finely powdered IBX¹² (0.75 mmol, 1.5 eq) was added portionwise followed by tetrabutylammonium bromide (0.33 mmol, 1.1 eq) also added portionwise. The heterogeneous reaction was stirred at room temperature for 1-2 hours. After ensuring complete consumption of starting material by TLC (on alumina plates), the mixture was filtered through Celite and concentrated. The crude product was purified by flash chromatography on neutral alumina (column diameter: 2 cm, 5 cm alumina height, eluent gradient from 100% hexanes to 2% EtOAc in hexanes) to afford pure α-iminonitrile. The product appeared to decompose on the column and was eluted as quickly as possible.

α-iminonitrile 2a:

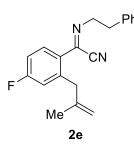
Prepared using general **procedure A** for α-iminonitrile synthesis using aldehyde **1a**¹³ (302 mg, 1.88 mmol), phenethylamine (229 mg, 1.90 mmol), acetonitrile (2.0 mL), TMSCN (260 µl 2.09 mmol) IBX (800 mg, 2.85 mmol) tetrabutylammonium bromide (673 mg, 2.09 mmol). **iminonitrile 2a** was isolated as a yellow oil (338 mg, 1.17 mmol, 62%) R_f = 0.85 (1:9 EtOAc:Hex on alumina TLC). ¹H NMR (300 MHz, CDCl₃) δ 7.60 (dd, J = 7.6, 1.3 Hz, 1H), 7.43–7.23 (m, 8H), 4.78 (app s, 1H), 4.43 (app s, 1H), 4.22 (t, J = 7.2 Hz, 2H), 3.58 (s, 2H), 3.11 (t, J = 7.2 Hz, 2H), 1.64 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 144.4, 142.5, 138.9, 138.7, 133.2, 131.5, 130.8, 130.0, 129.0, 128.5, 126.7, 126.5, 112.2, 110.1, 60.4, 41.1, 36.5, 22.6; IR (thin film) 3064, 3027, 2928, 2213, 1604, 1446 cm⁻¹; HRMS (CI, NH₃) calcd for [C₂₀H₂₀N₂+H]⁺, *m/z* 289.1700, found 289.1703.


α-iminonitrile 2b:

Prepared using general **procedure B** for α -iminonitrile synthesis using aldehyde **1b** (80 mg, 0.45 mmol), phenethylamine (55 mg, 0.45 mmol), acetonitrile (0.5 mL), TMSCN (85 µl, 0.68 mmol,) IBX (190 mg, 0.68 mmol) tetrabutylammonium bromide (160 mg, 0.49 mmol). Iminonitrile **2b** was isolated as a yellow oil (80 mg, 0.26 mmol, 55%) R_f = 0.75 (1:9 EtOAc:Hex on alumina TLC); ¹H NMR (500 MHz, CDCl₃) δ 7.38–7.22 (m, 6H), 7.06–7.00 (m, 2H), 4.83 (app s, 1H), 4.48 (app s, 1H), 4.24 (t, *J* = 7.2 Hz, 2H), 3.31 (s,


2H), 3.12 (t, J = 7.2 Hz, 2H), 1.58 (s, 3H); ¹³C NMR (126MHz, CDCl₃) δ 160.5 (d, J = 250 Hz), 143.2, 140.8, 138.4, 137.2, 131.7 (d, J = 9 Hz), 128.9, 128.6, 126.6, 126.3 (d, J = 3 Hz), 122.6, (d, J = 14 Hz), 114.0, (d, J = 21 Hz) 113.2, 109.7, 60.4, 40.4, 36.3, 22.3; ¹⁹F NMR (471 MHz, CDCl₃) δ -115.5; IR (thin film) 3079, 3029, 2927, 2215, 1623, 1460 cm⁻¹; HRMS (ESI) calcd for [C₂₀H₁₉FN₂+Na]⁺, *m/z* 329.1424, found 329.1425.

α-iminonitrile 2c:

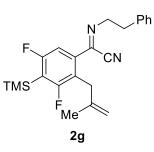

Prepared using general **procedure B** for α-iminonitrile synthesis using aldehyde **1c** 100 mg, 0.51 mmol), phenethylamine (0.064 mL, 0.51 mmol), acetonitrile (0.51 mL), TMSCN (0.07 mL, 0.56 mmol), IBX (0.214 g, 0.76 mmol), and tetrabutylammonium bromide (0.181 g, 0.56 mmol). Iminonitrile **2c** was isolated (0.043 g, 0.133 mmol, 26% yield) as a yellow oil. $R_f = 0.6$ (1:9 EtOAc:Hex, alumina TLC); ¹H NMR (500 MHz , CDCl₃) δ 7.34–7.29 (m, 2H), 7.27–7.21 (m, 3H), 7.18 (ddd, J = 8.8, 2.4, 1.6 Hz, 1H), 6.97–6.91 (m, 1H), 4.73–4.69 (m, 1H), 4.26 (app s, 1H), 4.23 (t, J = 7.1 Hz, 2H), 3.56 (s, 2H), 3.10 (t, J = 7.1 Hz, 2H), 1.68 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.5 (dd, J = 82.0, 12.5 Hz), 160.5 (dd, J = 82.4, 12.5 Hz), 143.2, 140.7 (t, J = 3.5 Hz), 138.6, 136.0 (dd, J = 8.6, 6.2 Hz), 129.2, 128.8, 126.9, 122.8 (dd, J = 17.9, 4.2 Hz), 113.1 (dd, J = 23.2, 3.6 Hz), 111.3, 109.6, 106.5 (dd, J = 28.0, 24.7 Hz), 60.7, 36.6, 32.1 (d, J = 4.4 Hz), 23.0; ¹⁹F NMR (471 MHz, CDCl₃) δ -110.5 (app t, J = 8.6 Hz), -111.2 (app q, J = 8.3 Hz); IR (thin film) 3085, 3029, 2928, 2216, 1616,1331 cm⁻¹; HRMS (ESI) calcd for [C₂₀H₁₈F₂N₂+Na]⁺, *m/z* 137.1330, found 137.1320.

α-iminonitrile 2d:

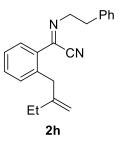
Prepared using general **procedure A** for α-iminonitrile synthesis using aldehyde **1d** (101 mg, 0.58 mmol), phenethylamine (70 mg, 0.58 mmol), acetonitrile (0.6 mL), TMSCN (80 µl, 0.64 mmol,) IBX (244 mg, 0.87 mmol) and tetrabutylammonium bromide (206 mg, 0.64 mmol), **iminonitrile 2d** was isolated as a yellow oil (66 mg, 0.22 mmol, 38%) R_f = 0.15 (1:9 EtOAc:Hex on alumina TLC); ¹H NMR (300 MHz, CDCl₃) δ 7.52 (d, *J* = 7.9 Hz, 1H), 7.34–7.23 (m, overlapped with CHCl₃, 5H), 7.13 (d, *J* = 8.0 Hz, 1H), 7.07 (app s, 1H), 4.76 (app s, 1H), 4.41 (app s, 1H), 4.19 (t, *J* = 7.3 Hz, 2H), 3.57 (s, 2H), 3.09 (t, *J* = 7.2 Hz, 2H), 2.37 (s, 3H), 1.64 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 144.7, 142.4, 141.2, 138.9, 138.8, 132.4, 130.4, 130.2, 128.9, 128.4, 127.4, 126.4, 111.9, 110.1, 60.3, 41.1, 36.6, 22.7, 21.3; IR (thin film) 3064, 3027, 2923, 2213, 1649, 1453 cm⁻¹; HRMS (ESI) calcd for [C₂₁H₂₂N₂Na]⁺, *m/z* 325.1675, found 325.1670.

α-iminonitrile 2e:

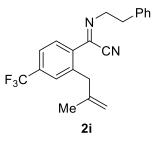
Prepared using general **procedure A** for α -iminonitrile synthesis using aldehyde **1e** (76 mg, 0.43 mmol), phenethylamine (52 mg, 0.43 mmol), acetonitrile (0.5 mL), TMSCN (60 μ l, 0.47 mmol), IBX (181 mg, 0.65 mmol) and tetrabutylammonium bromide (152 mg, 0.47 mmol), **iminonitrile 2e** was isolated as a yellow oil (58 mg, 0.19 mmol, 44%) R_f =


0.82 (1:9 EtOAc:Hex on alumina TLC); ¹H NMR (300 MHz, CDCl₃) δ 7.61 (dd, *J* = 8.6, 5.7 Hz, 1H), 7.32–7.30 (m, 2H), 7.26–7.22 (m, 3H), 7.03–6.98 (m, 2H), 4.82 (app s, 1H), 4.48 (app s, 1H), 4.21 (t, *J* = 7.1 Hz, 2H), 3.56 (s, 2H), 3.10 (t, *J* = 7.1 Hz, 2H), 1.64 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 163.8 (d, *J* = 250 Hz), 143.6, 142.3 (d, *J* = 7 Hz), 141.5, 138.6, 132.3 (d, *J* = 10 Hz), 128.9, 128.5, 126.5, 118.2 (d, *J* = 21 Hz), 113.7 (d, *J* = 22 Hz), 112.9, 109.9, 60.4, 41.1, 36.5, 22.5; ¹⁹F NMR (282 MHz, CDCl₃) δ -105.0; IR IR (thin film) 3064, 3028, 2928, 2215, 1608, 1495, 1100 cm⁻¹; HRMS (CI, NH₃) calcd for [C₂₀H₁₉FN₂+H]⁺, *m/z* 307.1606, found 307.1601.

α-iminonitrile 2f:

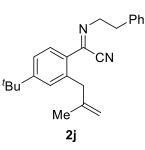

Prepared using general **procedure A** for α-iminonitrile synthesis using aldehyde **1f** (49 mg, 0.26 mmol), phenethylamine (32 mg, 0.26 mmol), acetonitrile (0.3 mL), TMSCN (36 µl, 0.29 mmol,) IBX (109 mg, 0.39 mmol), tetrabutylammonium bromide (92 mg, 0.29 mmol), iminonitrile **2f** was isolated as a yellow oil (44 mg, 0.14 mmol, 54%) R_f = 0.85 (1:10 EtOAc:Hex on alumina TLC).¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, *J* = 8.3 Hz, 1H), 7.33–7.30 (m, 3H), 7.27–7.24 (m, overlapped with CHCl₃, 4H), 4.82 (app s, 1H), 4.46 (app s, 1H), 4.21 (t, *J* = 7.2 Hz, 2H), 3.55 (s, 2H), 3.10 (t, *J* = 7.1 Hz, 2H), 1.64 (s, 3H); ¹³C NMR (126 MHz, CD₂Cl₂) δ 144.6, 141.9, 141.8, 139.5, 137.3, 132.4, 132.0, 131.9, 129.5, 129.0, 127.3, 127.0, 113.0, 110.4, 61.1, 41.4, 37.0, 22.9; IR (thin film) 3080, 3028, 2930, 2214, 1604, 1495, 1098 cm⁻¹; HRMS (ESI) calcd for [C₂₀H₁₉CIN₂Na]⁺, *m/z* 345.1129, found 345.1123.

α-iminonitrile 2g:

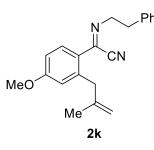

Prepared using general **procedure B** for α-iminonitrile synthesis using aldehyde **1g** (0.2213 g, 0.82 mmol), phenethylamine (0.1 mL, 0.82 mmol), acetonitrile (0.82 mL), TMSCN (0.07 mL, 0.56 mmol), IBX (0.214 g, 0.76 mmol), and tetrabutylammonium bromide (0.181 g, 0.56 mmol). Iminonitrile **2g** (0.1254 g, 0.316 mmol, 38%) was isolated as a yellow oil. $R_f = 0.6$ (1:9 EtOAc:Hex, alumina TLC); ¹H NMR (500 MHz, CDCl₃) δ 7.33–7.28 (m, 2H), 7.25–7.21 (m, 3H), 7.07 (d, J = 8.8 Hz, 1H), 4.70 (s, 1H), 4.26 (s, 1H), 4.20 (t, J = 7.1 Hz, 2H), 3.55 (s, 2H), 3.09 (t, J = 7.1 Hz, 2H), 1.68 (s, 3H), 0.38 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 166.4 (dd, J = 49.9, 16.6 Hz), 164.4 (dd, J = 50.0, 16.7 Hz), 143.5, 140.8 (t, J = 3.8 Hz), 138.7, 136.8 (dd, J = 9.5, 6.8 Hz), 129.2, 128.8, 126.8, 121.9 (dd, J = 22.7, 4.2 Hz), 117.1 (dd, J = 37.9, 33.7 Hz), 112.6 (dd, J = 29.3, 3.5 Hz), 110.8, 109.7, 60.7, 36.6, 32.2 (d, J = 5.1 Hz), 23.1, 0.2 (t, J = 2.9 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -98.2, -98.87; IR (thin film) 3083, 3029, 2956, 2215, 1612, 1386, 486 cm⁻¹; HRMS (ESI) calcd for [C₂₃H₂₆F₂N₂SiNa]⁺, *m*/z 419.1726, found 419.1735.

α-iminonitrile 2h:

Prepared using general **procedure B** for α-iminonitrile synthesis using aldehyde **1h** (80 mg, 0.46 mmol), phenethylamine (56 mg, 0.46 mmol), acetonitrile (0.5 mL), TMSCN (63 µl, 0.51 mmol), IBX (193 mg, 0.69 mmol), tetrabutylammonium bromide (164 mg, 0.51 mmol), iminonitrile **2h** was isolated as a yellow oil (61 mg, 0.14 mmol, 44%) R_f = 0.85 (1:10 EtOAc:Hex on alumina TLC). ¹H NMR (300 MHz, CDCl₃) δ 7.58 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.39 (dd, *J* = 1.6, 7.4, 1H), 7.35–7.20 (m, overlapped with CHCl₃, 7H), 4.80–4.79 (m, 1H), 4.42–4.41 (m, 1H), 4.21 (t, *J* = 7.3 Hz, 2H), 3.62 (s, 2H), 3.09 (t, *J* = 7.2 Hz, 2H), 1.94 (q, *J* = 7.7 Hz, 2H), 1.00 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 150.0, 142.6, 139.1, 138.7, 133.4, 131.7, 130.8, 130.0, 129.0, 128.6, 126.7, 126.5, 110.1, 110.0, 60.4, 39.9, 36.5, 28.9, 12.2; IR (thin film) 3063, 3027, 2964, 2932, 2213, 1604, 1453, 1360 cm⁻¹; HRMS (CI, NH₃) calcd for $[C_{21}H_{22}N_2+H]^+$, *m/z* 303.1856, found 303.1878.

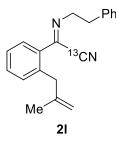

α-iminonitrile 2i:

Prepared using general **procedure A** for α -iminonitrile synthesis using aldehyde **1i** (72 mg, 0.31 mmol), phenethylamine (39 mg, 0.32 mmol), acetonitrile (0.5 mL), TMSCN (43 μ l, 0.34 mmol), IBX (132 mg, 0.47 mmol), tetrabutylammonium bromide (110 mg, 0.34


mmol), iminonitrile **2i** was isolated as a yellow oil (66 mg, 0.19 mmol, 59%) $R_f = 0.80$ (1:10 EtOAc:Hex on alumina TLC). ¹H NMR (300 MHz, CDCl₃) δ 7.68 (d, J = 8.3 Hz, 1H), 7.58 (dd, J = 8.1, 1.2 Hz, 1H), 7.53 (app s, 1H), 7.34–7.22 (m, overlapped with CHCl₃, 5H), 4.84–4.83 (m, 1H), 4.44–4.43 (m, 1H), 4.25 (t, J = 7.1 Hz, 2H), 3.59 (s, 2H), 3.12 (t, J = 7.1 Hz, 2H), 1.64 (s, 3H); ¹³C NMR (126 MHz , CDCl₃) δ 143.4, 141.4, 140.0, 138.4, 136.4 (app d, J = 3 Hz), 132.5 (q, J = 33 Hz), 130.4, 129.0, 128.6, 128.2 (q, J = 4 Hz), 126.7, 123.6 (q, J = 273 Hz), 123.6 (q, J = 4 Hz), 113.1, 109.7, 60.6, 41.0, 36.4, 22.5; ¹⁹F NMR (282 MHz, CDCl₃) δ -64.2; IR (thin film) 3084, 2931, 2929, 2215, 1612, 1454, 1333, 1169, 1086, 837 cm⁻¹; HRMS (CI, NH₃) calcd for [C₂₁H₁₉F₃N₂+H]⁺, *m/z* 357.1574, found 357.1559.

α-iminonitrile 2j:

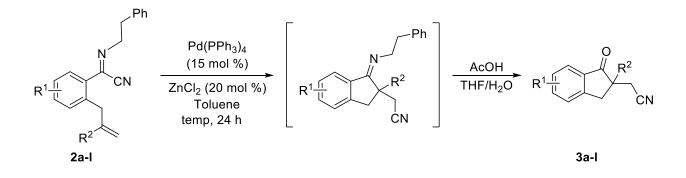
Prepared using general procedure **B** for α-iminonitrile synthesis using aldehyde **1j** (98 mg, 0.045 mmol), phenethylamine (55 mg, 0.46 mmol), acetonitrile (0.5 mL), TMSCN (85 µl, 0.68 mmol), IBX (190 mg, 0.60 mmol), and tetrabutylammonium bromide (160 mg, 0.49 mmol). **Iminonitrile 2j** was isolated as a yellow oil (92 mg, 0.27 mmol, 59%) R_{*f*} = 0.90 (1:9 EtOAc:Hex on alumina TLC). ¹H NMR (500 MHz, CDCl₃) *δ* 7.57 (d, *J* = 8.2 Hz, 1H), 7.35–7.29 (m, 3H), 7.27–7.21 (m, overlapped with CHCl₃, 5H), 4.76 (app s, 1H), 4.40 (app s, 1H), 4.20 (t, *J* = 7.2 Hz, 2H), 3.60 (s, 2H), 3.09 (t, *J* = 7.2 Hz, 2H), 1.65 (s, 3H), 1.32 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) *δ* 154.2, 144.7, 142.4, 138.8, 138.6, 130.4, 130.1, 128.9, 128.8, 128.5, 126.4, 123.6, 111.9, 110.1, 60.3, 41.5, 36.6, 34.8, 31.0, 22.7; IR (thin film) 3064, 3028, 2964, 2867, 2214, 1604, 1454, 1112 cm⁻¹; HRMS (ESI) calcd for [C₂₄H₂₈N₂Na]⁺, *m/z* 367.2145, found 367.2144.


α-iminonitrile 2k:

Aldehyde **1k** (76 mg, 0.40 mmol) and phenethylamine (60 mg, 0.50 mmol) were stirred for one hour at room temperature. A small aliquot (~10 μ L) was removed and analyzed by NMR to ensure complete formation of imine. Acetonitrile (0.4 mL), TMSCN (60 μ L, 0.50 mmol), were added and the mixture was stirred for another 15 min at room temp.

IBX (169 mg, 0.60 mmol) and tetrabutylammonium bromide (144 mg, 0.44 mmol) were added and the mixture was stirred for additional two hours at room temperature. The reaction mixture was diluted with EtOAc (10 mL), filtered through Celite and concentrated. The crude product was purified by flash chromatograph alumina (gradient from 20 to 30% CH₂Cl₂ in hexanes) to afford pure α-iminonitrile **2k** as a yellow oil (55 mg, 0.17 mmol 43%) R_f = 0.80 (1:9 EtOAc:Hex on alumina TLC). ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, *J* = 8.7 Hz, 1H), 7.33–7.21 (m, overlapping with CHCl₃, 5H), 6.84 (dd, *J* = 8.6, 2.7 Hz, 1H), 6.80 (d, *J* = 2.6 Hz, 1H), 4.78 (app s, 1H), 4.44 (app s, 1H), 4.18 (t, *J* = 7.3 Hz, 2H), 3.84 (s, 3H), 3.60 (s, 2H), 3.08 (t, *J* = 7.2 Hz, 2H), 1.65 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 161.3, 144.4, 141.9, 141.4, 138.9, 132.3, 128.9, 128.4, 126.4, 125.7, 117.3, 112.0, 111.5, 110.1, 60.2, 55.3, 41.4, 36.7, 22.6; IR (thin film) 3064, 3028, 2936, 2214, 1604, 1497, 1117 cm⁻¹; HRMS (ESI) calcd for [C₂₁H₂₂N₂NaO]⁺, *m/z* 341.1624, found 341.1621.

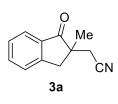
α-iminonitrile 2I:



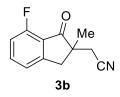
Prepared using general **procedure A** for α-iminonitrile synthesis using aldehyde 1a (101 mg, 0.63 mmol), phenethylamine (76 mg, 0.63 mmol), acetonitrile (0.7 mL), TMS¹³CN (88 µl 0.69 mmol), IBX (264 mg, 0.95 mmol) tetrabutylammonium bromide (222 mg, 0.69 mmol). α-iminonitrile **2l** was isolated as a yellow oil (114 mg, 0.39 mmol, 64%) R_f = 0.85 (1:9 EtOAc:Hex on alumina TLC).¹H NMR (500 MHz, CDCl₃) δ 7.59 (dd, J = 1.2, 7.7 Hz, 1H), 7.41 (dt, J = 7.5, 1.4 Hz, 1H), 7.35–7.30 (m, overlapping with CHCl₃, 3H), 7.28–7.20 (m, 4H), 4.78 (app s, 1H), 4.43 (d, J = 0.8 Hz, 1H), 4.22 (dt, J = 1.2, 7.2 Hz, 2H), 3.58 (s, 2H), 3.11 (t, J = 7.2 Hz, 2H), 1.64 (s, 3H); ¹³C NMR¹ (126 MHz, CDCl₃) δ 144.4, 142.5 (d, J = 65 Hz), 138.9 (d, J = 2.5 Hz), 138.7, 133.2 (d, J = 5

 $^{^{1}}$ ^{13}C ^{13}C coupling constants are assigned by comparison to ^{13}C NMR of **2a**.

11 Hz), 131.5, 130.8, 130.0, 129.0, 128.5, 126.7, 126.5, 115.8, 112.2, 110.1, 60.4, 41.1, 36.5, 22.6; IR (thin film) 3064, 3028, 2931, 2163, 1604, 1453, 1030 cm⁻¹; HRMS (CI, NH₃) calcd for $[C_{19}^{13}CH_{20}N_2Na]^+$, *m/z* 312.1552, found 312.1551.

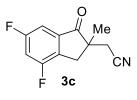

Cyanoacylation Reaction:

General Procedure:


In a nitrogen filled glove box, a 1 or 4 dram reaction vial (Chemglass, polytetrafluoroethylene cap) was charged with iminonitrile **2** (0.34 mmol 1 equiv), $Pd(PPh_3)_4$ (0.05 mmol, 0.15 equiv), $ZnCl_2$ (0.07 mmol, 0.20 equiv) and toluene (1.6 mL). The mixture was heated at 120 or 130 °C for 24 h inside a nitrogen filled glove box. The mixture was then taken out of the glove box, filtered through Celite and concentrated. The crude product was dissolved in THF and 30% (v/v) aqueous acetic acid was added dropwise. The reaction was stirred at room temperature for 1.5 to 18 hr. After ensuring complete hydrolysis of imine by silica TLC, the reaction mixture was diluted with diethyl ether (20 mL). The layers were separated and aqueous layer was again extracted with diethyl ether (20 mL). The combined organic extracts were washed with water (50 mL), saturated aqueous NaHCO₃ solution (50 mL), brine (50 mL) and were dried over anhydrous Na₂SO₄ (15 g) and concentrated *in vacuo*. The crude product was purified by flash column chromatography on silica gel (eluent gradient, EtOAc: Hex) to afford the indanone **3** (acylcyanation product).

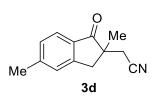
Indanone 3a:

Prepared using the general procedure for cyanoacylation from iminonitrile **2a** (97 mg, 0.34 mmol), Pd(PPh₃)₄ (59 mg, 0.05 mmol), ZnCl₂ (9.2 mg, 0.67 mmol) and toluene (1.6 ml) at 120 °C. Hydrolysis of imine was accomplished with THF (2 ml) and 20% (v/v) aqueous AcOH (3 mL). The crude product was purified by flash column chromatography (10 to 15% EtOAc in hexanes) and indanone **3a** was obtained as a yellow oil (51 mg, 0.28 mmol, 82%) R_f = 0.45 (1:4 EtOAc:Hex) ¹H NMR (300 MHz, CDCl₃) δ 7.80 (app d, *J* = 7.7 Hz, 1H), 7.67 (dt, *J* = 7.5, 1.2 Hz, 1H), 7.54–7.39 (m, 2H), 3.31 (d, *J* = 17.3 Hz, 1H), 3.12 (d, *J* = 17.3 Hz, 1H), 2.71 (d, *J* = 16.7 Hz, 1H), 2.53 (d, *J* = 16.7 Hz, 1H), 1.38 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 206.6, 151.3, 135.8, 134.1, 128.1, 126.7, 124.8, 117.4, 46.6, 40.0, 25.9, 23.7; IR (thin film) 2967, 2929, 2249, 1714, 1615, 1459, 1394, 1251, cm⁻¹; HRMS (ESI) calcd for [C₁₂H₁₁NNaO]⁺, *m/z* 208.0738, found 208.0735.

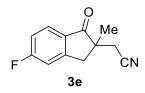

Indanone 3b:

Prepared using the general procedure for cyanoacylation from iminonitrile **2b** (31 mg, 0.10 mmol), Pd(PPh₃)₄ (18 mg, 0.015 mmol), ZnCl₂ (3 mg, 0.02 mmol) and toluene (0.45 mL) at 130 °C. Hydrolysis of imine was accomplished by stirring with THF (0.4 mL) and 30% (v/v) aqueous AcOH (9 mL) for two hours. The crude product was purified by flash column chromatography (20% EtOAc in hexanes) and indanone **3b** was isolated as a yellow oil (15.0 mg, 0.076 mmol, 73%) R_f = 0.40 (1:3 EtOAc:Hex) (The sample could not be separated from 1% triphenylphosphine oxide and the yield was corrected

accordingly); ¹H NMR² (500 MHz, CDCl₃) δ 7.65 (dt, *J* = 7.9, 5.0 Hz, 1H), 7.28–7.27 (d, *J* = 6.7 Hz, overlapping with CHCl₃, 1H), 7.05 (app t, *J* = 8.6 Hz, 1H), 3.32 (d, *J* = 17.5 Hz, 1H), 3.13 (d, *J* = 17.5 Hz, 1H), 2.71 (d, *J* = 16.8 Hz, 1H), 2.56 (d, *J* = 16.8 Hz, 1H), 1.39 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 202.8, 159.5 (d, *J* = 265 Hz), 153.1, 137.8 (d, *J* = 10 Hz), 122.6, 122.2, 117.3, 115.0 (d, *J* = 19 Hz), 47.3, 39.9, 25.9, 23.8; ¹⁹F NMR (471 MHz , CDCl₃) δ -113.9; IR (thin film) 3082, 2968, 2929, 2248, 1714, 1615, 1475, 1198 cm⁻¹; HRMS (ESI) calcd for [C₁₂H₁₀FNNaO]⁺, *m/z* 226.0639, found 226.0633.

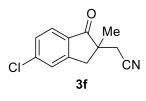

Indanone 3c:

Prepared using the general procedure for cyanoacylation from iminonitrile **2c** (36 mg, 0.116 mmol), Pd(PPh₃)₄ (12.7 mg, 0.011 mmol), ZnCl₂ (3 mg, 0.022 mmol) and toluene (0.53 mL) at 120 °C. Hydrolysis of imine was accomplished by stirring with (0.5 mL), water (1.11 mL) and AcOH (0.184 mL) for one hour. The crude product was purified by flash column chromatography (15% DCM in hexanes) and indanone **3c** was isolated as an orange oil. (15.6 mg, 0.071 mmol, 64%) R_f = 0.6 (1:4 EtOAc:Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.29 (dd, *J* = 6.7, 2.1 Hz, 1H), 7.13 (dt, *J* = 8.5, 2.1 Hz, 1H), 3.25 (d, *J* = 17.4 Hz, 1H), 3.11 (d, *J* = 17.4 Hz, 1H), 2.70 (d, *J* = 16.8 Hz, 1H), 2.58 (d, *J* = 16.8 Hz, 1 H), 1.39 (s, 3H);¹³C NMR (126 MHz, CDCl₃) δ 204.7, 163.3 (dd, *J* = 252.4, 9.2 Hz), 160.1 (dd, *J* = 254.9, 11.5 Hz), 137.8 (dd, *J* = 8.6, 5.9 Hz), 133.4 (dd, *J* = 19.9, 2.7 Hz), 129.2 (d, *J* = 167.2 Hz), 117.1, 111.0 (dd, *J* = 27.3, 23.7 Hz), 107.2 (dd, *J* = 22.2, 4.4 Hz), 47.5, 35.6, 26.1, 24.0; ¹⁹F NMR (471 MHz, CDCl₃) δ -108.3 (app q, *J* = 8.2, 1.7 Hz), -113.3 (app t, *J* = 7.9 Hz); IR (thin film) 3061, 2972, 2917, 2251, 1724, 1490, 1327 cm⁻¹; HRMS (ESI) calcd for [C₁₂H₉F₂N₂+Na]⁺, *m*/z 244.0539, found 244.0545.

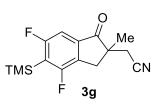

² No attempt was made to distinguish ${}^{19}F^{-1}H$ coupling from ${}^{1}H^{-1}H$ coupling.

Indanone 3d:

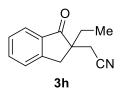
Prepared using the general procedure for cyanoacylation from iminonitrile **2d** (30 mg, 0.10 mmol), Pd(PPh₃)₄ (17 mg, 0.015 mmol), ZnCl₂ (2.7 mg, 0.02 mmol) and toluene (0.5 mL) at 120 °C. Hydrolysis of imine was accomplished by stirring with THF (0.4 mL) and 20% (v/v) aqueous AcOH (0.8 mL) for six hours. The crude product was purified by flash column chromatography (gradient from 10 to 15% EtOAc in hexanes) and indanone **3d** was isolated as a yellow oil (16.1 mg, 0.081 mmol, 81%) R_f = 0.45 (1:4 EtOAc:Hex). ¹H NMR (300 MHz ,CDCl₃) δ 7.68 (d, *J* = 7.8 Hz, 1H), 7.28–7.22 (m, overlapping with CHCl₃, 2H), 3.24 (d, *J* = 17.4 Hz, 1H), 3.06 (d, *J* = 17.3 Hz, 1H), 2.69 (d, *J* = 16.7 Hz, 1H), 2.54–2.46 (m, 4H), 1.36 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 206.1, 151.9, 147.3, 131.9, 129.4, 127.1, 124.7, 117.6, 46.8, 39.9, 26.1, 23.7, 22.2; IR (thin film) 2966, 2927, 2248, 1709, 1709, 1609, 1456, 1331, 1282, 987 cm⁻¹; HRMS (ESI) calcd for [C₁₃H₁₃NNaO]⁺, *m*/z 222.0895, found 222.0883.


Indanone 3e:

Prepared using the general procedure for cyanoacylation from iminonitrile **2e** (53 mg, 0.174 mmol), Pd(PPh₃)₄ (30 mg, 0.026 mmol), ZnCl₂ (4.8 mg, 0.035 mmol) and toluene (0.8 mL) at 120 °C. Hydrolysis of imine was accomplished by stirring with THF (0.7 mL) and 30% aqueous AcOH (0.8 mL) for 1.5 hours. The crude product was purified by flash column chromatography (gradient from 10 to 15% EtOAc in hexanes) and indanone **3e** was isolated as a yellow oil (30.0 mg, 0.148 mmol, 85%) R_f = 0.40 (1:4 EtOAc:Hex). ¹H NMR (500 MHz, CDCl₃) δ 7.80 (dd, *J* = 8.4, 5.3 Hz, 1H), 7.17–7.12 (m, 2H), 3.29 (d, *J* =

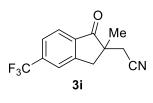

17.5 Hz, 1H), 3.11 (d, J = 17.5 Hz, 1H), 2.69 (d, J = 16.8 Hz, 1H), 2.54 (d, J = 16.8 Hz, 1H), 1.38 (s, 3H); ¹³C NMR (126 MHz ,CDCl₃) δ 204.7, 167.8 (d, J = 258 Hz), 154.3 (d, J = 10 Hz), 130.6, 127.3 (d, J = 10 Hz), 117.3, 116.6 (d, J = 24 Hz), 113.5 (d, J = 23 Hz), 47.0, 39.9, 26.0, 23.8; ¹⁹F NMR (282 MHz , CDCl₃) δ -101.7; IR (thin film) 2968, 2930, 2250, 1715, 1615, 1594, 1456, 1251, 1086, 988, cm⁻¹. HRMS (ESI) calcd for [C₁₂H₁₀FNNaO]⁺, *m*/z 226.0639, found 226.0644.

Indanone 3f:

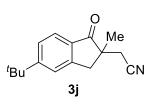

Prepared using the general procedure for cyanoacylation from iminonitrile **2f** (30 mg, 0.09 mmol), Pd(PPh₃)₄ (16 mg, 0.014 mmol), ZnCl₂ (2.5 mg, 0.02 mmol) and toluene (0.4 mL) at 120 °C. Hydrolysis of imine was accomplished by stirring with THF (0.4 mL) and 30% (v/v) aqueous AcOH (0.7 mL) for 2 hours. The crude product was purified by flash column chromatography (15% EtOAc in hexanes) and indanone **3f** was isolated as a yellow oil (16.1 mg, 0.073 mmol, 79%) R_f = 0.40 (1:4 EtOAc:Hex). ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, *J* = 8.2 Hz, 1H), 7.49 (d, *J* = 0.9 Hz, 1H), 7.42 (dd, *J* = 8.2, 0.8 Hz, 1H), 3.28 (d, *J* = 17.5 Hz, 1H), 3.10 (d, *J* = 17.5 Hz, 1H), 2.70 (d, *J* = 16.8 Hz, 1H), 2.54 (d, *J* = 16.8 Hz, 1H), 1.38 (s, 3H); ¹³C NMR (126 MHz , CDCl₃) δ 205.2, 152.8, 142.5, 132.6, 129.1, 127.0, 126.0, 117.2, 47.0, 39.7, 25.9, 23.8; IR (thin film) 3061, 2968, 2930, 2248, 1715, 1600, 1578, 1327, 1310, 1071, 897, cm⁻¹. HRMS (ESI) calcd for [C₁₂H₁₀CINNaO]⁺, *m/z* 242.0343, found 242.0347.

Indanone 3g:

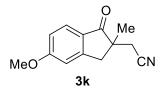
Prepared using the general procedure for cyanoacylation from iminonitrile **2g** (56.6 mg, 0.142 mmol), Pd(PPh₃)₄ (16.5 mg, 0.014 mmol), ZnCl₂ (3.9 mg, 0.029 mmol) and toluene (0.68 mL) at 120 °C. Hydrolysis of imine was accomplished by stirring with THF (0.59 mL), water (1.43 mL) and AcOH (0.24 mL) for one hour. The crude product was purified by column chromatography (gradient from pure hexanes to 15% DCM in hexanes with steps of a column volume of hexanes, 2 column volumes of 5% DCM, 1 column volume of 10% DCM and 1 column volume of 15% DCM) and indanone 3g was isolated as an orange oil (0.0263 g, 0.09 mmol 63%). $R_f = 0.6$ (1:4 EtOAc:Hex); ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.19 \text{ (d, } J = 6.9 \text{ Hz}, 1\text{H}), 3.21 \text{ (d, } J = 17.5 \text{ Hz}, 1\text{H}), 3.06 \text{ (d, } J = 17.4 \text{ Hz})$ Hz, 1H), 2.68 (d, J = 16.8 Hz, 1H), 2.56 (d, J = 16.8 Hz, 1H), 1.38 (s, 3H), 0.42 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 205.0 (t, J = 3.2 Hz), 167.2 (app dd, J = 246.6, 13.1 Hz), 163.9 (app dd, J = 248.8, 15.4 Hz), 138.6 (dd, J = 9.6, 6.7 Hz), 132.8 (dd, J = 25.2, 2.8 Hz), 129.0 (d, J = 18.2 Hz), 122.90 (app dd, J = 36.5, 32.6 Hz), 117.28, 106.8 (dd, J =28.3, 4.5 Hz), 47.6, 35.8, 26.2, 24.0, 0.17 (t, J = 3.0 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -96.1, -101.3; IR (thin film) 2962, 2930, 2359, 2250, 1723, 1411, 1012, 848 cm⁻¹; HRMS (ESI) calcd for [C₁₅H₁₇F₂NNaO]⁺, *m/z* 316.0940, found 316.0934.


Indanone 3h:

Prepared using the general procedure for cyanoacylation from iminonitrile **2h** (21 mg, 0.070 mmol), Pd(PPh₃)₄ (12 mg, 0.010 mmol), ZnCl₂ (2.0 mg, 0.014 mmol) and toluene (0.35 mL) at 130 °C. Hydrolysis of imine was accomplished by stirring with THF (0.5

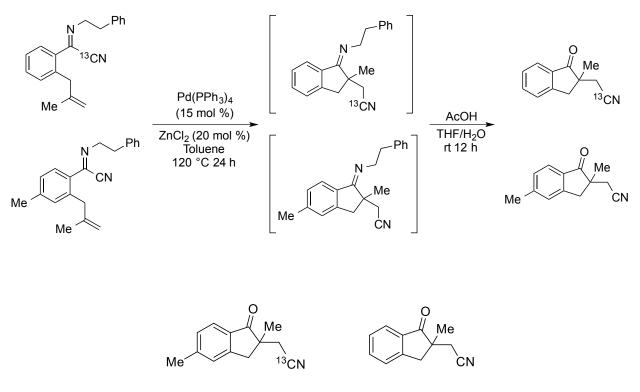

mL) and 30% (v/v) aqueous AcOH (0.7 mL) for 12 hours. The crude product was purified by flash column chromatography (10% EtOAc in hexanes) and indanone **3h** was isolated as a yellow oil (10.5 mg, 0.079 mmol, 76%) R_f = 0.45 (1:4 EtOAc:Hex); ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, *J* = 7.6 Hz, 1H), 7.66 (app dt, *J* = 1.1, 7.4 Hz, 1 H), 7.50 (app d, *J* = 7.8 Hz, 1H), 7.42 (app t, *J* = 7.5 Hz, 1H), 3.21 (s, 2H), 2.71 (d, *J* = 16.7 Hz, 1H), 2.55 (d, *J* = 16.7 Hz, 1H), 1.92 - 1.70 (m, 2H), 0.80 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 206.7, 152.0, 135.7, 135.5, 128.1, 126.6, 124.5, 117.4, 50.3, 37.4, 30.2, 24.9, 8.5; IR (thin film) 2967, 2924, 2880, 2248, 1711, 1608, 1465, 1298, 1187, 927, cm⁻¹. HRMS (ESI) calcd for [C₁₃H₁₃NNaO]⁺, *m/z* 222.0895, found 222.0900.

Indanone 3i:


Prepared using the general procedure for cyanoacylation from iminonitrile **2i** (31 mg, 0.087 mmol), Pd(PPh₃)₄ (15 mg, 0.013 mmol), ZnCl₂ (2.5 mg, 0.018 mmol) and toluene (0.4 mL) at 120 °C. Hydrolysis of imine was accomplished by stirring with THF (0.4 mL) and 30% aqueous AcOH (0.8 mL) for 1.5 hours. The crude product was purified by flash column chromatography (15% EtOAc in hexanes) and indanone **3i** was isolated as a yellow oil (20 mg, 0.079 mmol, 90%) R_f = 0.38 (1:4 EtOAc:Hex) ¹H NMR (300 MHz ,CDCl₃) δ 7.91 (d, *J* = 8.0 Hz, 1H), 7.78 (s, 1H), 7.70 (d, *J* = 8.1 Hz, 1H), 3.37 (d, *J* = 17.5 Hz, 1H), 3.19 (d, *J* = 17.6 Hz, 1H), 2.73 (d, *J* = 16.8 Hz, 1H), 2.58 (d, *J* = 17.5 Hz, 1H), 1.40 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 205.7, 151.5, 137.1 (q, *J* = 26 Hz), 136.9, 125.5, 125.3 (q, *J* = 3.5 Hz), 124.1 (q, *J* = 3.5 Hz), 123.4 (q, *J* = 274 Hz), 117.0, 47.2, 39.9, 25.8, 23.8; ¹⁹F NMR (282 MHz , CDCl₃) δ -64.2; IR (thin film) 2971, 2932, 2248, 1723, 1622, 1456, 1206, 1170, 930, cm⁻¹. HRMS (ESI) calcd for [C₁₃H₁₀F₃NNaO]⁺ *m/z* 276.0607, found 276.0612.

Indanone 3j:

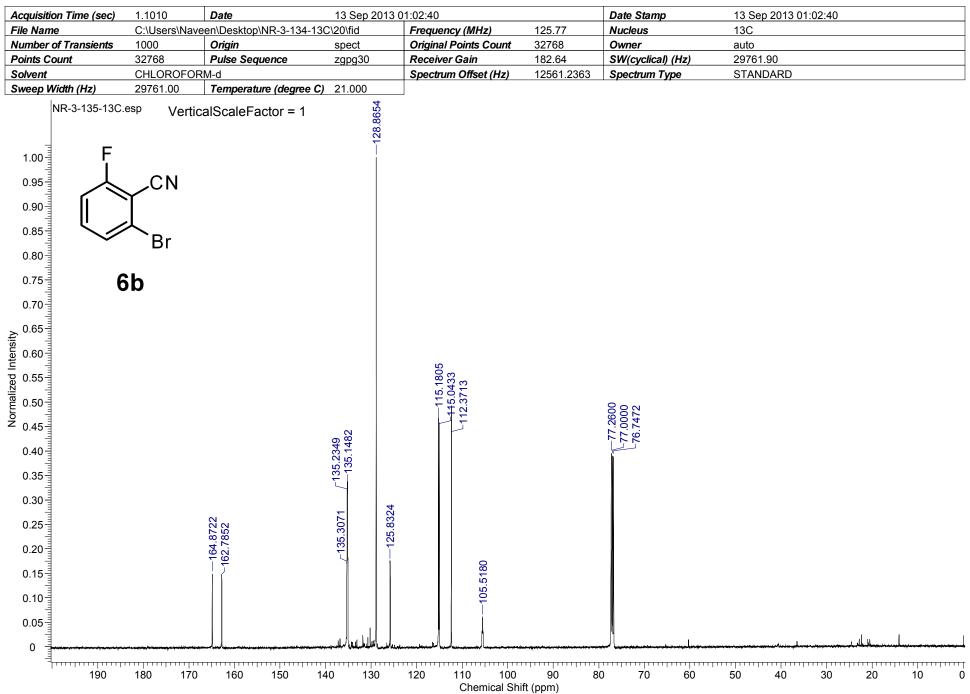
Prepared using the general procedure for cyanoacylation from iminonitrile **2j** (37 mg, 0.11 mmol), Pd(PPh₃)₄ (25 mg, 0.021 mmol), ZnCl₂ (2.9 mg, 0.02 mmol) and toluene (0.5 mL) at 130 °C. Hydrolysis of imine was accomplished by stirring with THF (0.4 mL) and 30% (v/v) aqueous AcOH (0.9 mL) for 18 hours. The crude product was purified by flash column chromatography (gradient from 10 to 15% EtOAc in hexanes) and indanone **3j** was isolated as a light yellow oil (20.2 mg, 0.084 mmol, 77%) R_f = 0.40 (1:4 EtOAc:Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.72 (app dd, *J* = 7.2, 1.5 Hz, 1H), 7.49–7.46 (m, 2H), 3.27 (d, *J* = 17.2 Hz, 1H), 3.09 (d, *J* = 17.2 Hz, 1H), 2.69 (d, *J* = 16.8 Hz, 1H), 2.51 (d, *J* = 16.8 Hz, 1H), 1.42–1.37 (m, 12H); ¹³C NMR (126 MHz, CDCl₃) δ 206.2, 160.3, 151.7, 131.8, 126.0, 124.5, 123.3, 117.6, 46.8, 40.1, 35.6, 31.1, 26.0, 23.7; IR (thin film) 2965, 2870, 2248, 1711, 1608, 1438, 1225, 987, cm⁻¹; HRMS (ESI) calcd for [C₁₆H₁₉NNaO]⁺; *m*/z 264.1359, found 264.1364.


Indanone 3k:

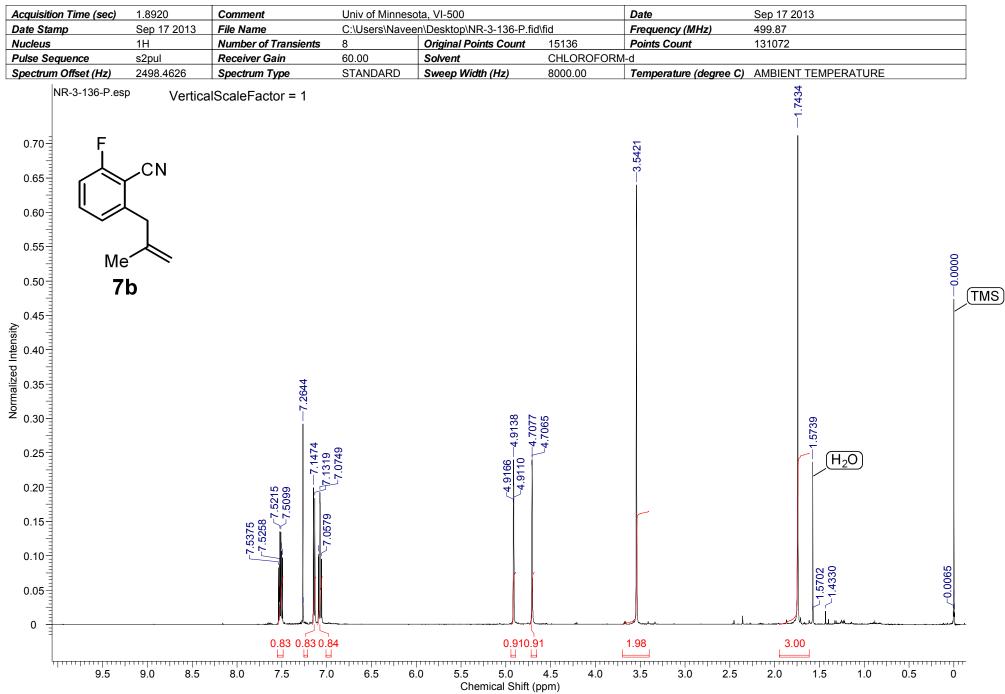
Prepared using the general procedure for cyanoacylation from iminonitrile **2k** (51 mg, 0.16 mmol), Pd(PPh₃)₄ (37 mg, 0.032 mmol), ZnCl₂ (4.4 mg, 0.032 mmol) and toluene (0.7 mL) at 130 °C. Hydrolysis of imine was accomplished by stirring with THF (0.5 mL) and 30% (v/v) aqueous AcOH (0.7 mL) for 14 hours. The crude product was purified by flash column chromatography (20% EtOAc in hexanes) and indanone **3k** was isolated as a colorless oil (21 mg, 0.097 mmol, 60%) R_f = 0.40 (3:7 EtOAc:Hex). ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, *J* = 8.5 Hz, 1H), 6.96 (dd, *J* = 8.5, 2.3 Hz, 1H), 6.90 (app d, *J* =

1.9 Hz, 1H), 3.91 (s, 3H), 3.24 (d, J = 17.3 Hz, 1H), 3.06 (d, J = 17.3 Hz, 1H), 2.69 (d, J = 16.8 Hz, 1H), 2.50 (d, J = 16.8 Hz, 1H), 1.37 (s, 3H) ¹³C NMR (126 MHz, CDCl₃) δ 204.6, 166.2, 154.4, 127.2, 126.6, 117.7, 116.3, 109.7, 55.8, 46.8, 40.1, 26.2, 23.8; IR (thin film) 2967, 2930, 2248, 1702, 1599, 1490, 1340, 1295, 1104, 986, cm⁻¹; HRMS (ESI) calcd for [C₁₃H₁₃NNaO₂]⁺; m/z 238.0844, found 238.0843.

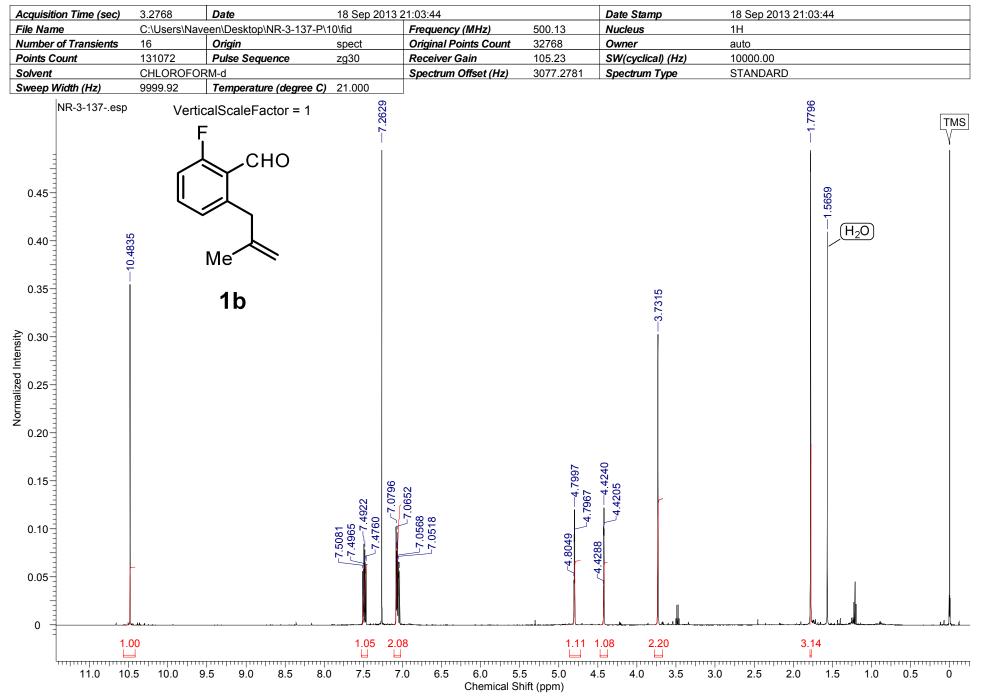
Crossover Experiment: In a nitrogen filled glove box, a 1 dram reaction vial was charged with iminonitrile **1b** (38 mg 0.125 mmol), and **1I** (36 mg 0.125 mmol) Pd(PPh₃)₄ (43 mg, 0.038 mmol), ZnCl₂ (7.0 mg, 0.05 mmol) and toluene (1.0 mL). The mixture was heated at 120 °C for 24 h inside a nitrogen filled glove box. The mixture was then removed from the glove box, filtered through Celite and concentrated. The crude product was dissolved in THF (1.5 mL) and then 30% aqueous acetic acid (2.5 mL) was added. The reaction was stirred at room temperature for 12 h. After ensuring complete hydrolysis of imine by silica TLC, the reaction was diluted with diethyl ether (20 mL). The layers were separated and aqueous layer was again extracted with diethyl ether (20 mL), brine (50 mL), were dried over anhydrous Na₂SO₄ (15 g) and concentrated *in vacuo*. The crude purified by flash column chromatography on silica gel (15% EtOAc in Hex) to afford the mixture of indanones **2b** and **2l** (39 mg). No crossover of labeled ¹³CN was observed by ¹³C NMR (Please find the attached spectra for more details).

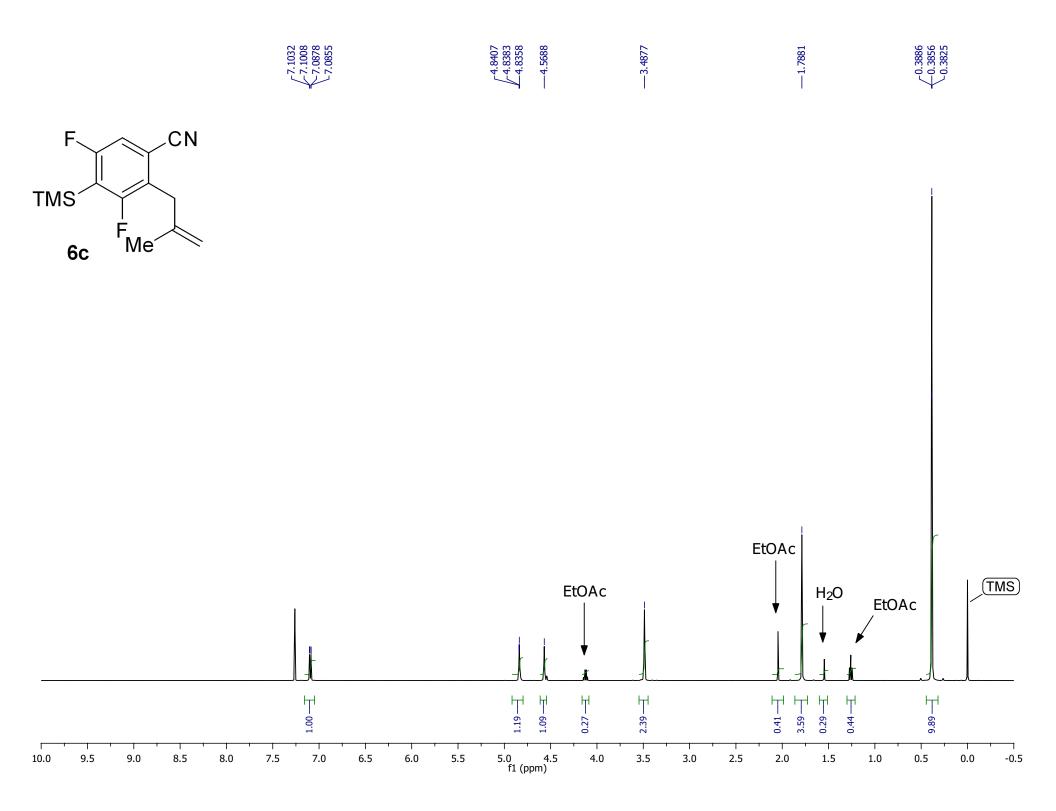

Not observed

Notes and references

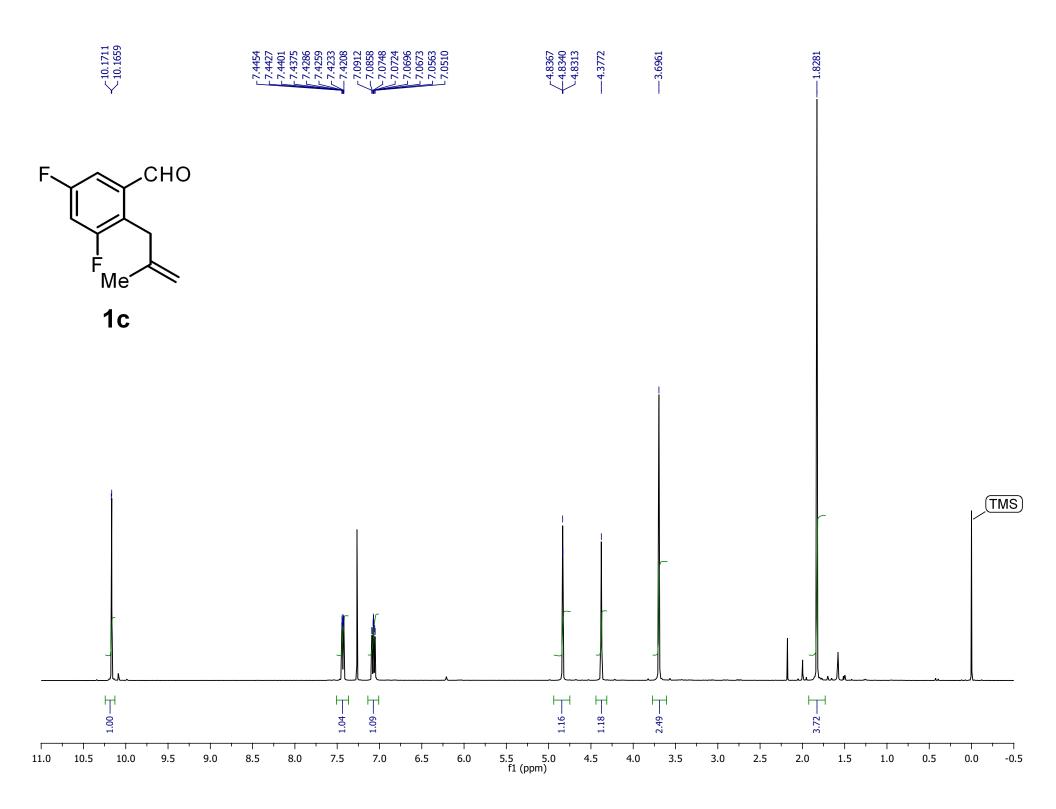

- 1. W. L. F. Argamengo and C. L. L. Chai, *Purification of Laboratory Chemicals*, Elsevier, 2003.
- 2. B. Du, X. Jiang and P. Sun, *J. Org. Chem.*, 2013, **78**, 2786-2791.
- 3. A. Krasovskiy and P. Knochel, *Angew. Chem., Int. Ed.*, 2004, **43**, 3333-3336.
- I. Kinoyama, T. Miyazaki, Y. Koganemaru, N. Shiraishi, Y. Kawamoto and T. Washio, Astellas Pharma Inc., Japan, Aug 8, 2011.
- 5. K. Schwekendiek and F. Glorius, *Synthesis*, 2006, 2996-3002.
- 6. S. Nicolai, S. Erard, D. F. Gonzalez and J. Waser, *Org. Lett.*, 2010, **12**, 384-387.
- 7. I. Bonnaventure and A. B. Charette, *J. Org. Chem.*, 2008, **73**, 6330-6340.
- 8. B. Cheng, J. D. Sunderhaus and S. F. Martin, *Org. Lett.*, 2010, **12**, 3622-3625.
- 9. L. D. Shirtcliff, T. J. R. Weakley, M. M. Haley, F. Köhler and R. Herges, *J. Org. Chem.*, 2004, **69**, 6979-6985.
- 10. A. A. Pletnev, Q. Tian and R. C. Larock, *J. Org. Chem.*, 2002, **67**, 9276-9287.
- 11. P. Fontaine, A. Chiaroni, G. Masson and J. Zhu, *Org. Lett.*, 2008, **10**, 1509-1512.
- 12. M. Frigerio, M. Santagostino and S. Sputore, *J. Org. Chem.*, 1999, **64**, 4537-4538.
- 13. E. V. Beletskiy, C. Sudheer and C. J. Douglas, *J. Org. Chem.*, 2012, **77**, 5884-5893.

Acquisition Time (sec)	3.2768	Date		13 16:49:52		Date Stamp	12 Sep 2013 16:49:52	
ile Name		veen\Desktop\NR-3-135-		Frequency (MHz)	500.13	Nucleus	1H	
umber of Transients	16	Origin	spect	Original Points Count	32768	Owner	auto	
oints Count	131072	Pulse Sequence	zg30	Receiver Gain	105.23	SW(cyclical) (Hz)	10000.00	
olvent	CHLOROFO			Spectrum Offset (Hz)	3077.8884	Spectrum Type	STANDARD	
weep Width (Hz)	9999.92	Temperature (degree	C) 20.998					
NR-3-135-Fr2	CN Br b	7.4564 7.4564 7.4564 7.4564		L				-0.001

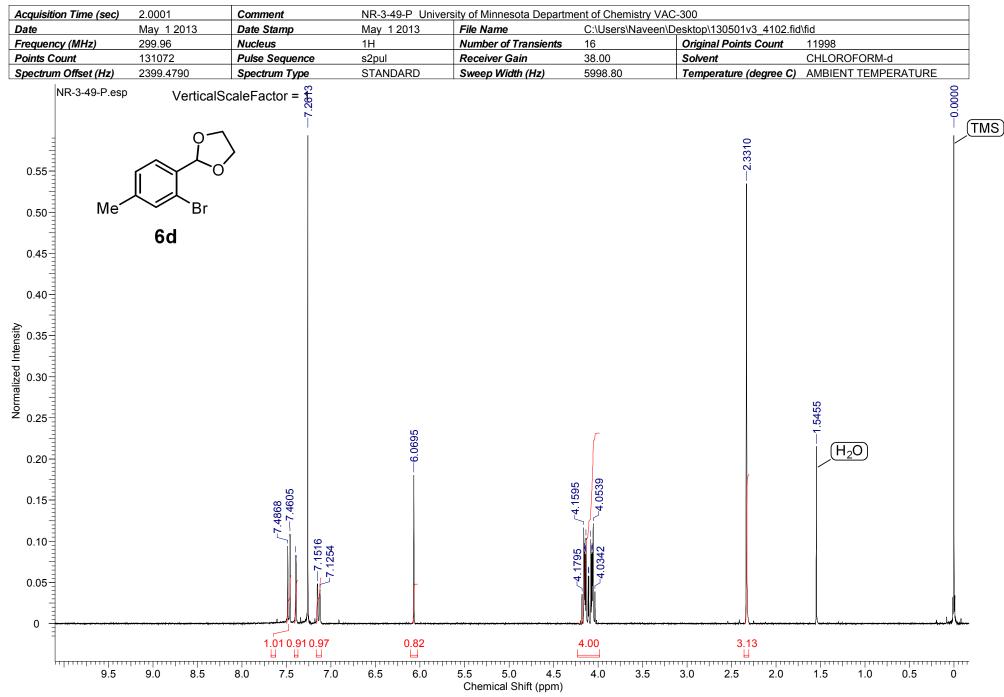

9/26/2013 4:37:03 PM

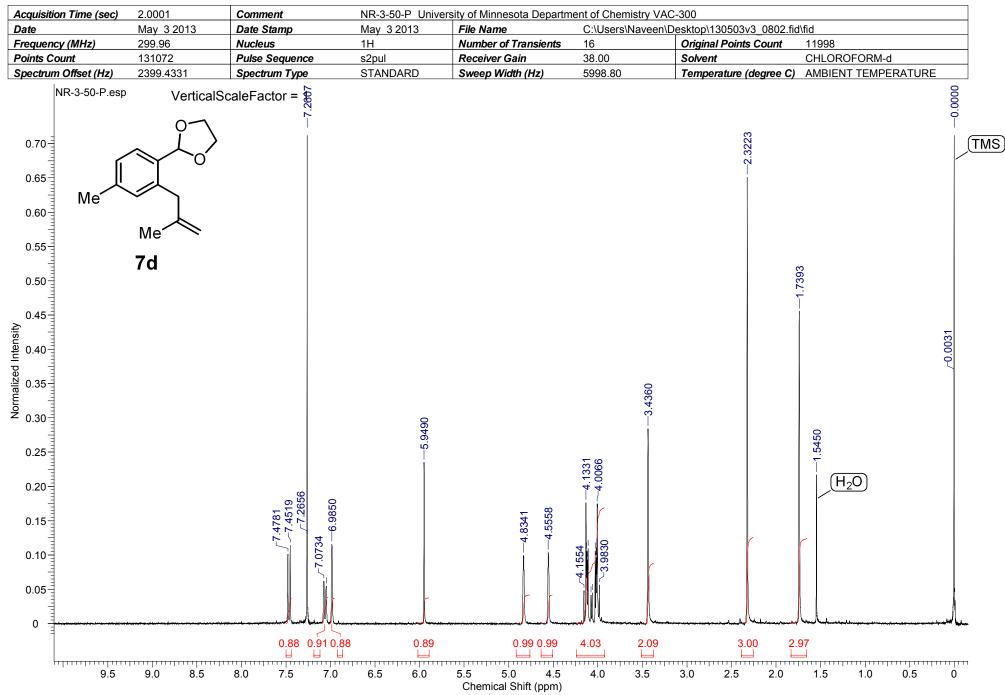


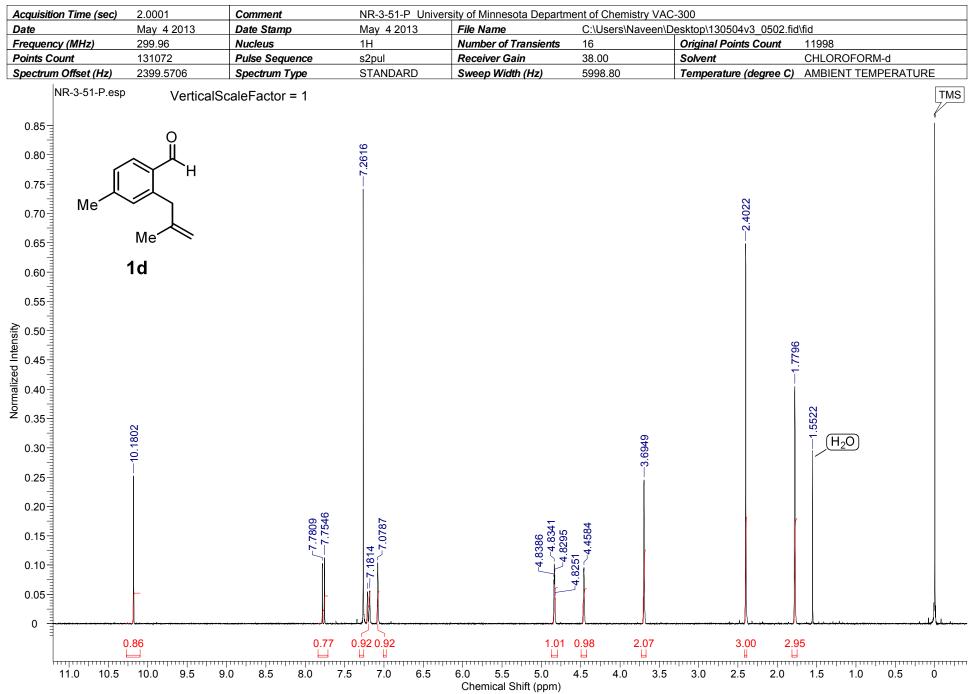
9/26/2013 4:39:22 PM

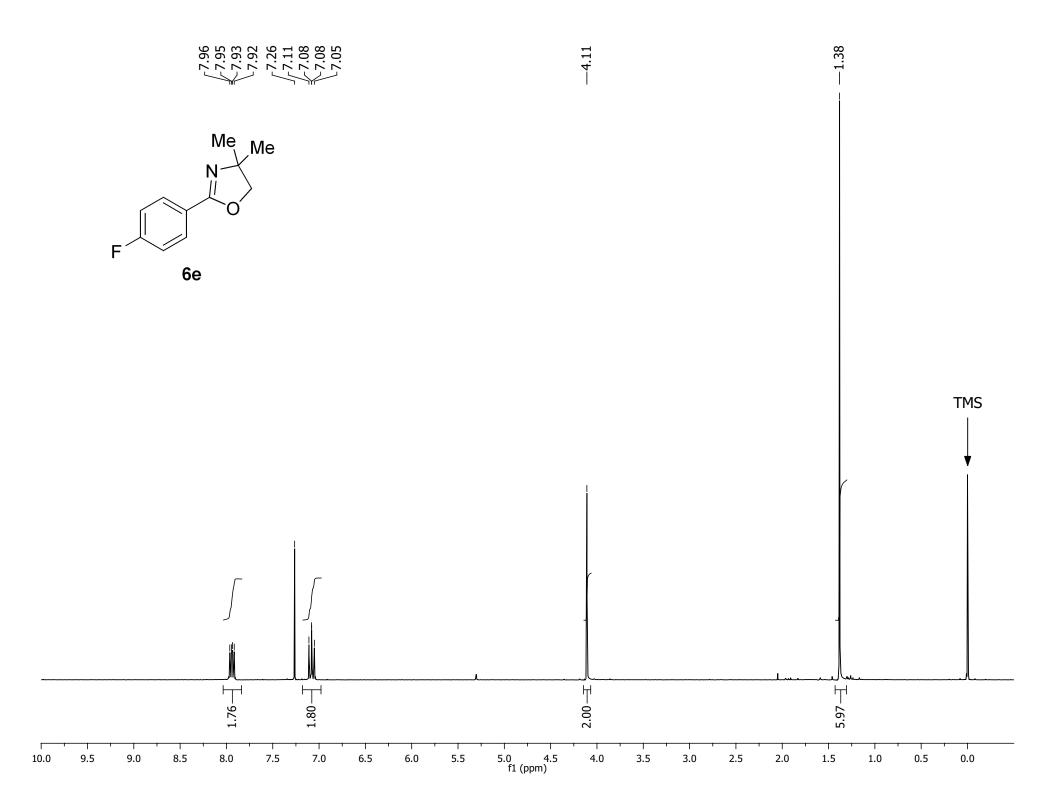


9/26/2013 4:53:01 PM

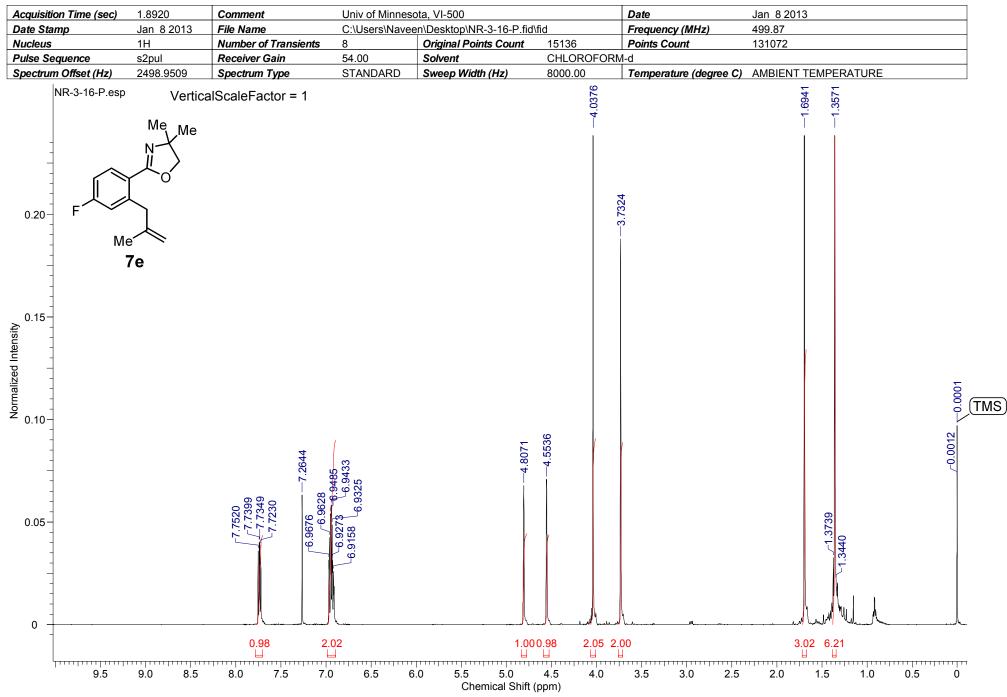




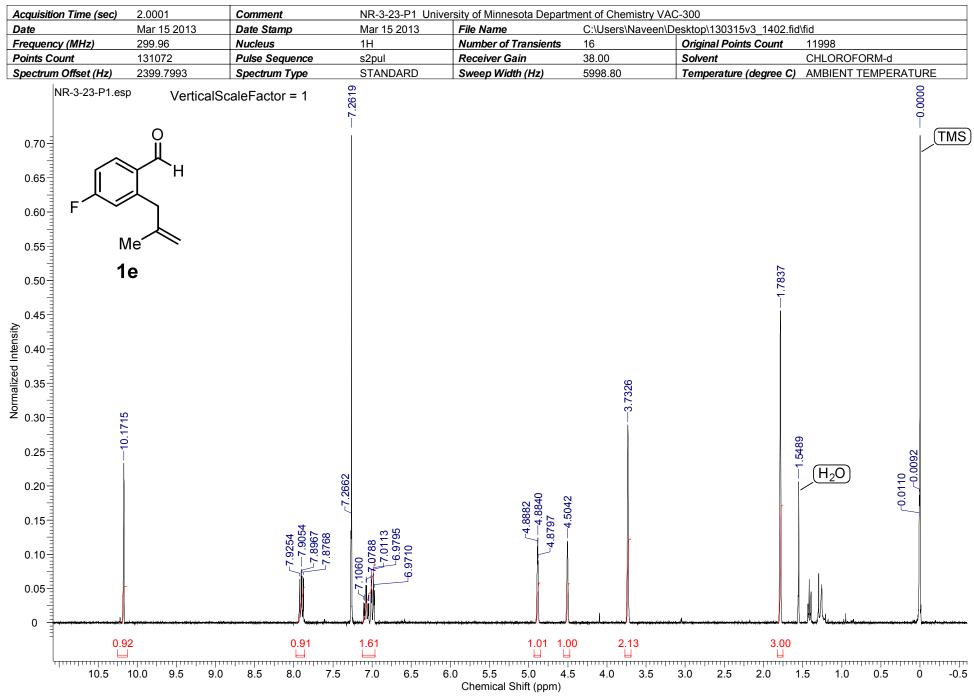

9/26/2013 5:00:03 PM

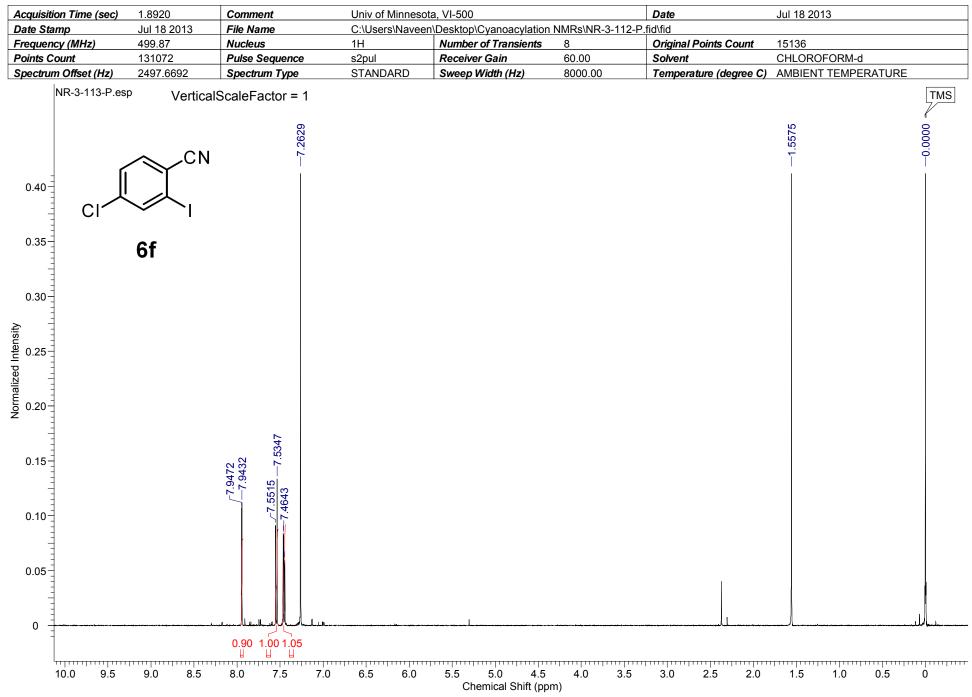


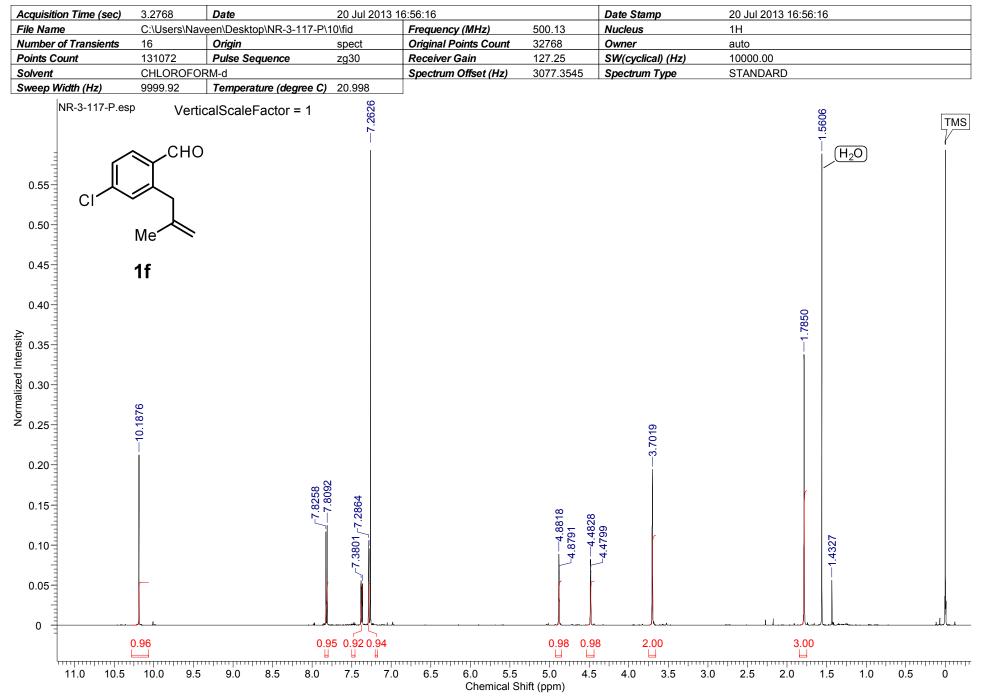
9/26/2013 5:07:44 PM

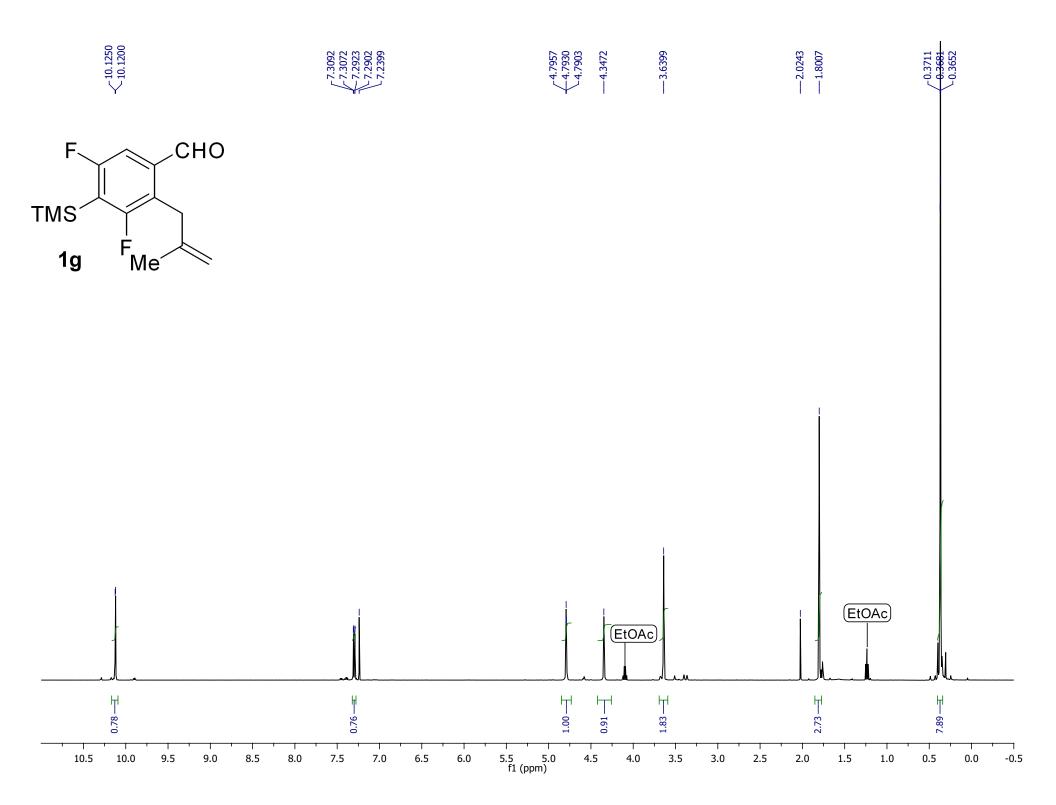


9/26/2013 5:14:56 PM

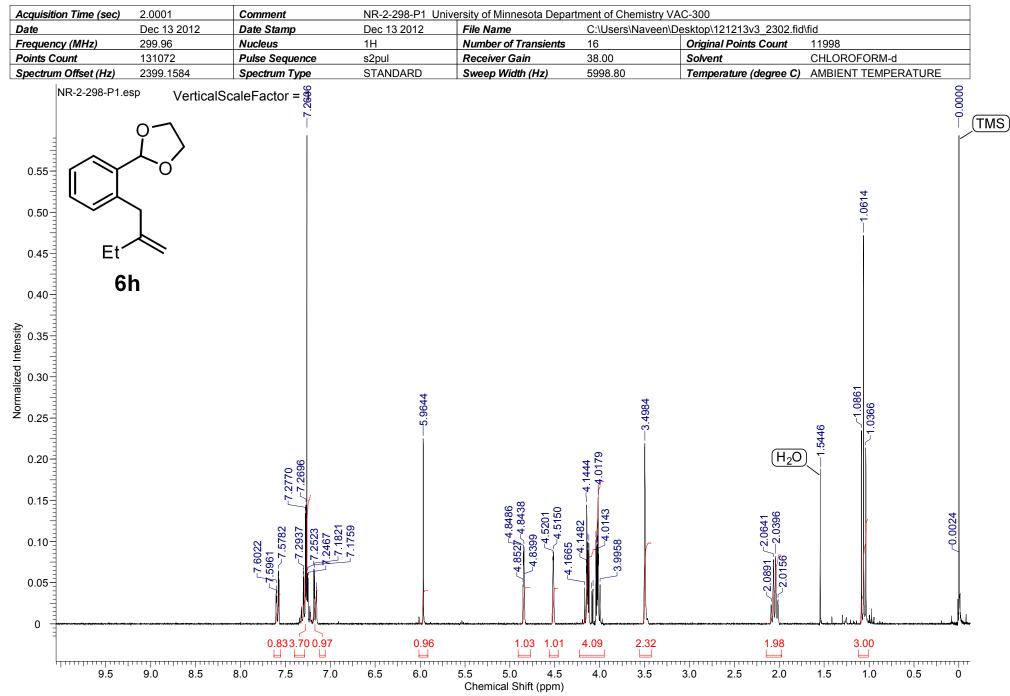



9/27/2013 10:31:34 AM

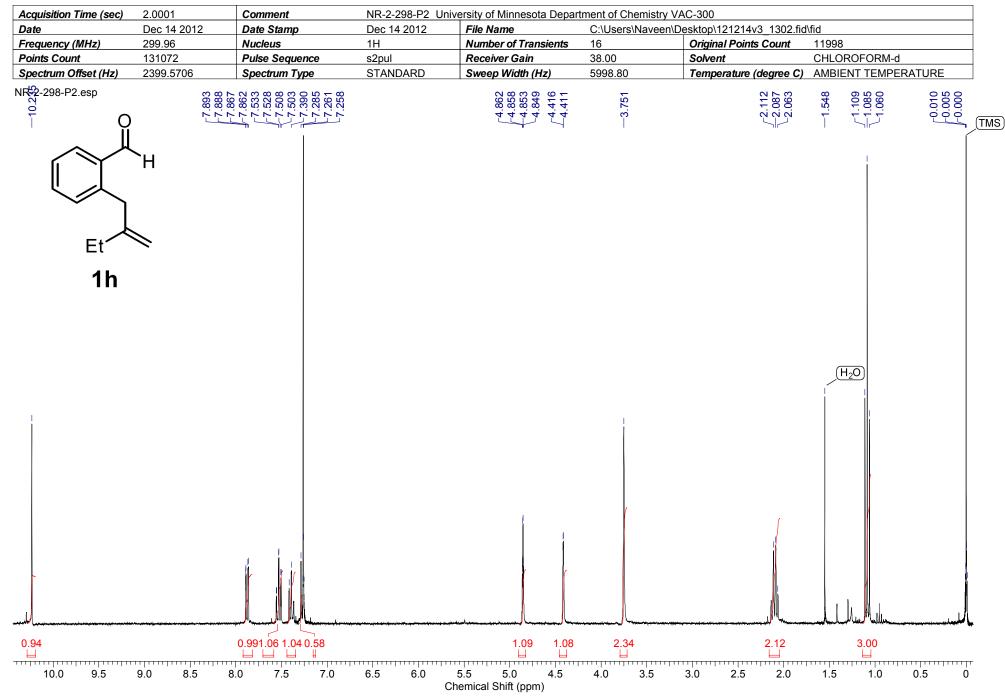

9/27/2013 10:41:21 AM

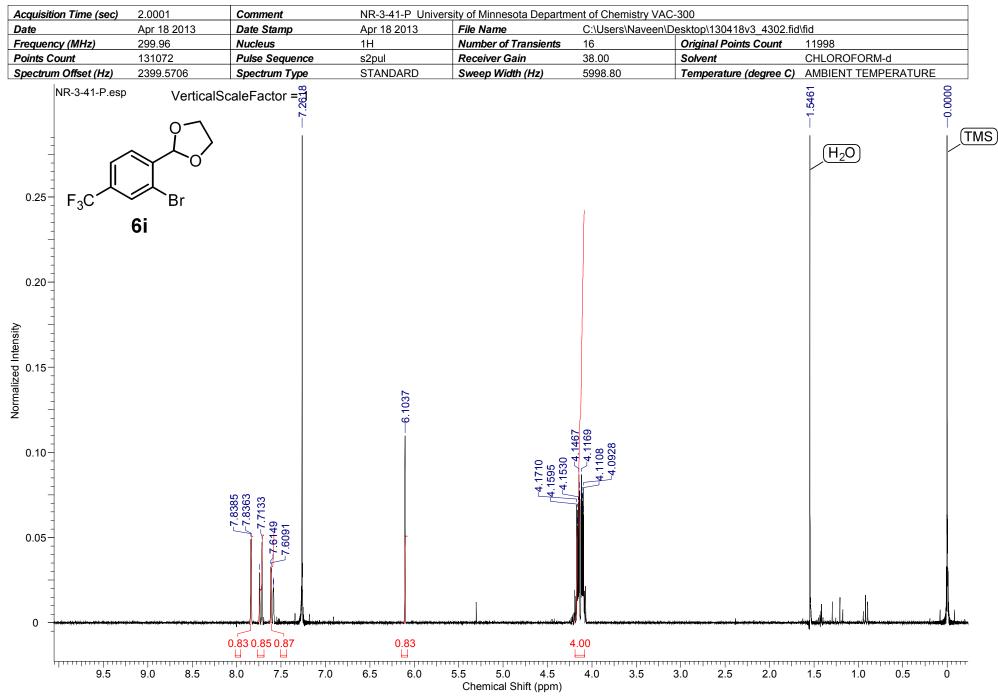


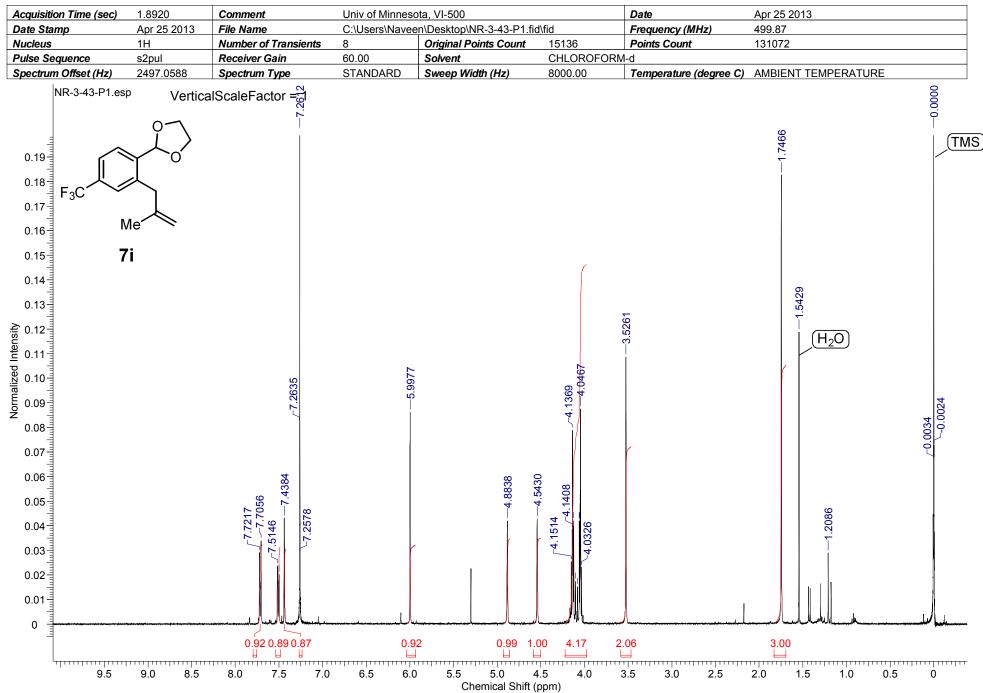
9/27/2013 11:37:13 AM

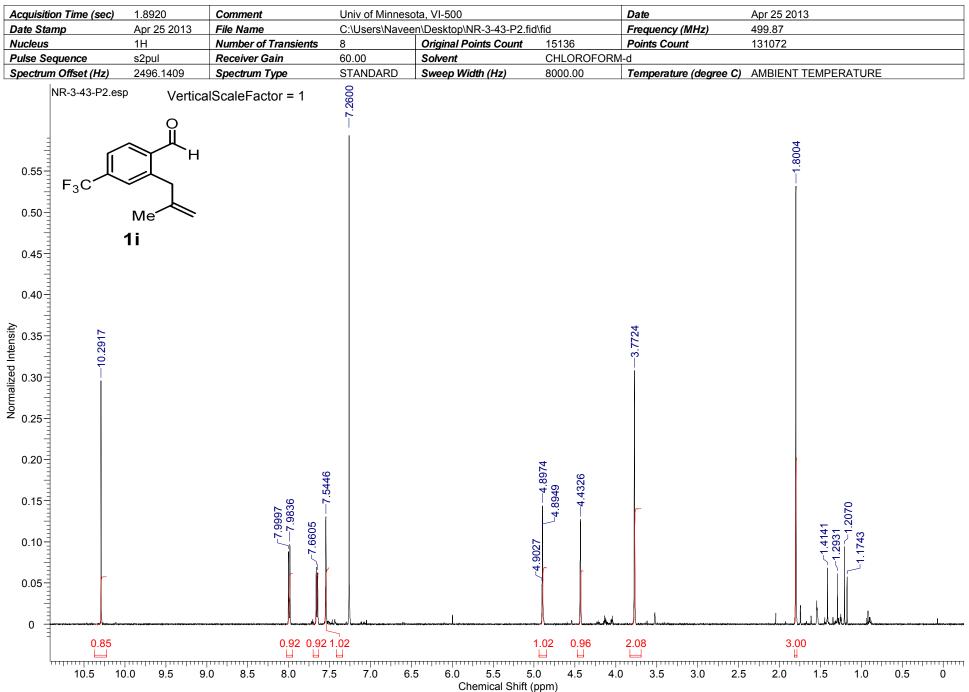


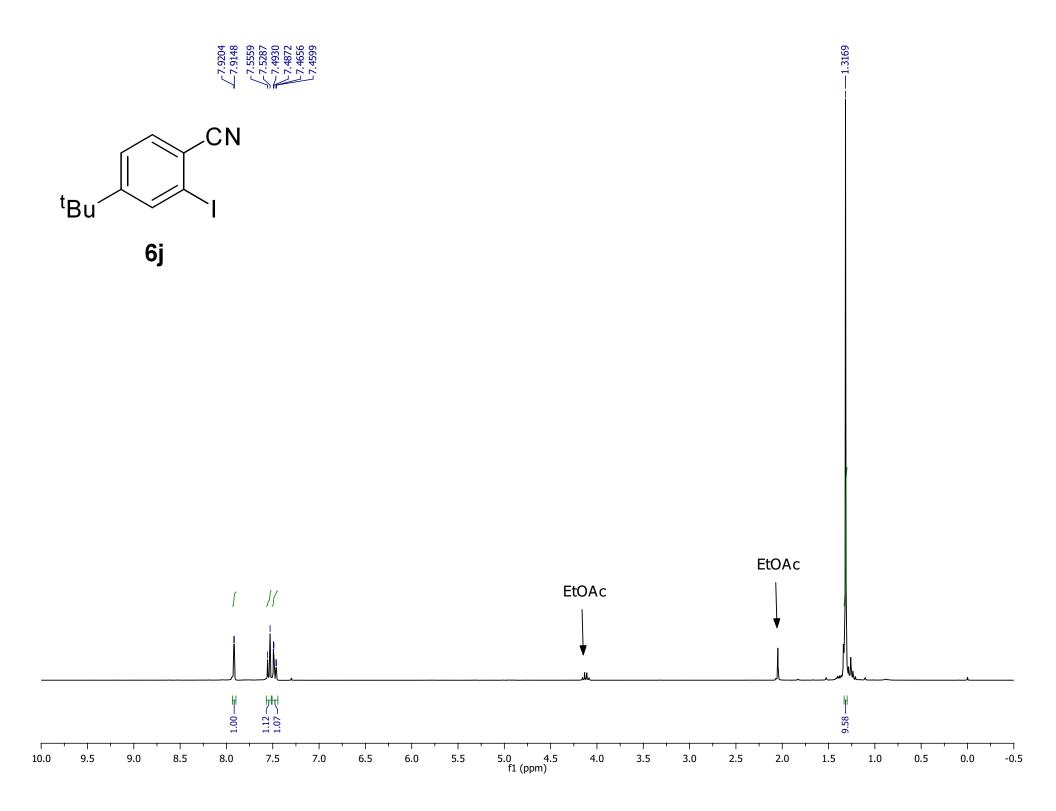
9/27/2013 11:43:42 AM

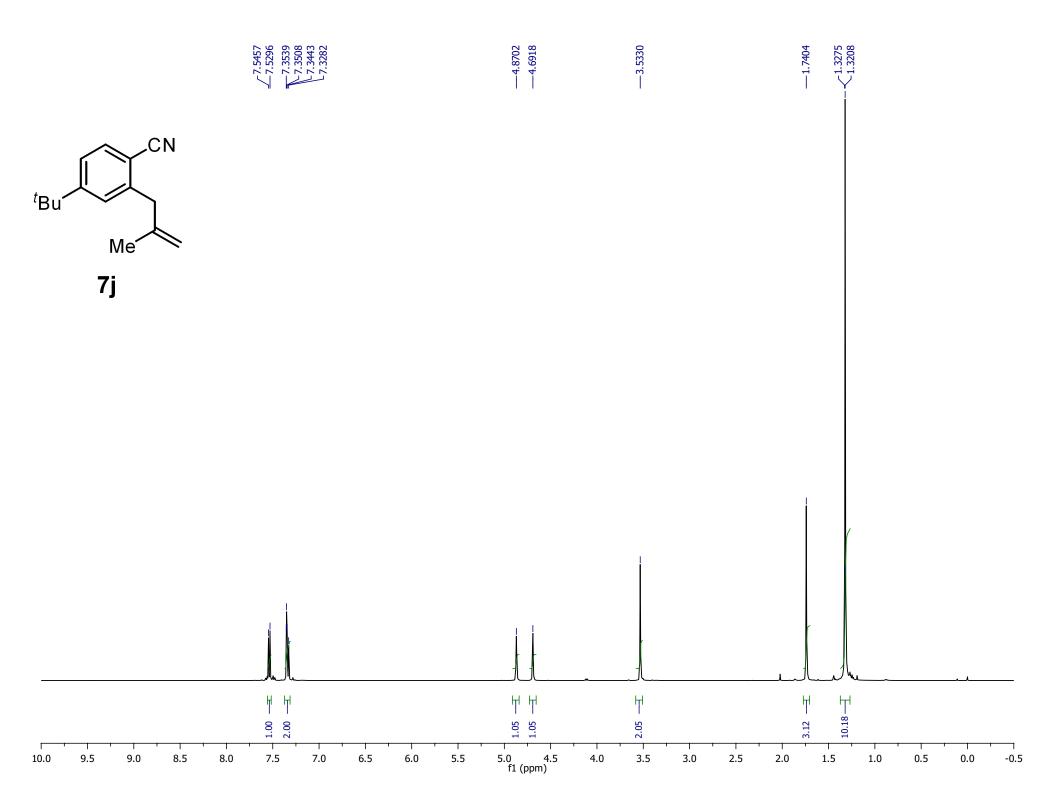


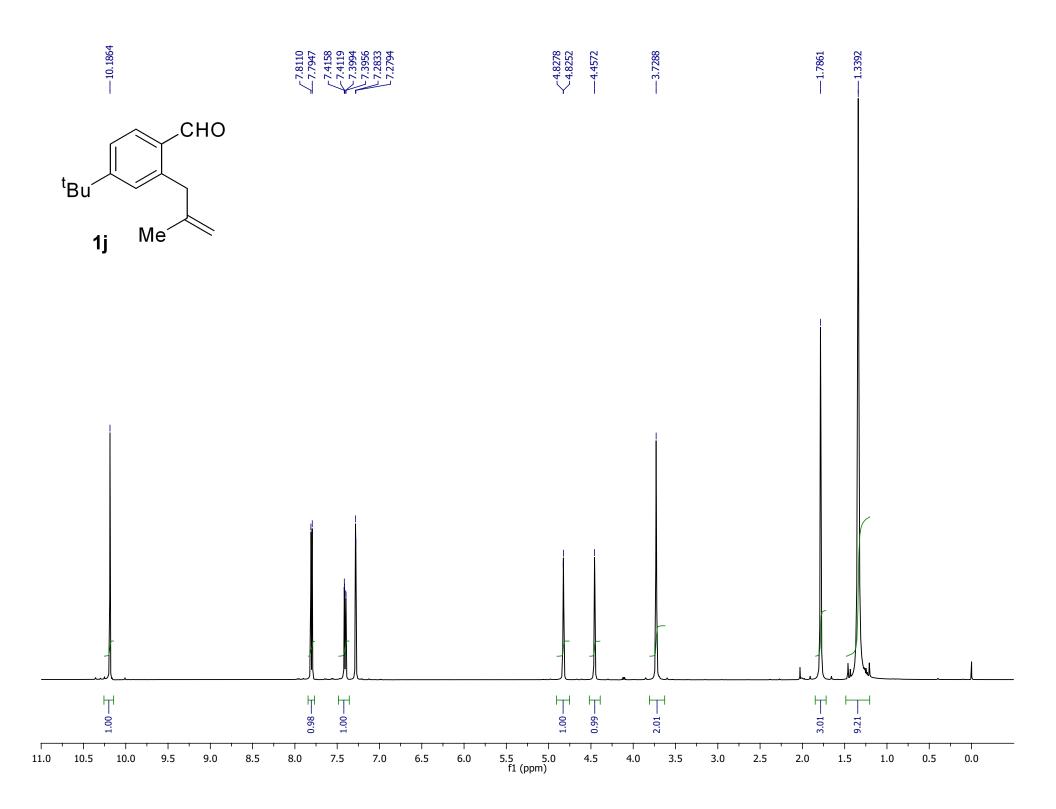

9/27/2013 11:54:24 AM

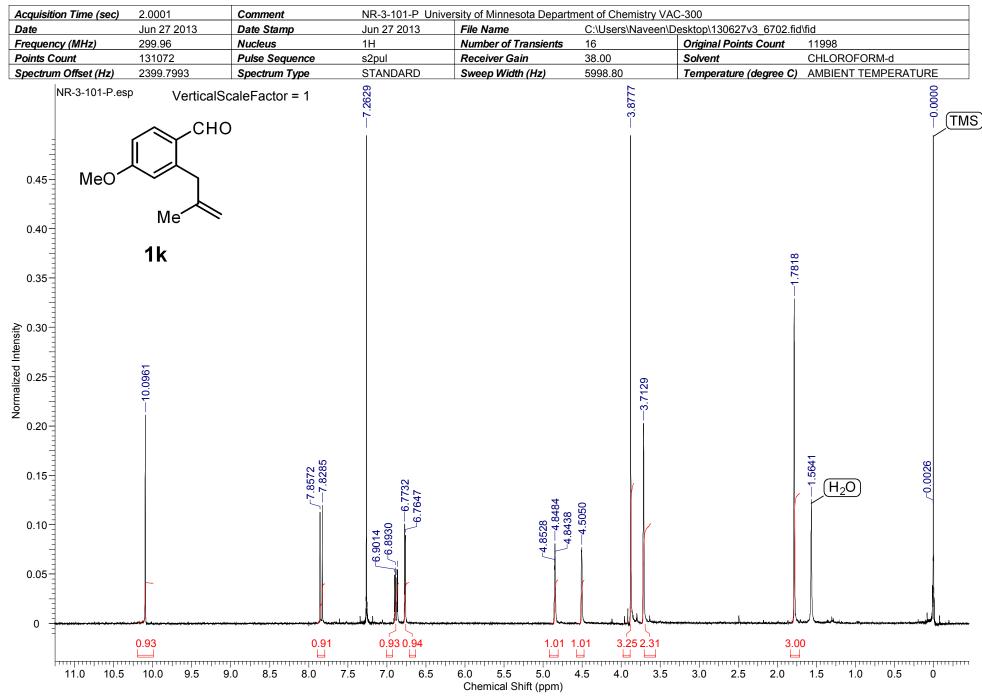

1/8/2014 1:13:04 PM

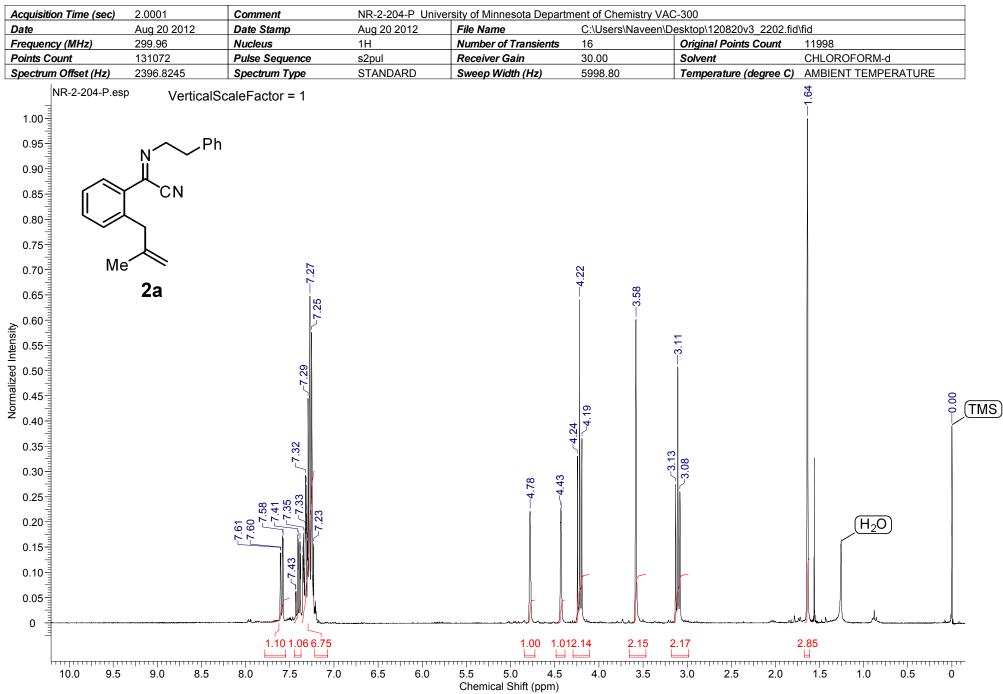


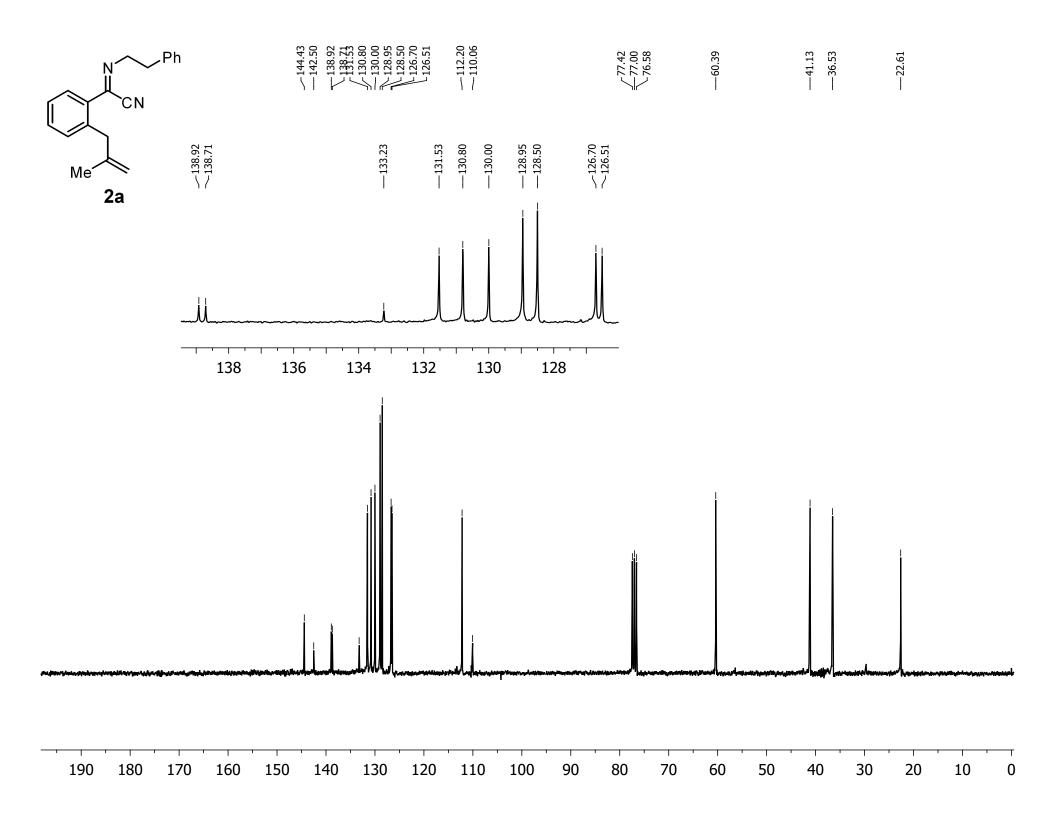

9/27/2013 12:06:27 PM



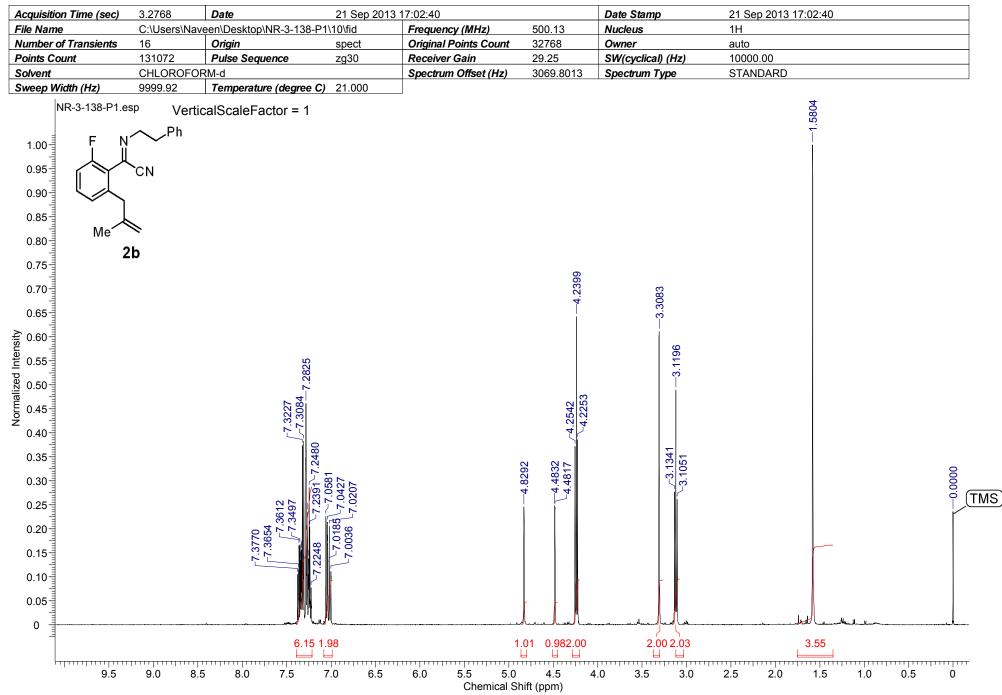

9/27/2013 12:13:30 PM



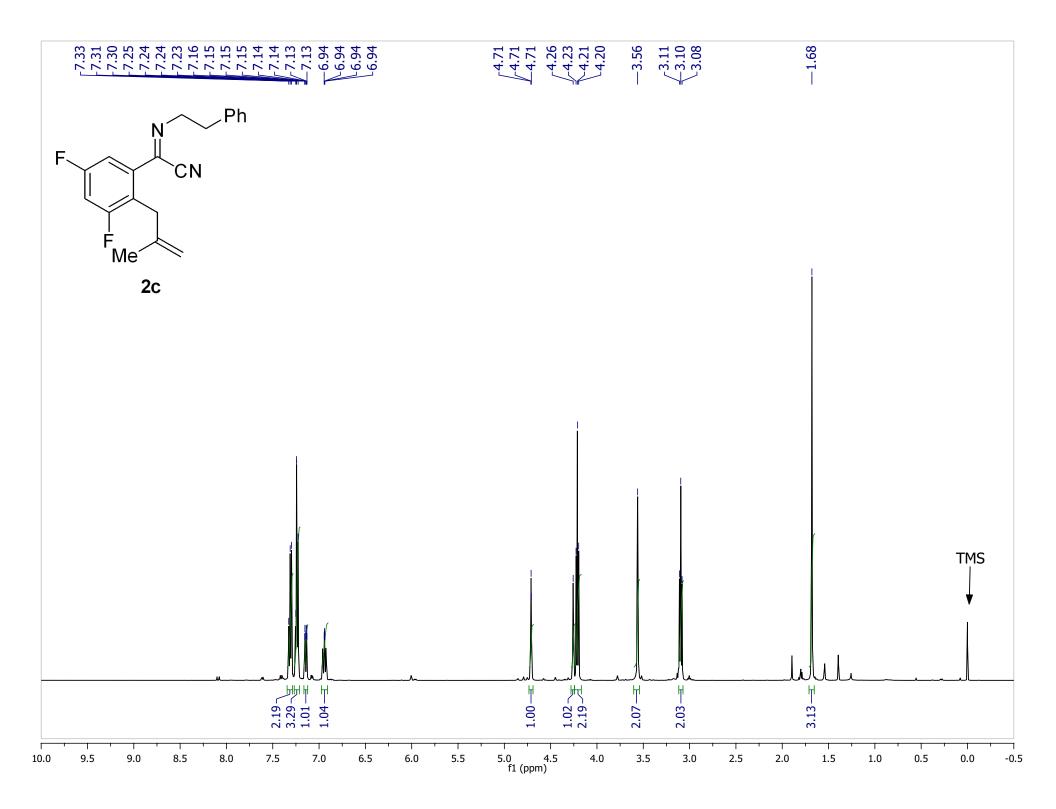


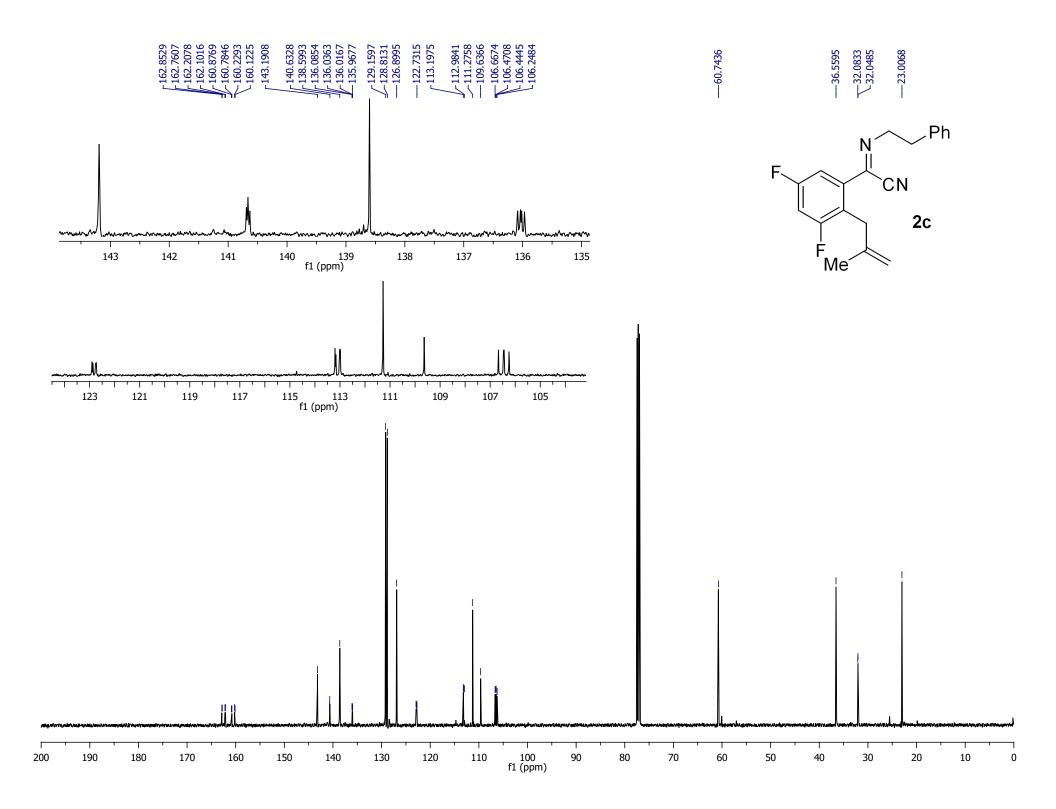

r (MHz) Int	299.96	1		File Name		Desktop\130626v3_2402.fid	
ınt		Nucleus	1H	Number of Transients	16	Original Points Count	11998
	131072	Pulse Sequence	s2pul	Receiver Gain	38.00	Solvent	CHLOROFORM-d
Offset (Hz)	2400.0740	Spectrum Type	STANDARD	Sweep Width (Hz)	5998.80	Temperature (degree C)	AMBIENT TEMPERATURE
R-3-100-P.esp		ScaleFactor = 1 ⁸⁸ 					
MeO	Me						0
e	k					1	90 -0.0020
		_					
		7.2651			N		
			5.8283		-3.507		
		0 439					
		7.575 7.57	6.8062 6.8062		ſ		H ₂ O
		-					
un, en, en, en, en, en, en, en, en, en	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.94	1.89	1.03 1.03	3.27 2.17	L	00
	MeO 6	6k	f(t) = 0.000	(12)	$f = \begin{pmatrix} f \\ MeO \\ Me \end{pmatrix}$ $f = \begin{pmatrix} f \\ ME \end{pmatrix}$ f =	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $

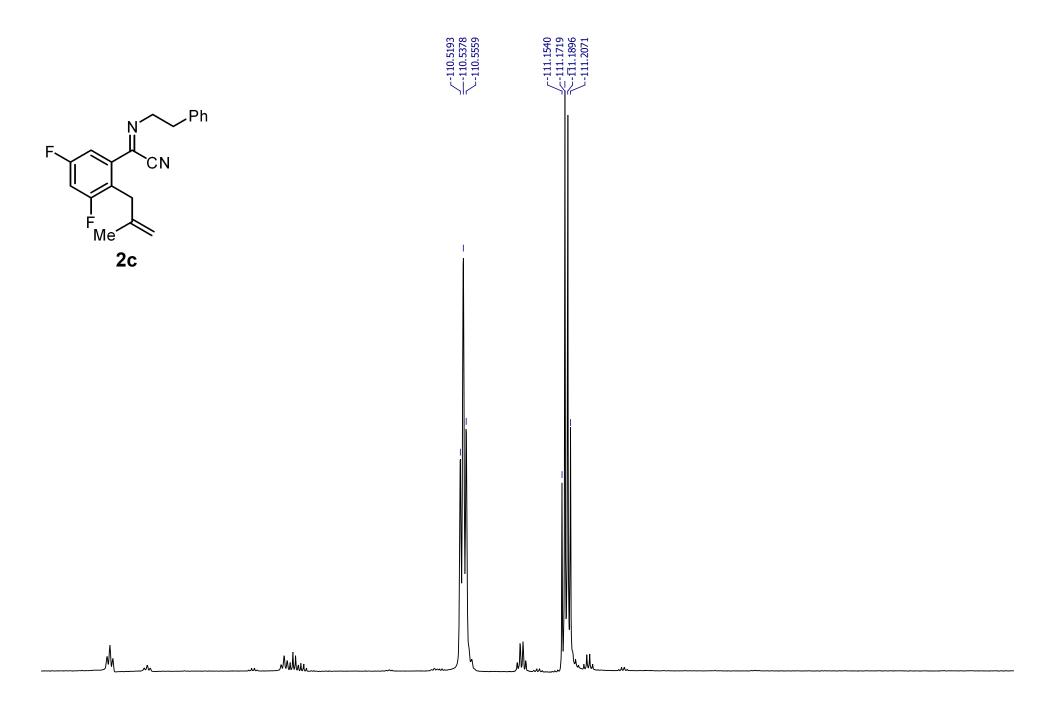
9/27/2013 12:30:25 PM



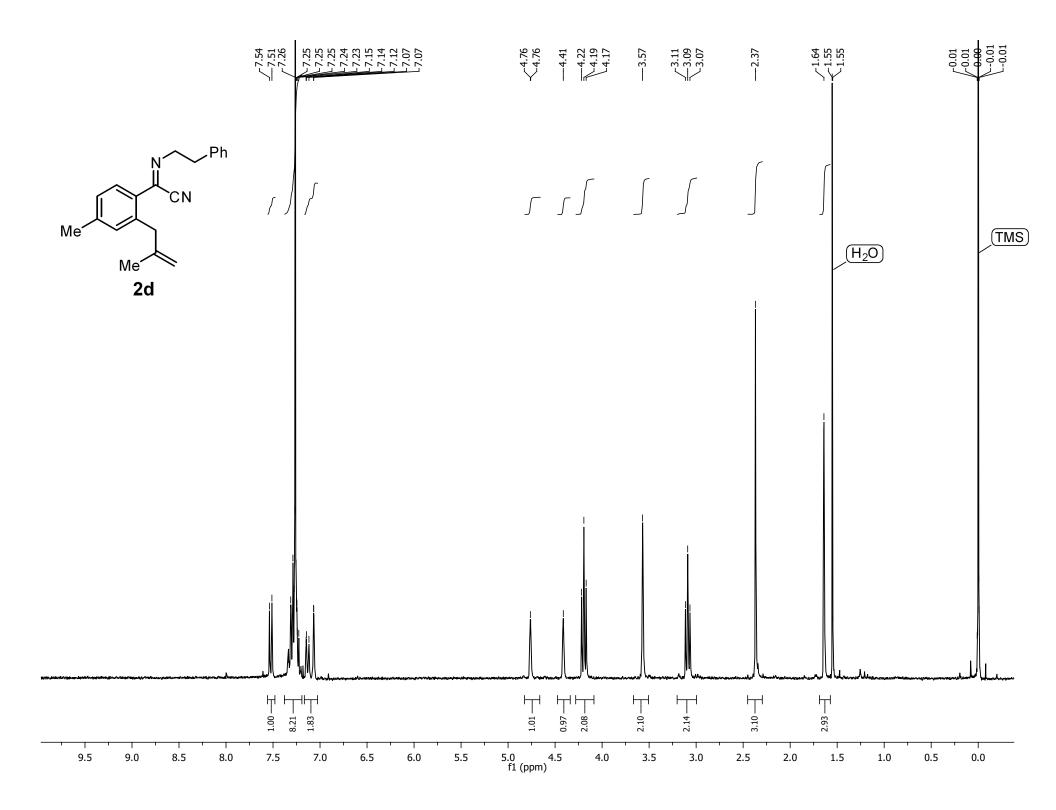
8/22/2013 5:37:35 PM

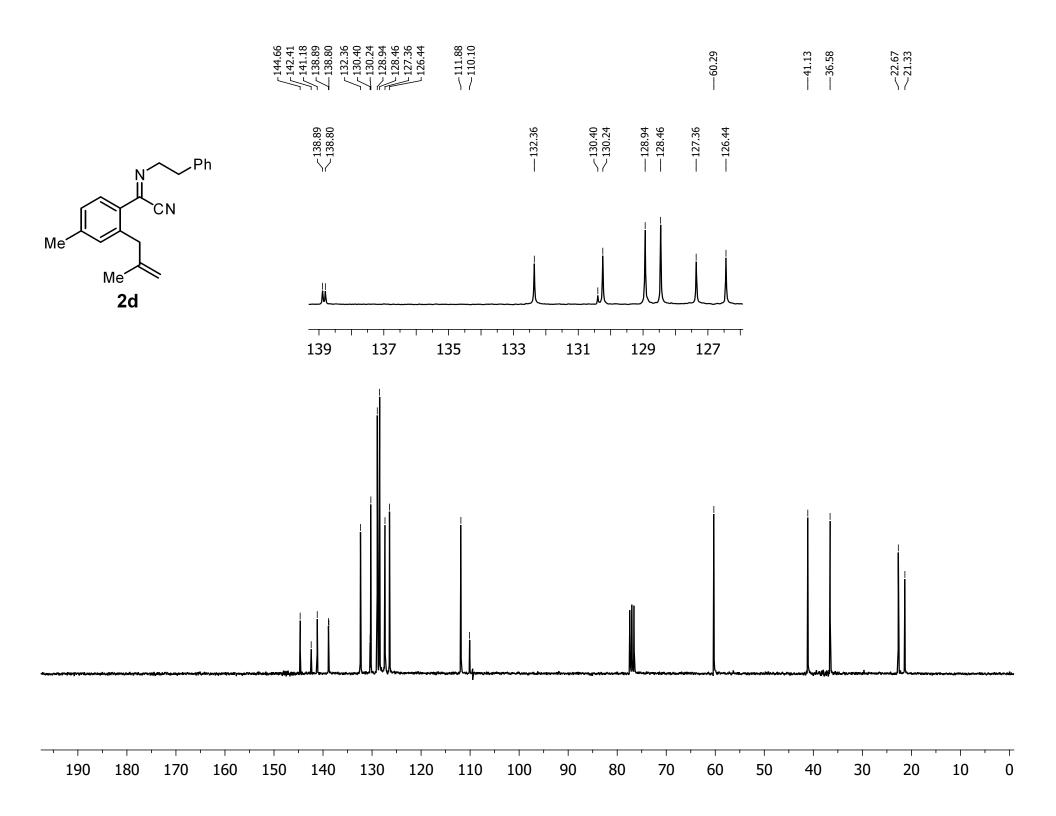


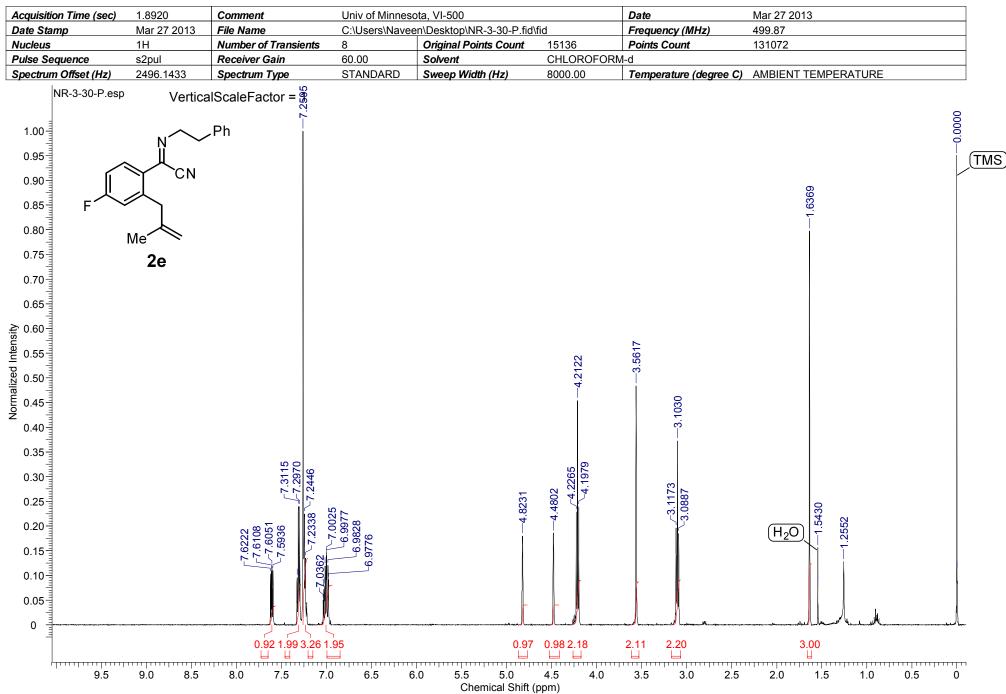

9/24/2013 1:31:52 PM

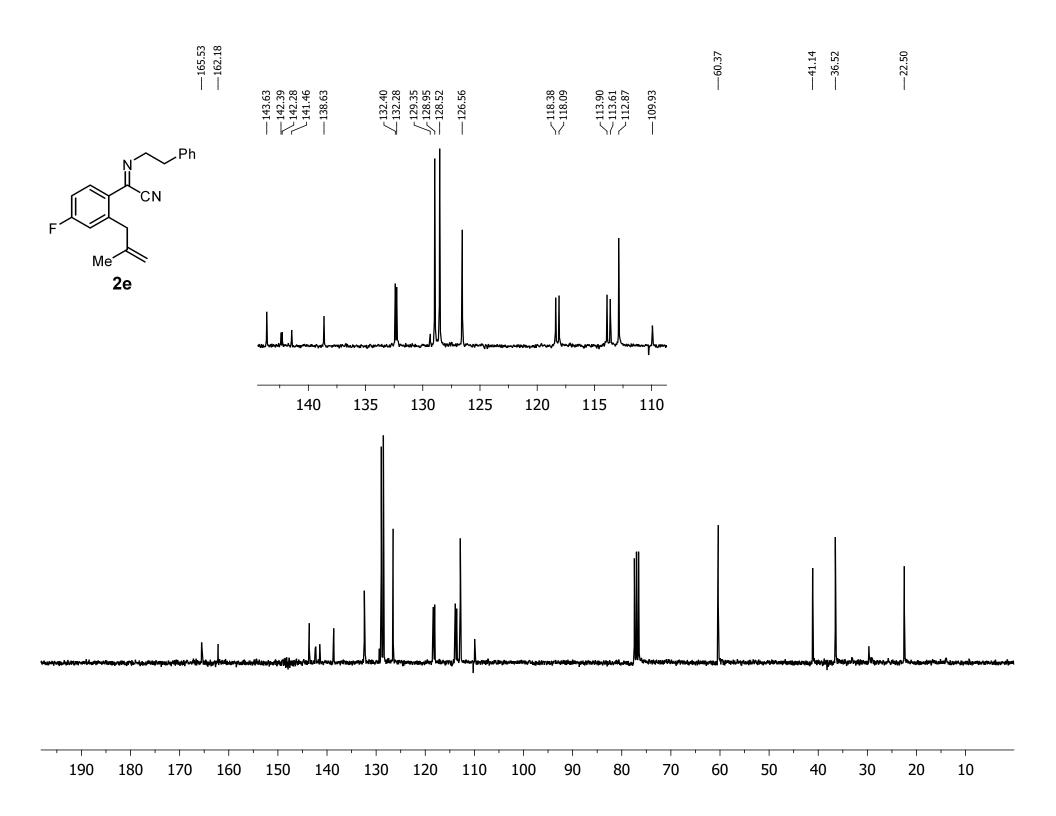


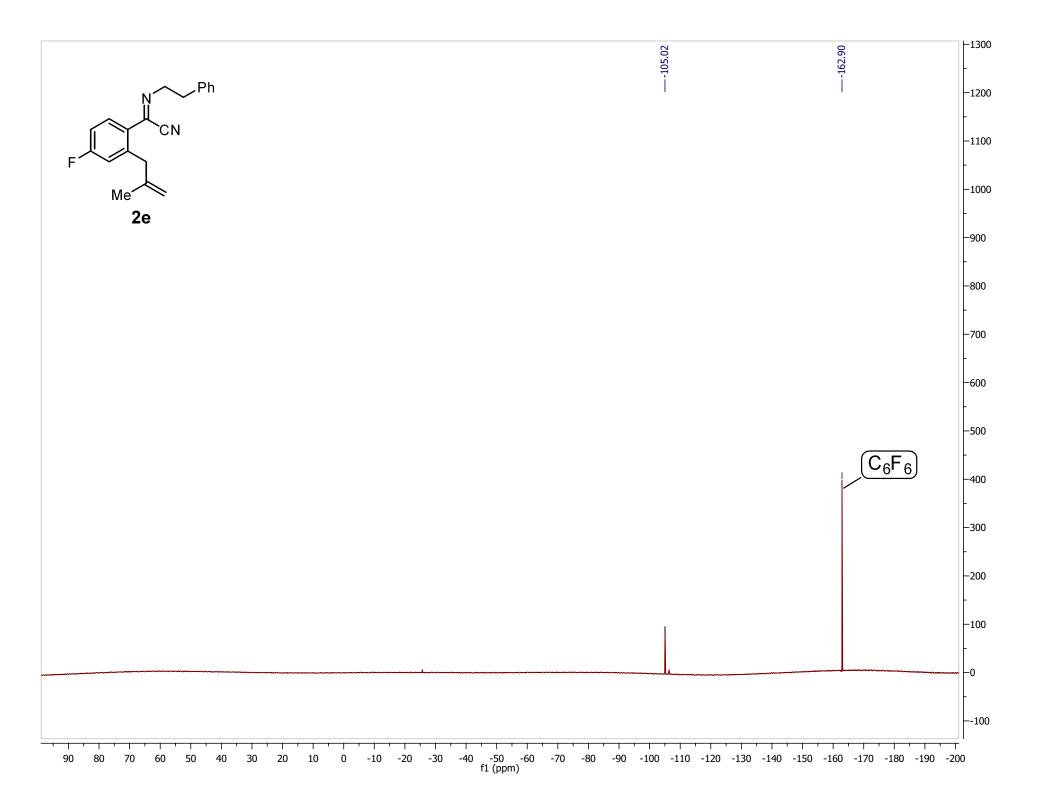
Name C:UsersNaveenDesktopNIS-139:120:1100/d Proquency (MHz) 122.77 Nucleus 13C Window of Transition 000 Origin Speech Origin Speech Origin 23768 Owner auto Steep CHL ORFORM - 23701.00 Temperature (degree C) 20.099 Steep Speechum Offset (Hz) 23761.90 Speechum Offset (Hz) 23761.90 NR-3138-132.029 VerticalScaleFactor = 1 Speechum Offset (Hz) 12566.655 Speechum Offset (Hz) 23761.90 0.65 Me 2b Speechum Offset (Hz) 12566.655 Speechum Type STANDARD 100 F <t< th=""><th>quisition Time (sec)</th><th>1.1010</th><th>Date</th><th>21 Sep 201</th><th></th><th></th><th>Date Stamp</th><th>21 Sep 2013 17:58</th><th>3:08</th><th></th></t<>	quisition Time (sec)	1.1010	Date	21 Sep 201			Date Stamp	21 Sep 2013 17:58	3:08	
Derine Count 32768 Pues Sequence rpp30 Receiver Gain 132.64 SW(rychcal) (Hz) 2971.00 Weep Width (Hz) 29761.00 Temporature (degree C) 20.000 Spectrum Offset (Hz) 12866.685 Spectrum Type STANDARD Weep Width (Hz) 29761.00 Temporature (degree C) 20.000 Spectrum Offset (Hz) 12866.685 Spectrum Type STANDARD NR-3-138.13C.680 VerticalScaleFactor = 1		C:\Users\Nav	veen\Desktop\NR-3-138			125.77	Nucleus			
Other CHLOROFORM.d Spectrum Offset (Hz) 12866.6855 Spectrum Type STANDARD weeg Width (Hz) 20701.000 Temperature (degree C) 20.999 00001 1000 00001 1000 00001 00	mber of Transients	1000	Origin	spect		32768	Owner	auto		
Observe CHLOROFORM-d Spectrum Offset (Hz) 12866.6855 Spectrum Type STANDARD weege Width (Hz) 20701.00 Temperature (degree C) 20.9993 00001 12866.6855 Spectrum Type STANDARD NR-3-130-13C.esp VerticalScaleFactor = 1		32768					SW(cyclical) (Hz)			
$we get With (Hz) 20761.00 Temperature (degree C) 20.099 NR-3-138-130-130.csp VerticalScaleFactor = 1 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow0.050.060.070.050.070.0$	lvent	CHLOROFO	RM-d			12566.6855				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	eep Width (Hz)	29761.00	Temperature (degree	C) 20.999						
	1.00	∼ ^{Ph} `CN	2036	——————————————————————————————————————	64/6 5393 	77.2527				

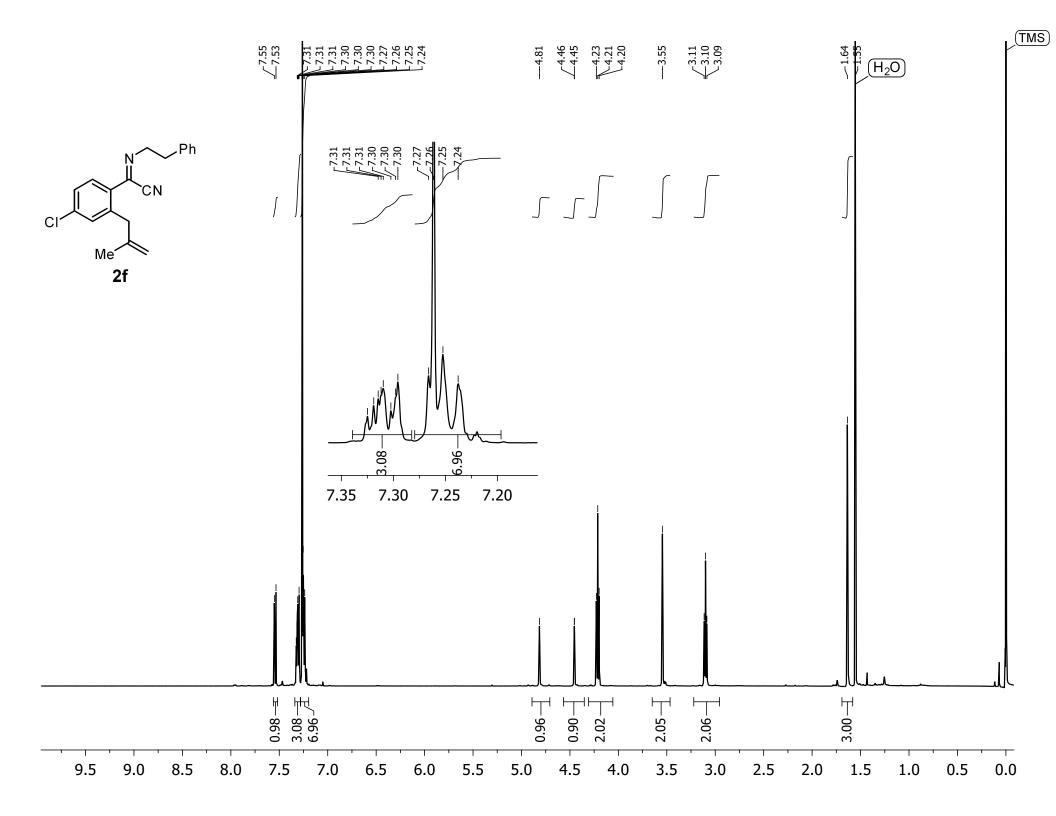

$File Name C:Users/Neveen/Desktop/NB.3138-19F10/bid Fragmency (MHz) 470:55 Nuckeus 19F Number of Transients 16 Origin Speech Original Points Count 65536 Owner auto Solvent C:UcRCFORM-d Speech 2330 Sweep Wath (Hz) 11033-63 Temperature (degree C) 21.000 NR-3-138-19F.esp VerticalScaleFactor = 1 \int_{0.9}^{0.6} \int_{0.7}^{0.7} \int_{0.8}^{0.6} \int_{0.7}^{0.7} \int_{0.9}^{0.6} \int_{0.7}^{0.7} \int_{0.7}^{0.6} \int_{0.7}^{0.7} \int_{0.9}^{0.6} \int_{0.7}^{0.7} \int_{0.7}^{0.6} \int_{0.7}^{0.7} \int_{0.9}^{0.6} \int_{0.7}^{0.7} \int_{0.7}^{0.7} \int_{0.7}^{0.6} \int_{0.7}^{0.7} \int_{0.7}^{$	ne (sec) 0.5767 Date				24 Sep 2013 10:36:32
Perints Count 65536 Pulse Sequence 2g30 Receiver Gain 182.64 SW(cyclical) (Hz) 113638.37 Solvent CHLOROFORM-d Spectrum Offset (Hz) 47628.0508 Spectrum Type STANDARD Sweet Width (Hz) 113634.83 Temperature (degree C) 21.000 $F = \int_{c} \int_{$					19F
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
weep Width (Hz) 113634.63 Temperature (degree C) 21.00 NF-3-138-19F.esp VerticalScaleFactor = 1 f + f + f + CN Me + 2b 2b Ge = 6 Ge = 6 G					
NR-3-138-19F.esp VerticalScaleFactor = 1 $f \\ f \\$			-47628.0508 S J	pectrum Type	STANDARD
$ \begin{array}{c} 1.0\\ 0.9\\ 0.8\\ 0.7\\ 0.8\\ 0.7\\ 0.8\\ 0.7\\ 0.8\\ 0.7\\ 0.8\\ 0.7\\ 0.8\\ 0.7\\ 0.8\\ 0.7\\ 0.8\\ 0.7\\ 0.8\\ 0.7\\ 0.8\\ 0.7\\ 0.8\\ 0.7\\ 0.8\\ 0.8\\ 0.7\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8$		perature (degree C) 21.000			
0.7 Me 2b 0.6 0.5 0.4 0.3 0.2	F N Ph	aleFactor = 1			
0.4 0.3 0.2	20				
0.3					
0.2					
0.1					
) -180 -200 -22

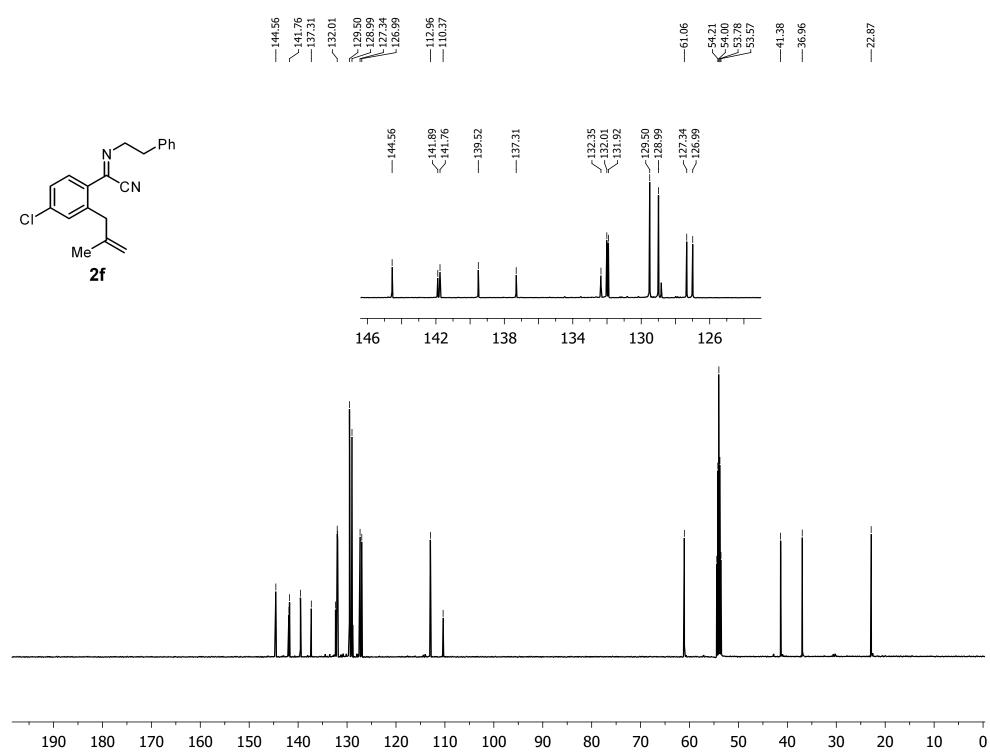


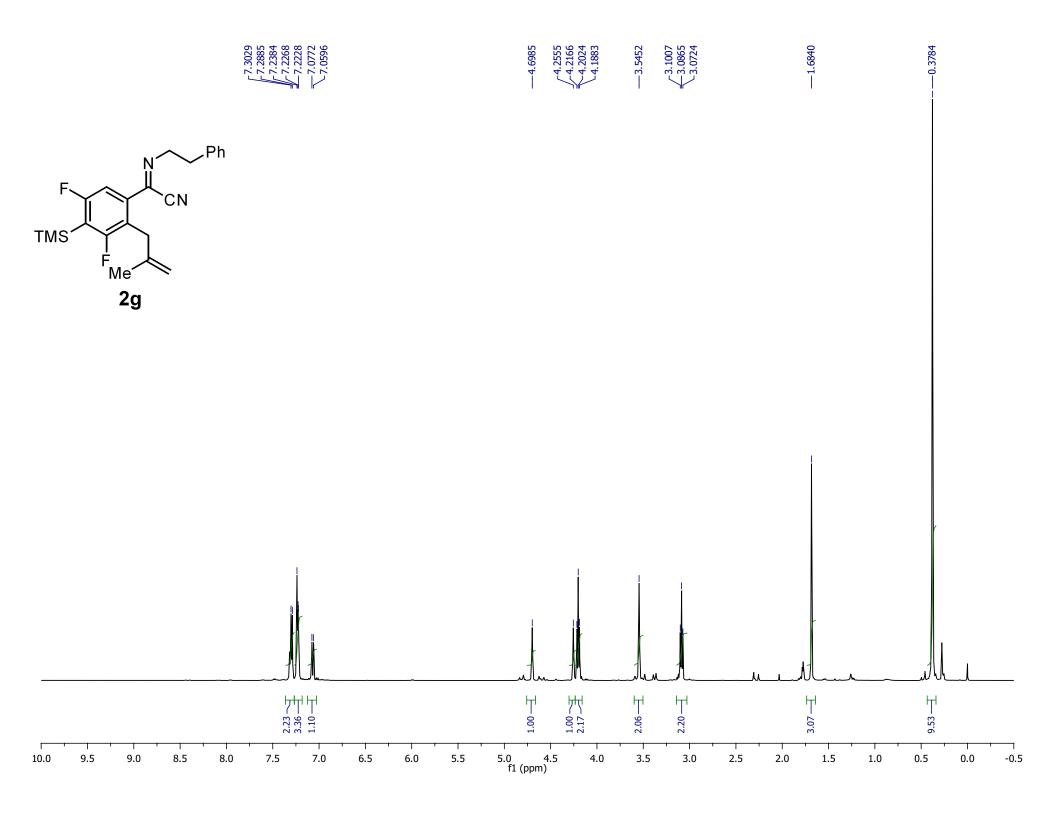


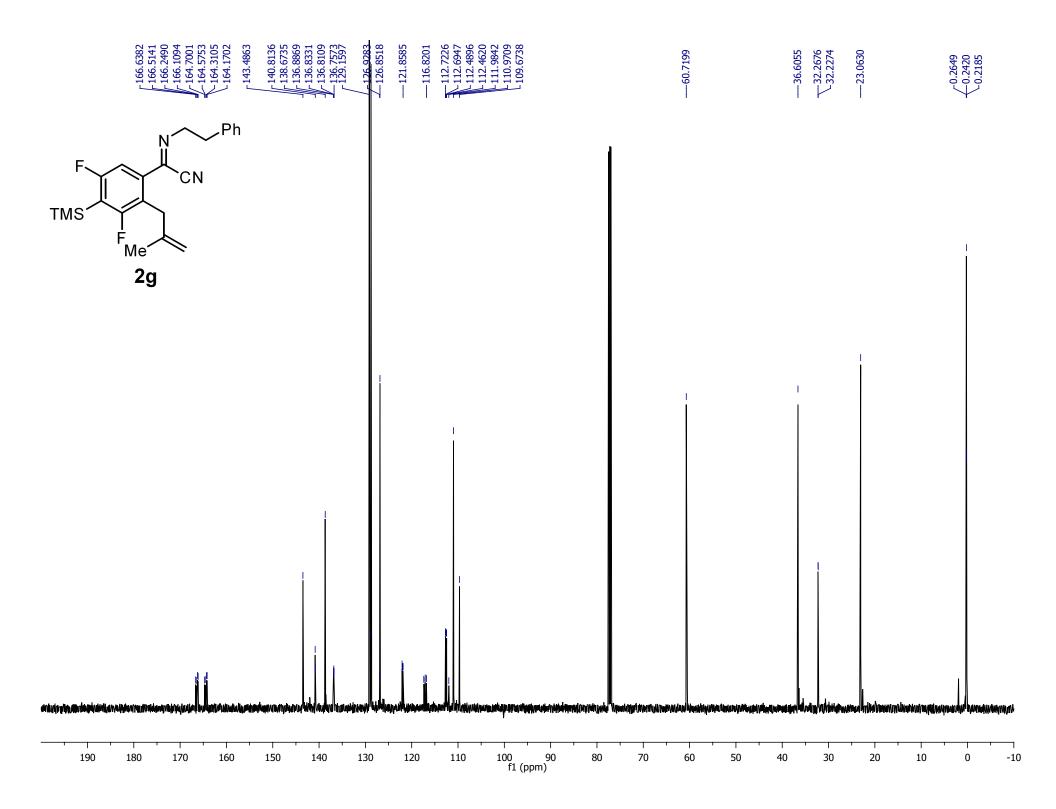

Т Т Т -110.8 f1 (ppm) -108.0 -108.4 -108.8 -109.2 -109.6 -110.0 -110.4 -111.2 -111.6 -112.0 -112.4 -112.8 -113.2 -113.6

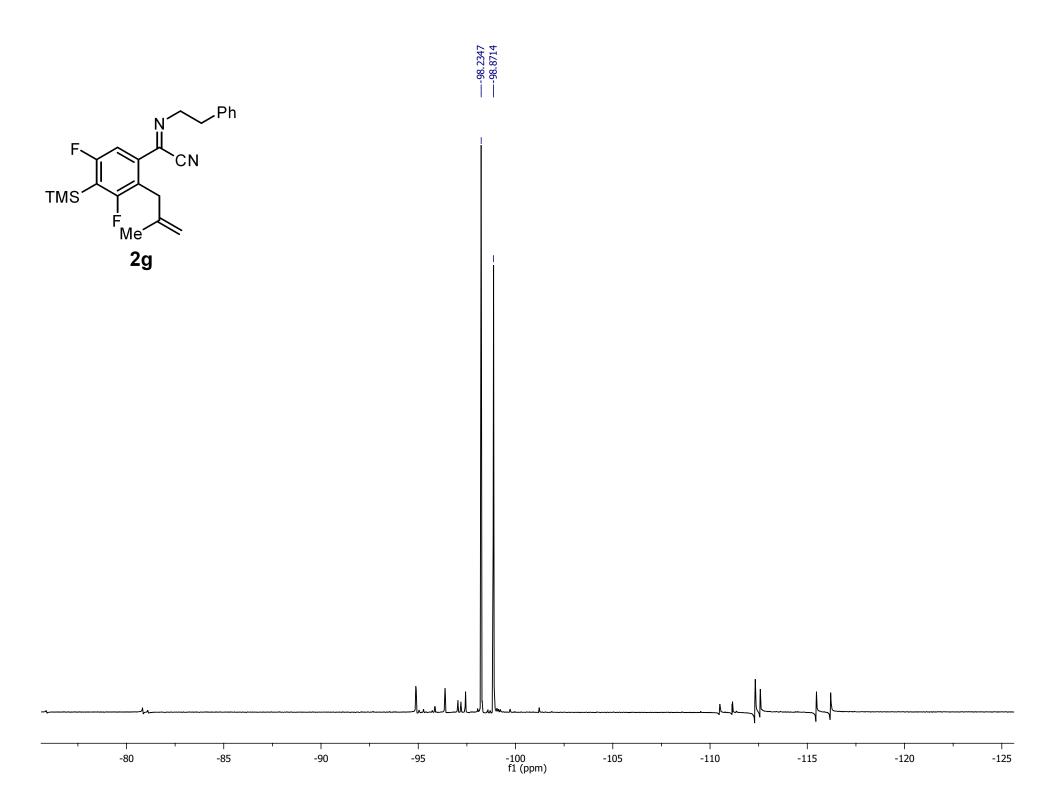


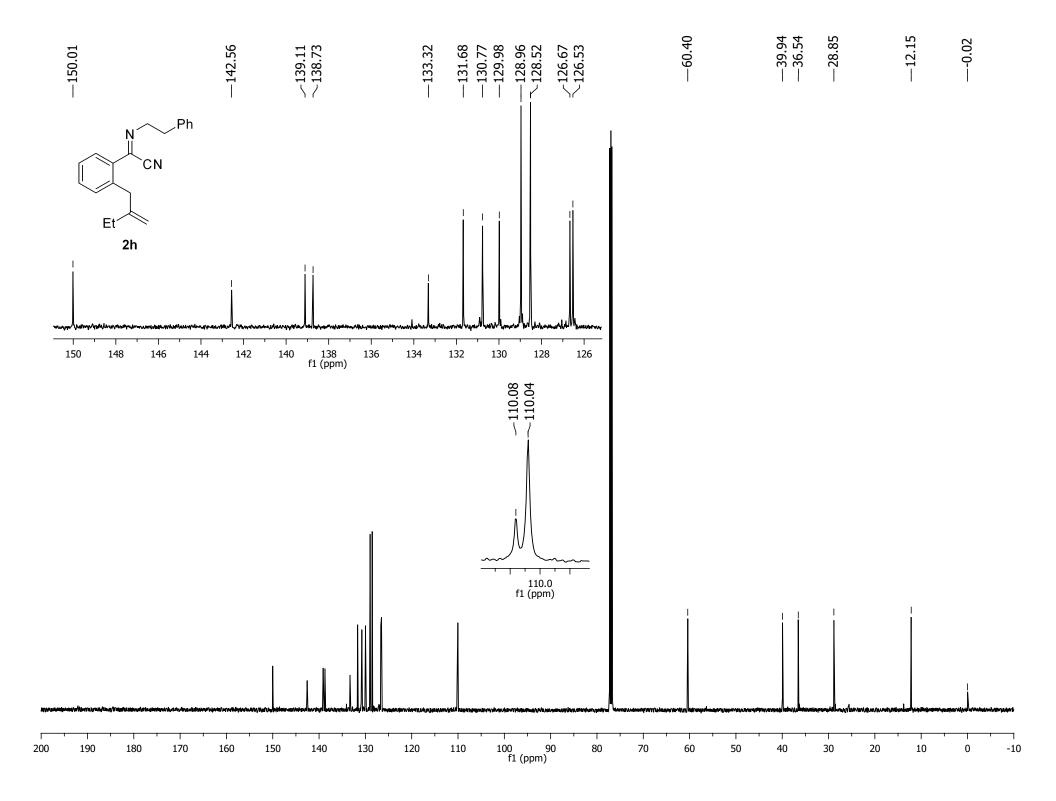


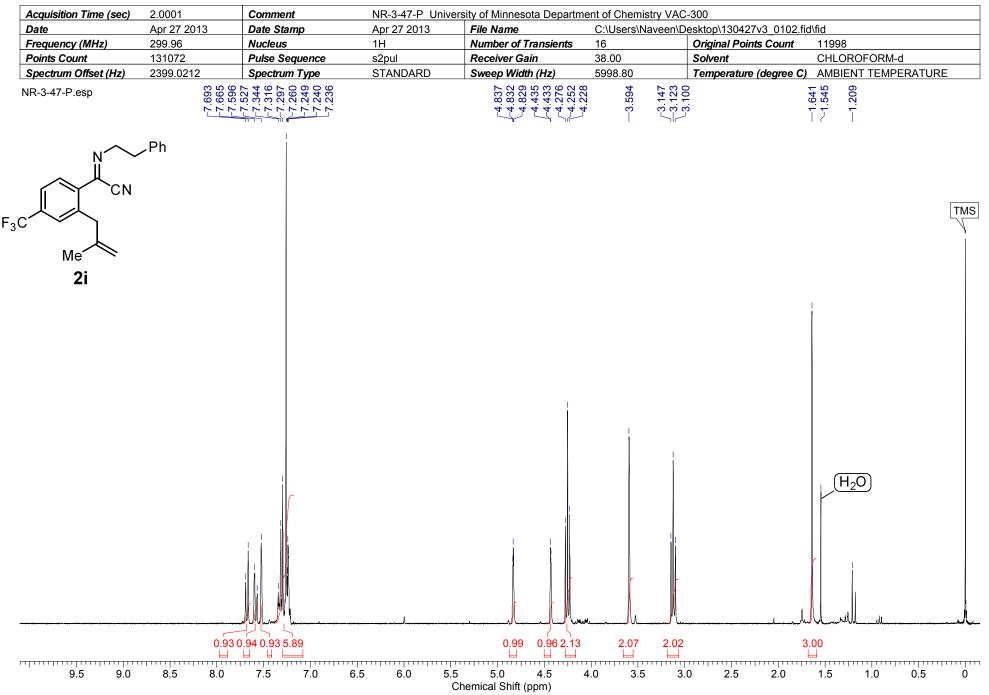

8/22/2013 6:11:14 PM

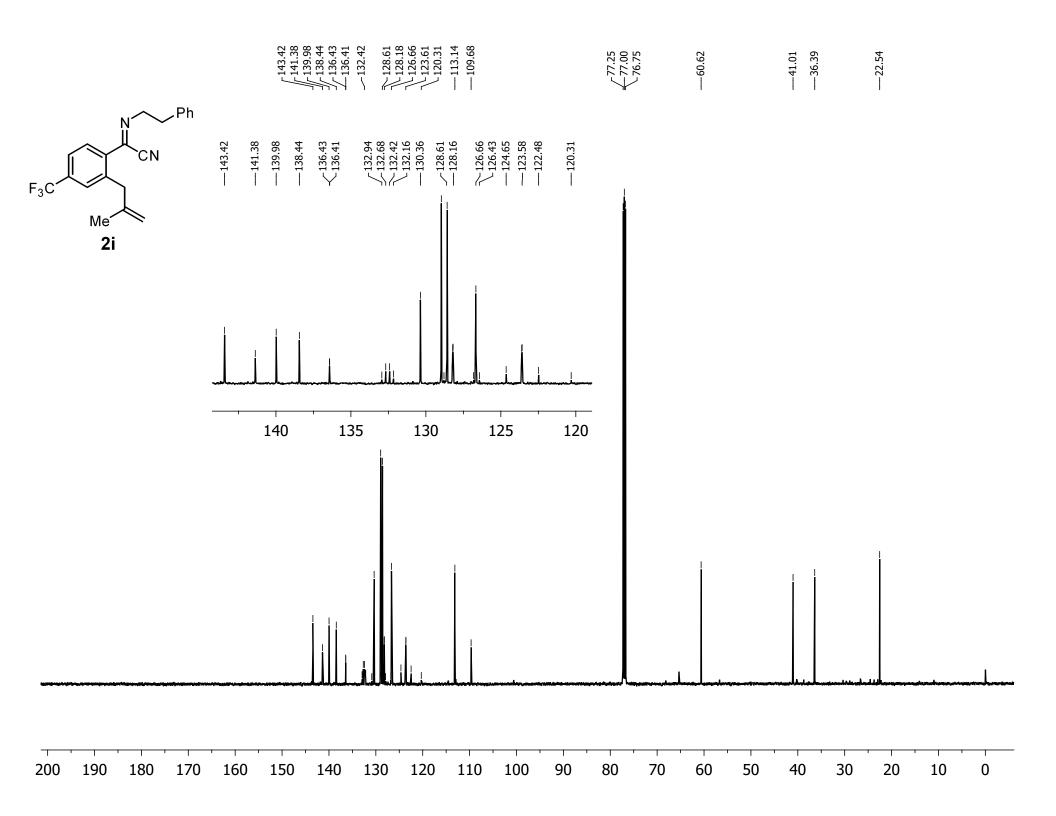






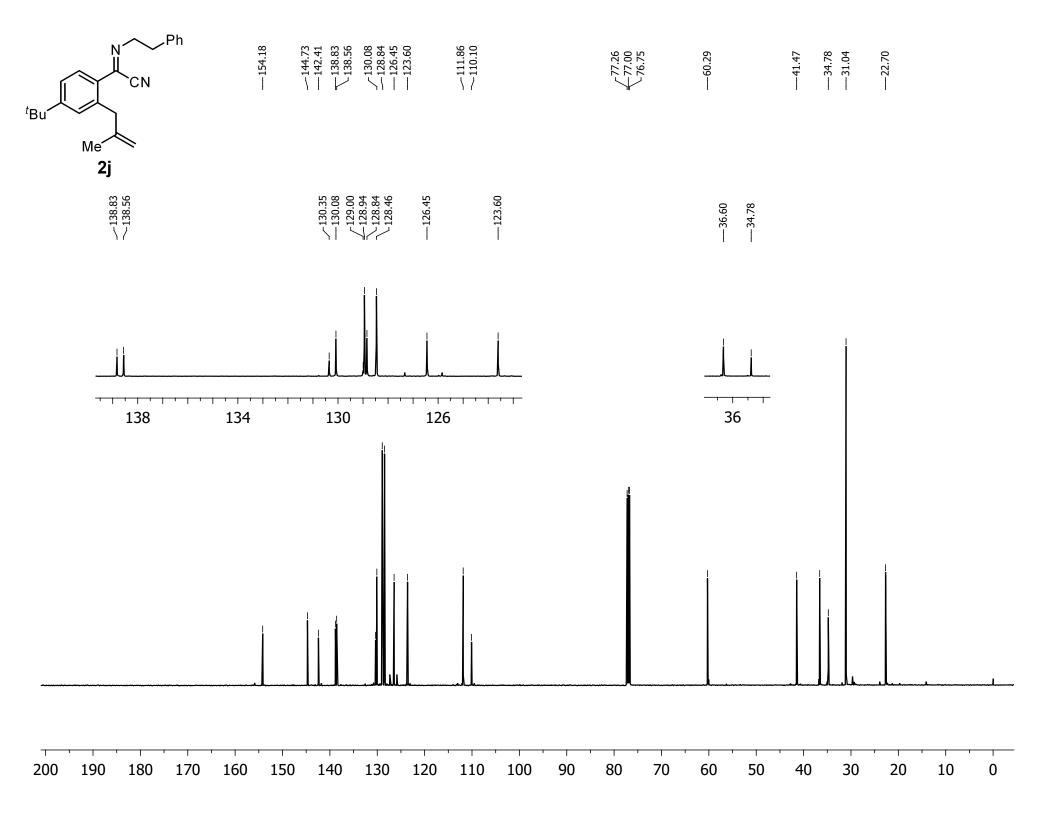


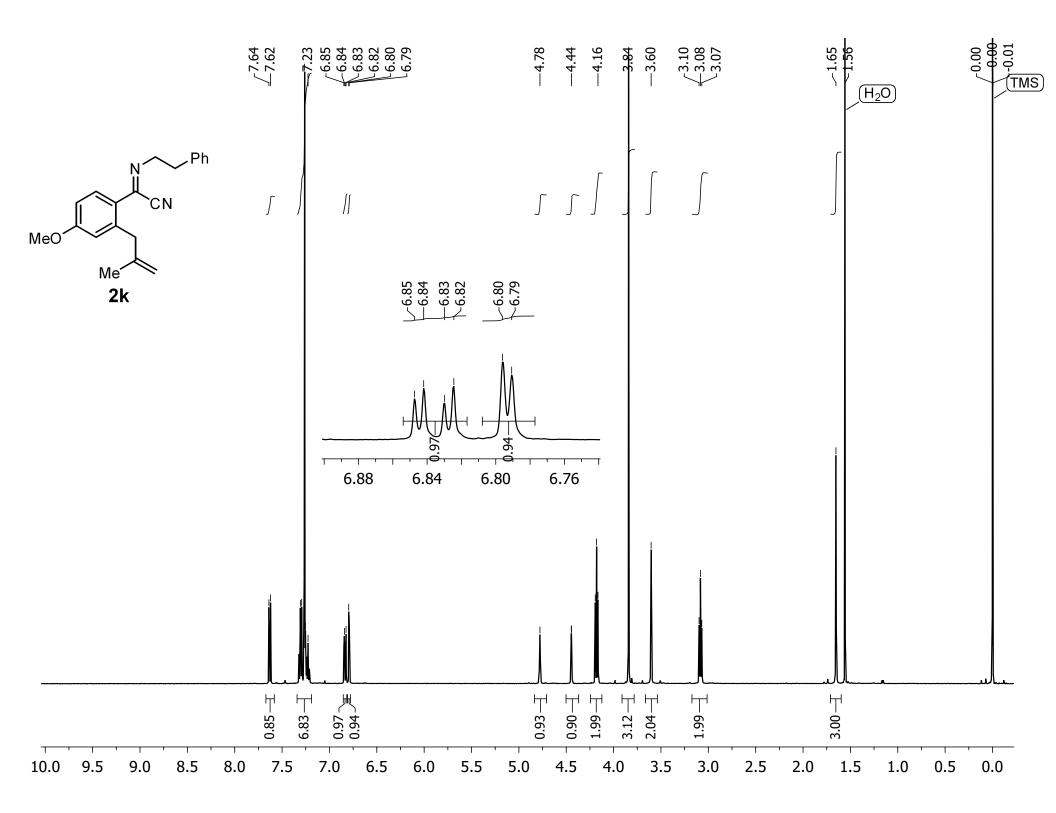




Acquisition Time (sec)	2.0001	Comment	NR-3-44-P Univ	versity of Minnesota Departm	ent of Chemistry \	/AC-300	
Date	Apr 23 2013	Date Stamp	Apr 23 2013	File Name		en\Desktop\130423v3_3702.fic	l\fid
Frequency (MHz)	299.96	Nucleus	1H	Number of Transients	16	Original Points Count	11998
Points Count	131072	Pulse Sequence	s2pul	Receiver Gain	38.00	Solvent	CHLOROFORM-d
Spectrum Offset (Hz)	2399.2959	Spectrum Type	STANDARD	Sweep Width (Hz)	5998.80	Temperature (degree C)	AMBIENT TEMPERATURE
0.25	VerticalS N Ph CN	ScaleFactor = 18					
0.20 0.15	2h					(H ₂ O)	
0.10		10 -7.2929 -694 -59		2302 4 2062	3.6149	-3.0943	
0.05		7.5988 7.5737 7.3465 7.3265 7.3265 7.3210 7.2564	L7.2308	-4.7973 -4.7933 -4.7886 -4.7886 -4.4186 -4.4136			
		0.80 0.79 10.83		0.98 0.951.9 □ □ □	95 1.95 2 J ∐	2.00 1.78	3.08
¹ 0.0 9.5				5.5 5.0 4.5 Chemical Shift (ppm)			

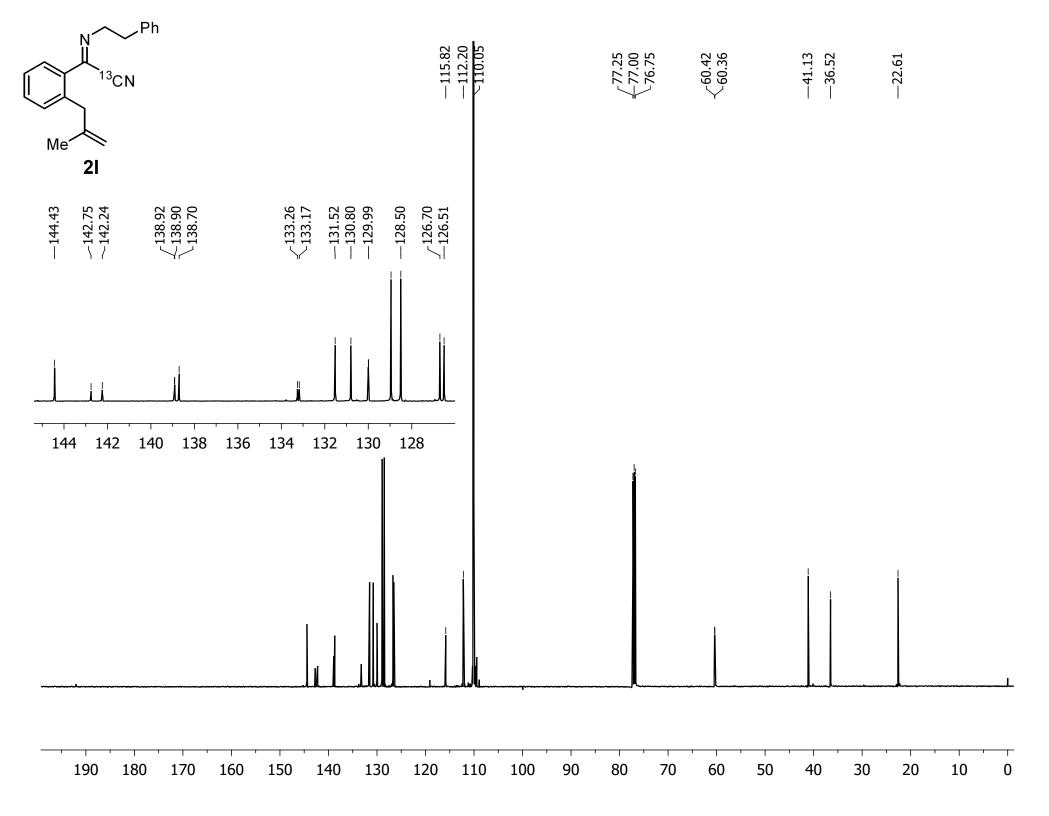
1/9/2014 12:42:56 PM

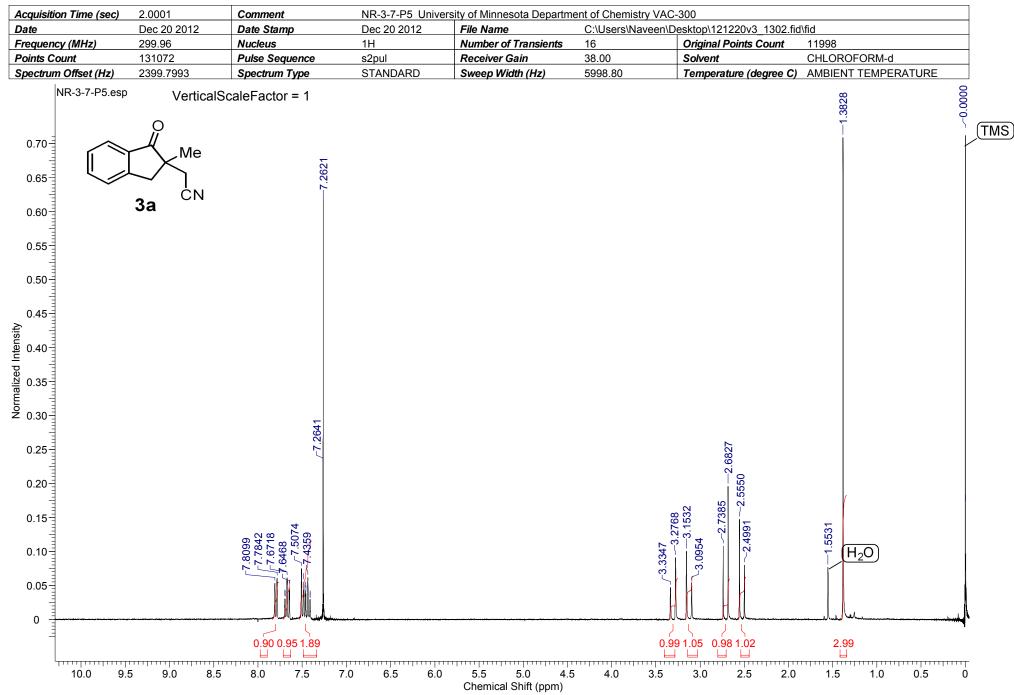




9/26/2013 3:12:04 PM

Jate	May 9 2013	Date Stamp	May 9 2013	File Name	C:\Users\Naveen\D	esktop\130509v3_1102.fid	fid
Date Frequency (MHz)	282.23	Nucleus	19F	Number of Transients	32	Original Points Count	64000
oints Count	65536	Pulse Sequence	s2pul	Receiver Gain	12.00	Solvent	CHLOROFORM-d
pectrum Offset (Hz)	-7242.4761	Spectrum Type	STANDARD	Sweep Width (Hz)	99009.90		AMBIENT TEMPERATURE
NR-3-47-19F-F 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.10 0.05 0.10 0.05 0.00 0.15 0.10 0.05 0.10 0.10 0.05 0.10 0.10 0.05 0.10 0.00 0.10 0.10 0.10 0.10 0.00 0.10 0.10 0.00 0.10 0.00 0.00 0.10 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.10 0.0	^{Ref.esp} VerticalSo	caleFactor = 1 Ph					C ₆ F ₆

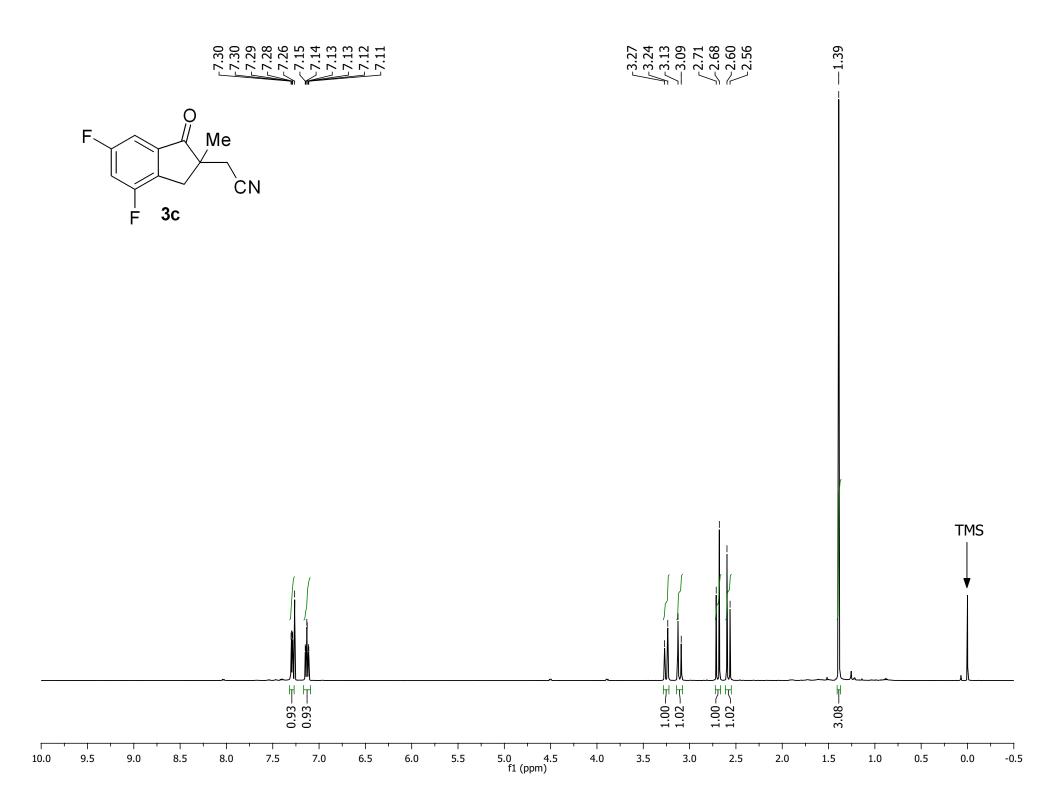

quisition Time (sec)	3.2768	Date	26 Aug 201			Date Stamp	26 Aug 2013 15:48:00	
e Name		een\Desktop\NR-3-		Frequency (MHz)	500.13	Nucleus	<u>1H</u>	
Imber of Transients	16	Origin	spect	Original Points Count	32768	Owner	auto	
bints Count	131072	Pulse Sequence	zg30	Receiver Gain	92.58	SW(cyclical) (Hz)	10000.00	
olvent veep Width (Hz)	CHLOROFOF 9999.92	RM-d Temperature (deg		Spectrum Offset (Hz)	3075.7522	Spectrum Type	STANDARD	
0.40 0.35 0.30		calScaleFactor = Ph					—1.3204	
0.25					. 9		00238 	
0.10	7.5738 7.5573 7.3448	7.2132 7.2132		-4.7645 -4.4010 -4.2111	4.1822 4.1907	<u>-3.1051</u> 3.0906 <u>3.0763</u> 3.0906	1.3450	
		9.13 5.85 ⊔⊔⊔		0.98 0.972.	10 1.96	2.14 L	3.00 9.07	

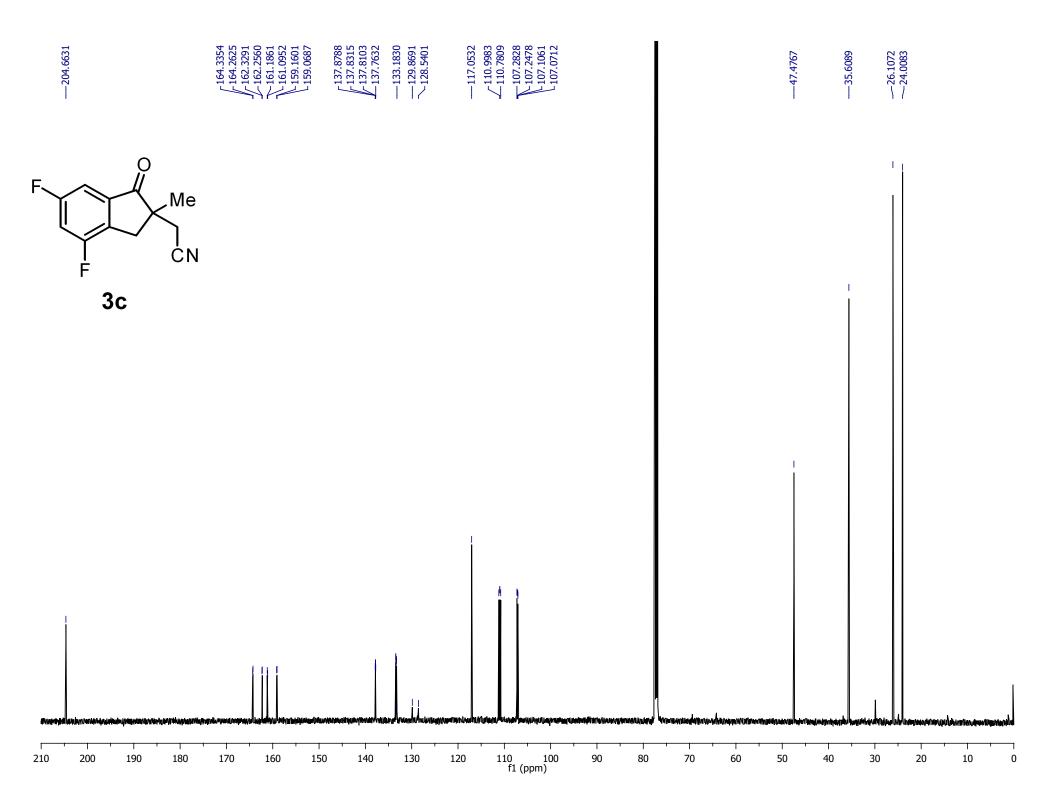


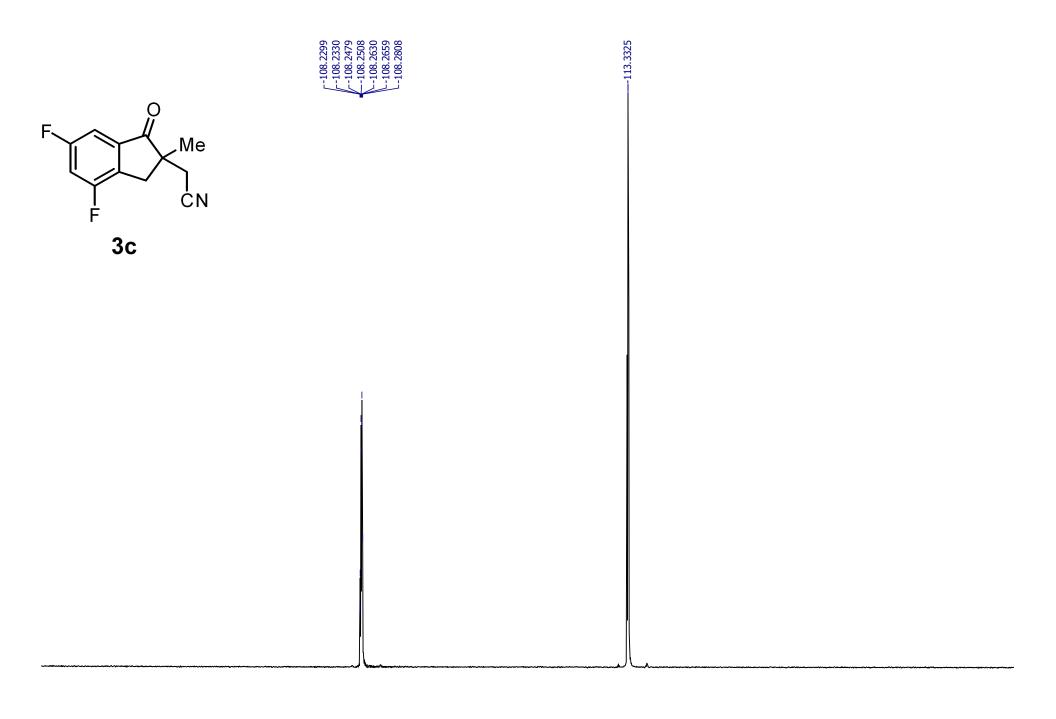
ate	Jul 8 2013	Date Stamp	Jul 8 2013	File Name	C:\Users\Naveen\	Desktop\130708v3_3203.fic	l\fid
	75.43	Nucleus	13C	Number of Transients	1024	Original Points Count	13889
	16384	Pulse Sequence	s2pul	Receiver Gain	30.00	Solvent	CHLOROFORM-d
ectrum Offset (Hz)	7860.3169	Spectrum Type	STANDARD	Sweep Width (Hz)	17361.11	Temperature (degree C)	AMBIENT TEMPERATURE
NR-3-109-13C.es	P VerticalS CN VerticalS VerticalS	PocaleFactor = 1 h -161.2776 -144.4052144.4052138.8981138.8981		-110.1126	77.4215 76.5645		

Acquisition Time (sec)	3.2768	Date	15 Jul 2013	3 15:24:32		Date Stamp	15 Jul 2013 15:24:3	32	
File Name	C:\Users\Nav	een\Desktop\NR-3-11	4-P\10\fid	Frequency (MHz)	500.13	Nucleus	1H		
Number of Transients	16	Origin	spect	Original Points Count	32768	Owner	auto		
Points Count	131072	Pulse Sequence	zg30	Receiver Gain	127.25	SW(cyclical) (Hz)	10000.00		
Solvent	CHLOROFOF	RM-d		Spectrum Offset (Hz)	3076.6677	Spectrum Type	STANDARD		
Sweep Width (Hz)	9999.92	Temperature (degre	e C) 20.999						
0.15		alScaleFactor =						<u>H</u> 2O)	
0.10-		[7.3153 72742			1.2192		ſ		
0.05-		7.5990 7.5860 7.4226_7.4104_3302	7.2349		-4.7801 -4.4306 -4.2336 -4.2047	3.1217 3.0929			-0.0696
0		0.92 0.95 2			0.95 0.981.89		hull 2.94	·l	
10.0 9.5					4.5	4.0 3.5 3.0		.5 1.0 0.5	0

8/20/2013 6:19:53 PM

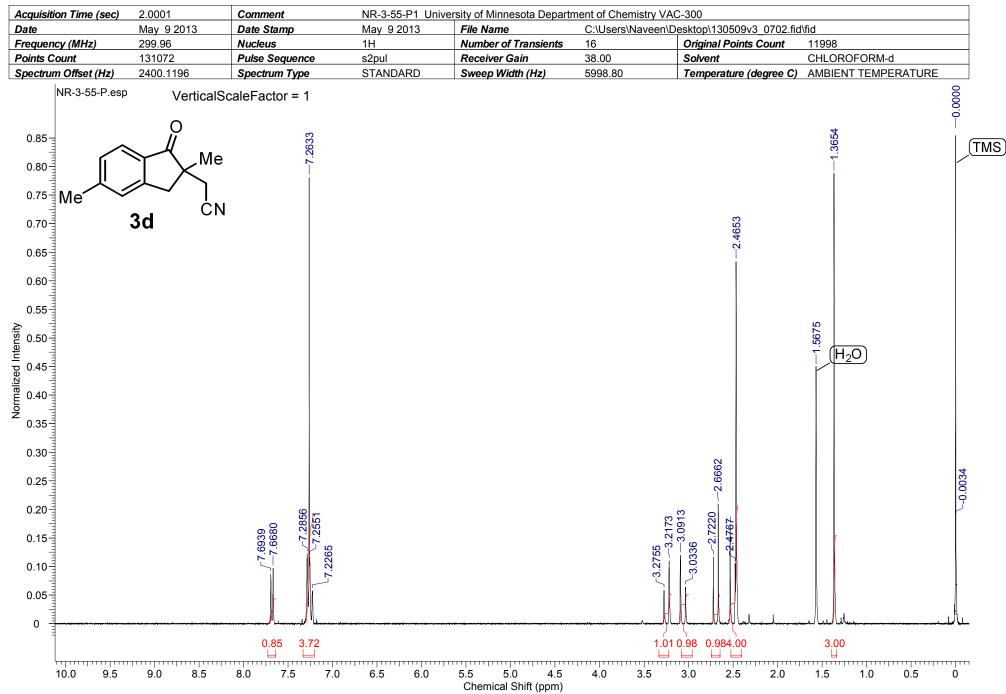

Date Die 21 2012 Die Stamp Die 21 2012 Frequency (MHz) T5.43 Hie Name C:Dials/udp/Dist/Sumpkilon/Mikt2/2014/02/102/102/102/102/102/102/102/102/102/	Acquisition Time (sec)	0.8000	Comment	NR-3-7-13C Universi	ty of Minnesota Departmen	t of Chemistry VAC-30	0	8/20/2013 6:24:57 PM
Integration Sequence sacuration Source Selecture CHLOROFORMAL Spectrum Offset (Hz) 7560.3169 Spectrum Type STANDARD Sweep Width (Hz) 17361.11 Temperature (degree C) AMBIENT TEMPERATURE Image: spectrum Offset (Hz) 7560.3169 NR-3.7-13C.esp VerticalScaleFactor = 1 Image: spectrum offset (Hz) Image: spectrum offse								
Image: StanDarbolic StanDarbolic Sweep Width (Hz) 17361.11 Temperature (degree C) AMBIENT TEMPERATURE MR-3.7-13C.esp VerticalScaleFactor = 1 								
NR-37-13C.esp VerticalScaleFactor = 1 100^{0} Geometry 0000^{0} 000								7860.3169
$\begin{array}{c} 100 \\ 0.95 \\ 0.99 \\ 0.96 \\ 0.99 \\ 0.85 \\ 0.80 \\ 0.75 \\ 0.06 \\ 0.55 \\ 0.60 \\ 0.55 \\ 0.075 \\ 0.06 \\ 0.05 \\ 0.$	Spectrum Type	STANDARD	Sweep Width (Hz)	17361.11	Temperature (degree C)	AMBIENT TEMPERA		
	1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.70 0.65 0.60 0.45 0.60 0.45 0.30 0.25 0.20 0.15 0.20 0.15 0.10 0.10 0.15						146.508	

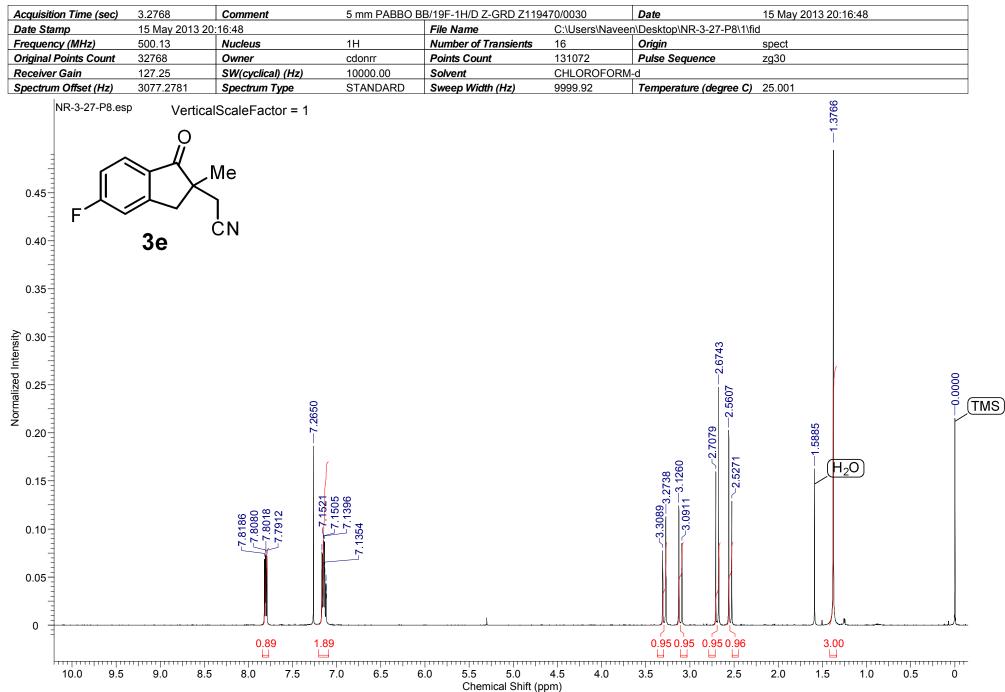

1/10/2014 11:10:14 AM


Acquisition Time (sec)	3.2768	Date	25 Sep 2013	14:26:56		Date Stamp	25 Sep 2013 14:26:56
File Name		/een\Desktop\NR-3-140-I		Frequency (MHz)	500.13	Nucleus	1H
Number of Transients	16	Origin	spect	Original Points Count	32768	Owner	auto
Points Count	131072	Pulse Sequence	zg30	Receiver Gain	73.82	SW(cyclical) (Hz)	10000.00
Solvent	CHLOROFO			Spectrum Offset (Hz)	3078.9565	Spectrum Type	STANDARD
Sweep Width (Hz)	9999.92	Temperature (degree	C) 21.000				
NR-3-140-P2.esp	760 667	657 641 641 625 625 280 280 266	034			73.150 73.150 73.150 73.115 72.715 72.715 72.715	2.582 2.581 2.572 2.572 2.572 2.572 2.572 1.1.426 1.1.426 1.1.253 1.016 0.880 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.800 0.890 0.800000000
F O Me 3b CN			7.1				
0=	`Рh						
							H ₂ O
		0.09 0.970.14 1.37 0.97				/ / 1.001.01 1.00 ل ل ل	
9.5 9.0		3.0 7.5 7.0	6.5 6.0) 5.5 5.0 Chemical Shift (p	4.5 4.0	3.5 3.0	2.5 2.0 1.5 1.0 0.5

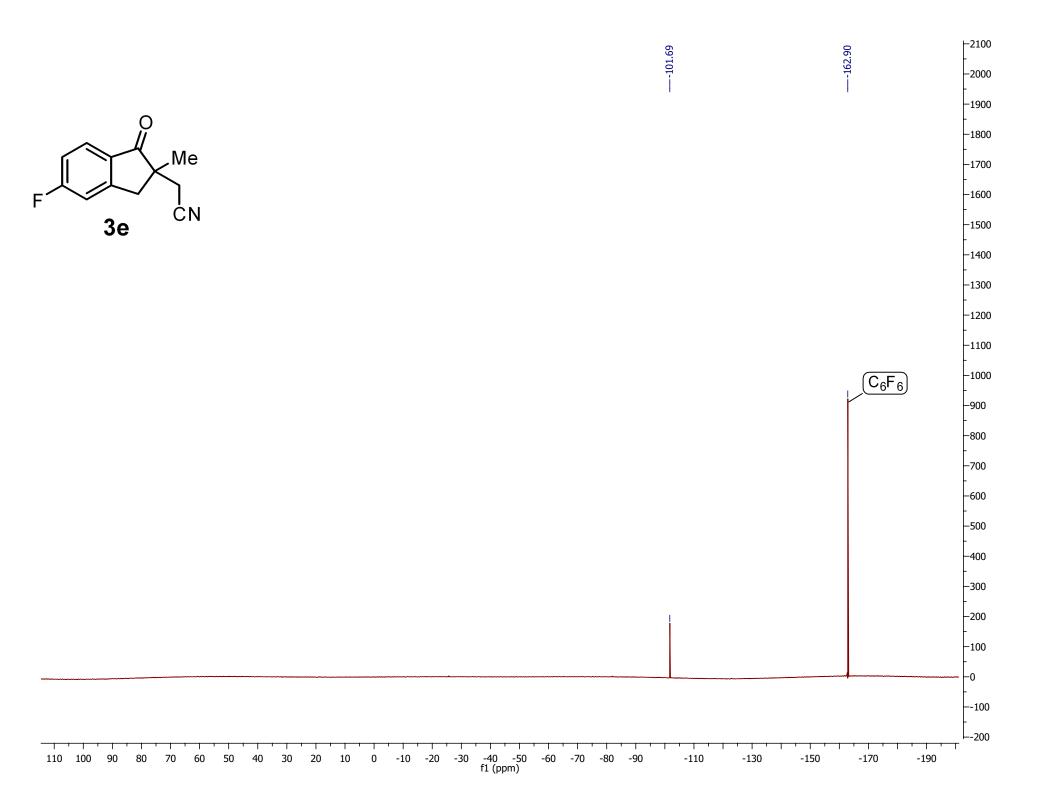
quisition Time (sec)	1.1010	Date	25 Sep 20	13 21:29:20		Date Stamp	25 Sep 2013 21:29:20
le Name	C:\Users\Nav	een\Desktop\NR-3-	140-13C1\10\fid	Frequency (MHz)	125.77	Nucleus	13C
umber of Transients	1000	Origin	spect	Original Points Count	32768	Owner	auto
oints Count	32768	Pulse Sequence	zgpg30	Receiver Gain	182.64	SW(cyclical) (Hz)	29761.90
olvent	CHLOROFOR	RM-d		Spectrum Offset (Hz)	12569.4092	Spectrum Type	STANDARD
veep Width (Hz)	29761.00	Temperature (de	gree C) 21.000				
	CN		137.7385 137.7335	-122.1421		76.7472	-47.3193
0.01							
					v er ble binninger van er er binninger van de staat de s geveen serije staat de staat d		
200 190					00 90	80 70 60	50 40 30 20 10

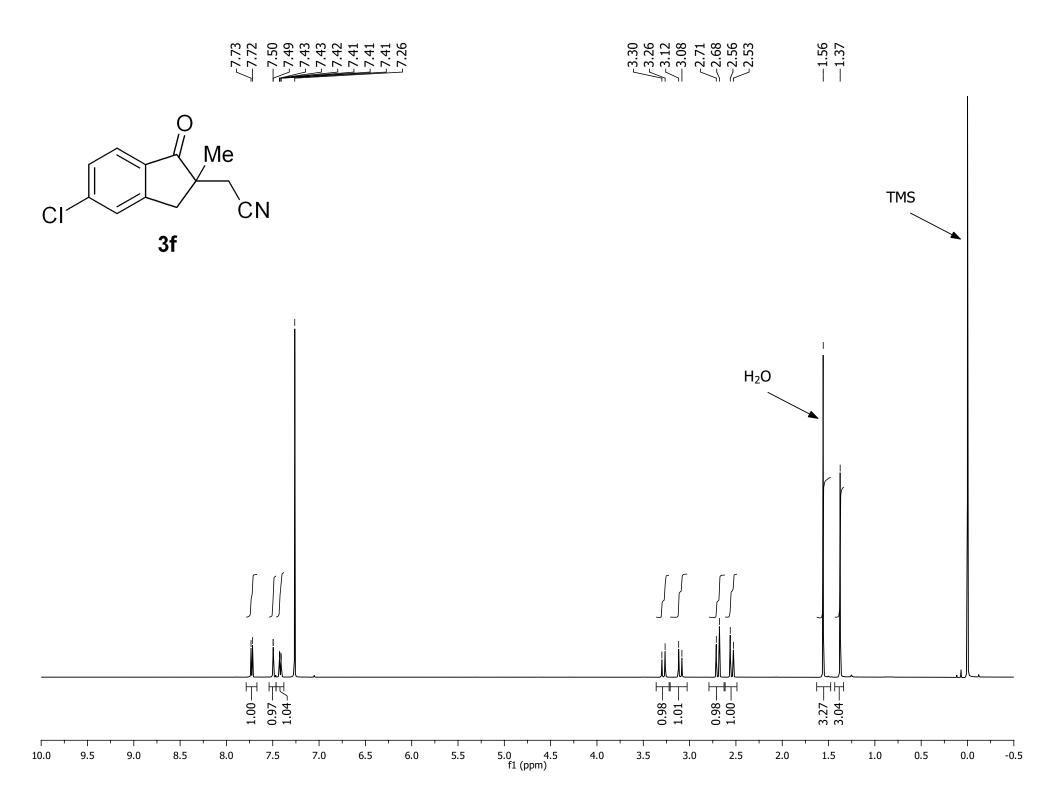
Acquisition Time (sec)	0.5767	Date	26 Sep 2	013 12:44:32		Date Stamp	26 Sep 2013 12:44:32	
ile Name			-3-140-19F1\10\fid	Frequency (MHz)	470.55	Nucleus	19F	
lumber of Transients	16	Origin	spect	Original Points Count		Owner	auto	
Points Count	65536	Pulse Sequen	ce zg30	Receiver Gain	182.64	SW(cyclical) (Hz)	113636.37	
olvent	CHLOROFOR			Spectrum Offset (Hz)	-47624.5820	Spectrum Type	STANDARD	
weep Width (Hz)	113634.63	Temperature (degree C) 21.000					
	.esp Vertic	alScaleFacto	r = 1				C ₆ F ₆	
0.8					113.8565			
]			
0.6								
0.5								
-								
0.4								
-								
0.3								
0.3								
-								
0.2								
0.2								
-								
0.1								
0.1								
-								
					l			
0				····, · ······························				
								11 1111

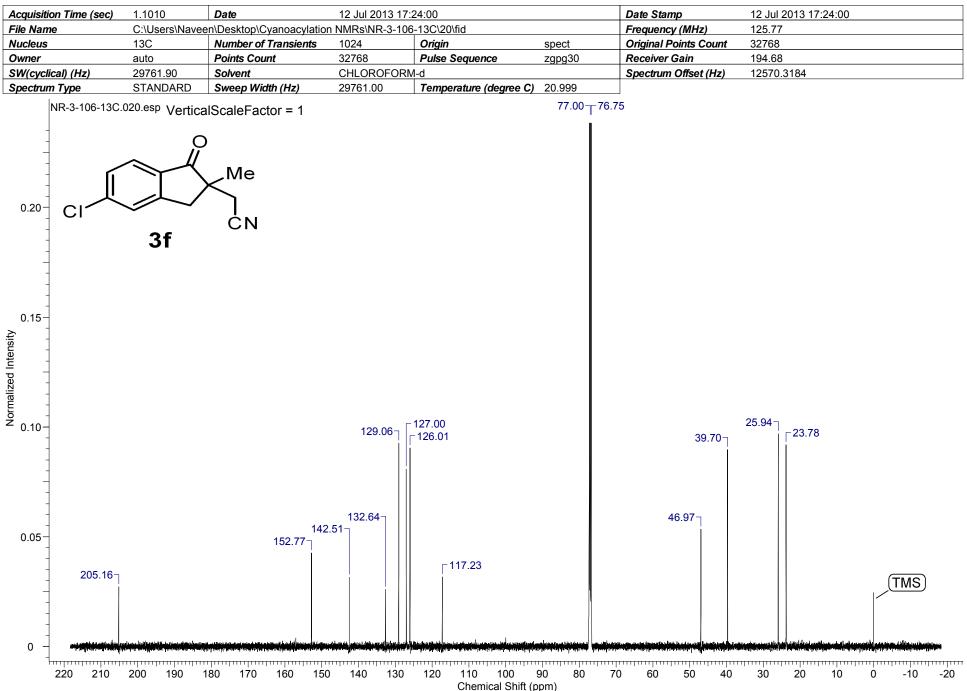


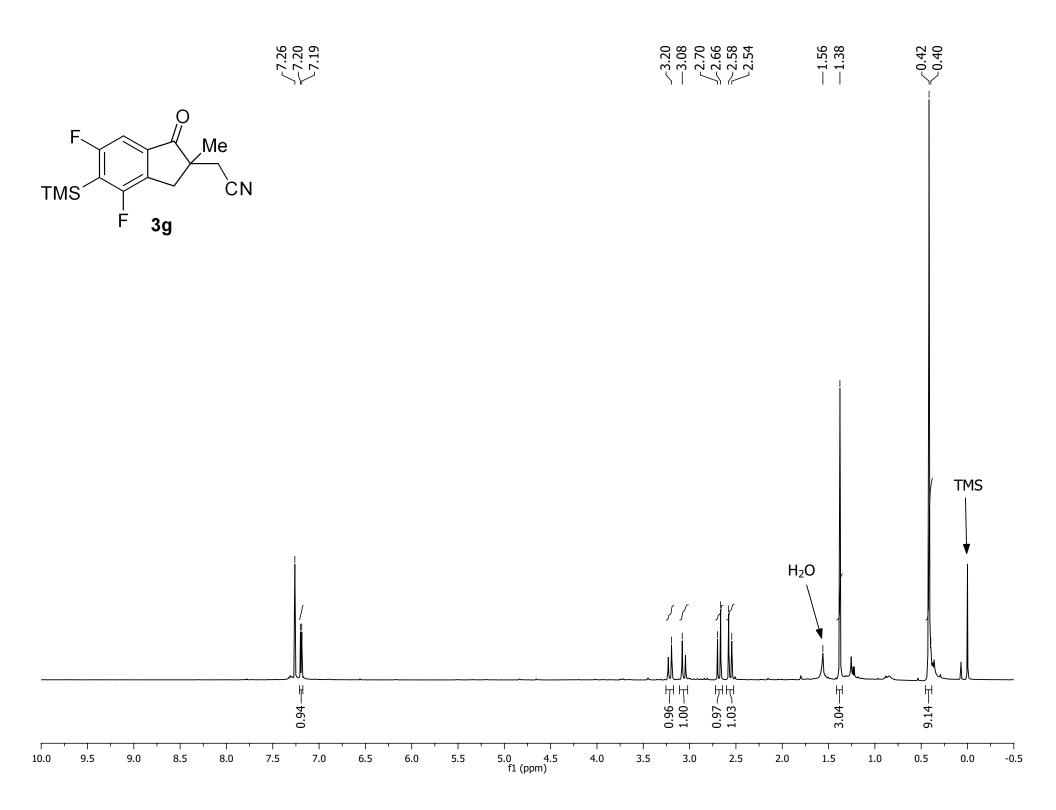


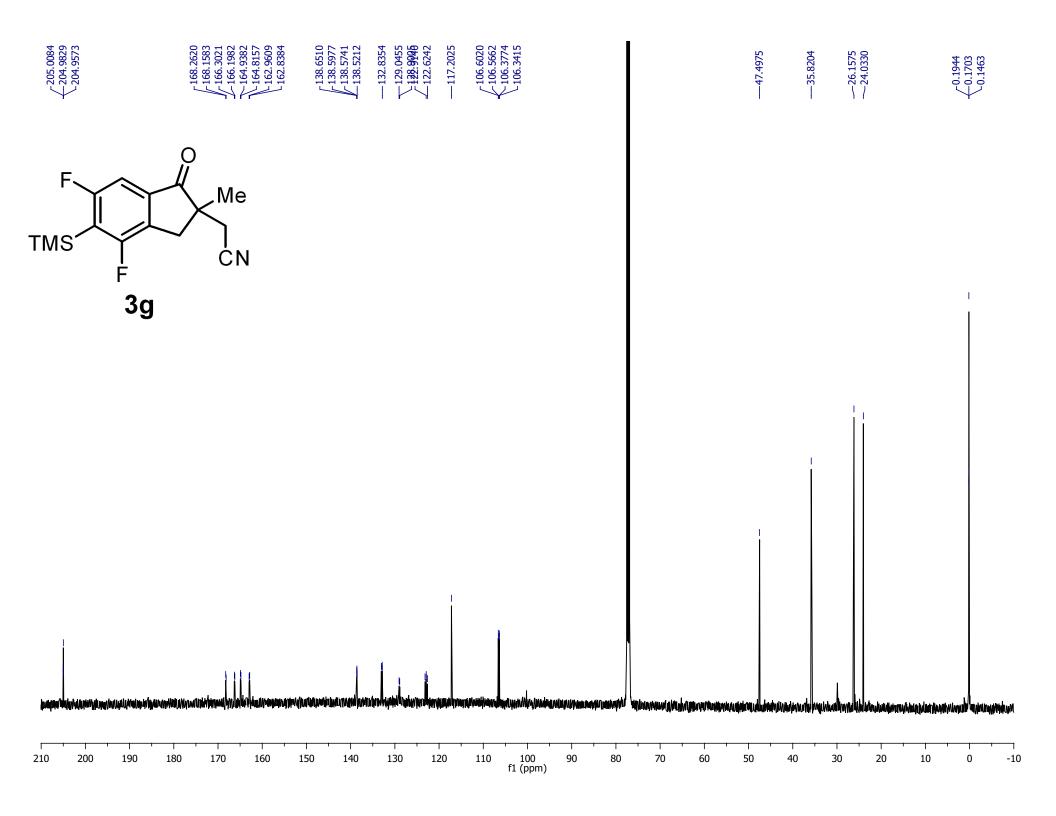
									'	1			'	1 1	1 1		1				'	1
-1	03	-104	-105	-106	-107	7 -:	108	-109	-110	-11	1 f1 (pp	-112 m)	-113	-114	-115	-116	-:	117	-118	-119	-12	20

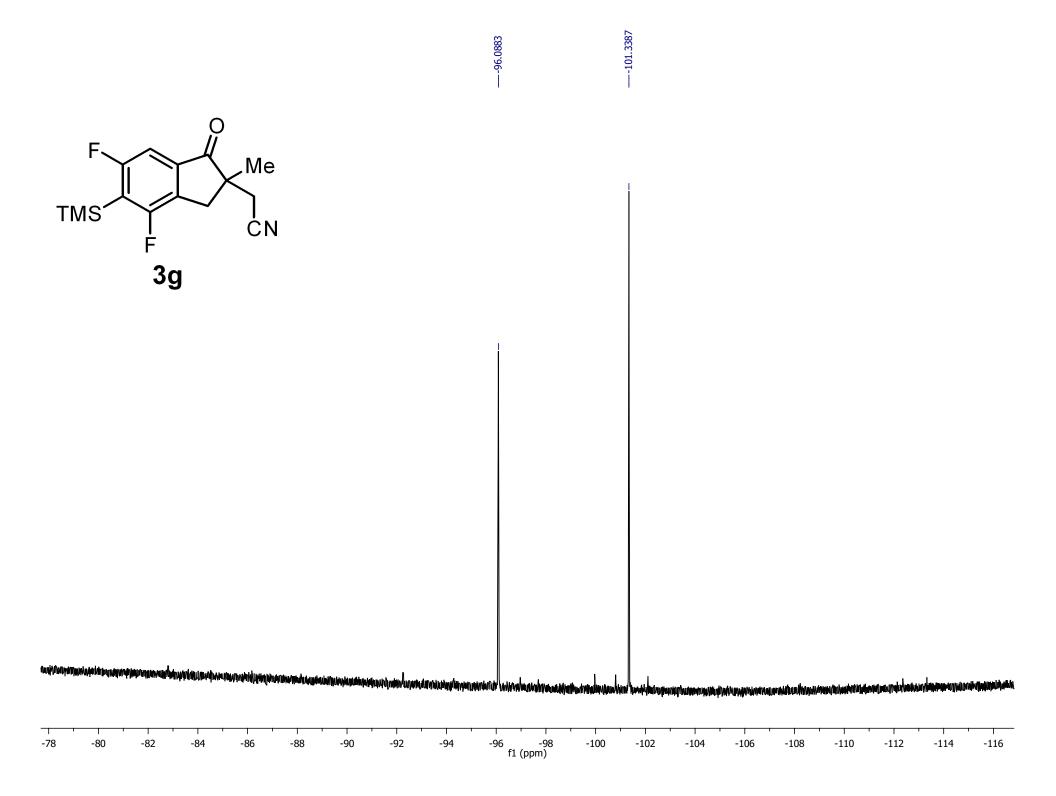

8/20/2013 6:27:24 PM




Acquisition Time (sec)	1.1010	Comment	5 mm PABBO BE	3/19F-1H/D Z-GRD Z1194		Date	09 May 2013 18:13:04
Date Stamp	09 May 2013 18:			File Name		\Desktop\NR-3-55-13C\1\f	
Frequency (MHz)	125.76	Nucleus	13C	Number of Transients	868	Origin	spect
Original Points Count	32768	Owner	cdonrr	Points Count	32768	Pulse Sequence	zgpg30
Receiver Gain	194.68	SW(cyclical) (Hz)	29761.90	Solvent	CHLOROFORM- 29761.00	a Temperature (degree C)	25.025
Spectrum Offset (Hz)	12569.3496	Spectrum Type	STANDARD	Sweep Width (Hz)		remperature (degree C)	25.025
NR-3-55-13C.es	sp Verticals	ScaleFactor = 1					
0.50 0.45 0.40 0.40 0.35 0.30			3			o	23
0.25		50	57129.4412 			46.7746 — 39.8990	
0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00	atomion, marintarja na dago na kana	-151.8520 	-131.8967			- 46	
1		30 170 160 150		120 110 100 90 Chemical Shift (pp) 80 70		30 20 10 0 -10 -2



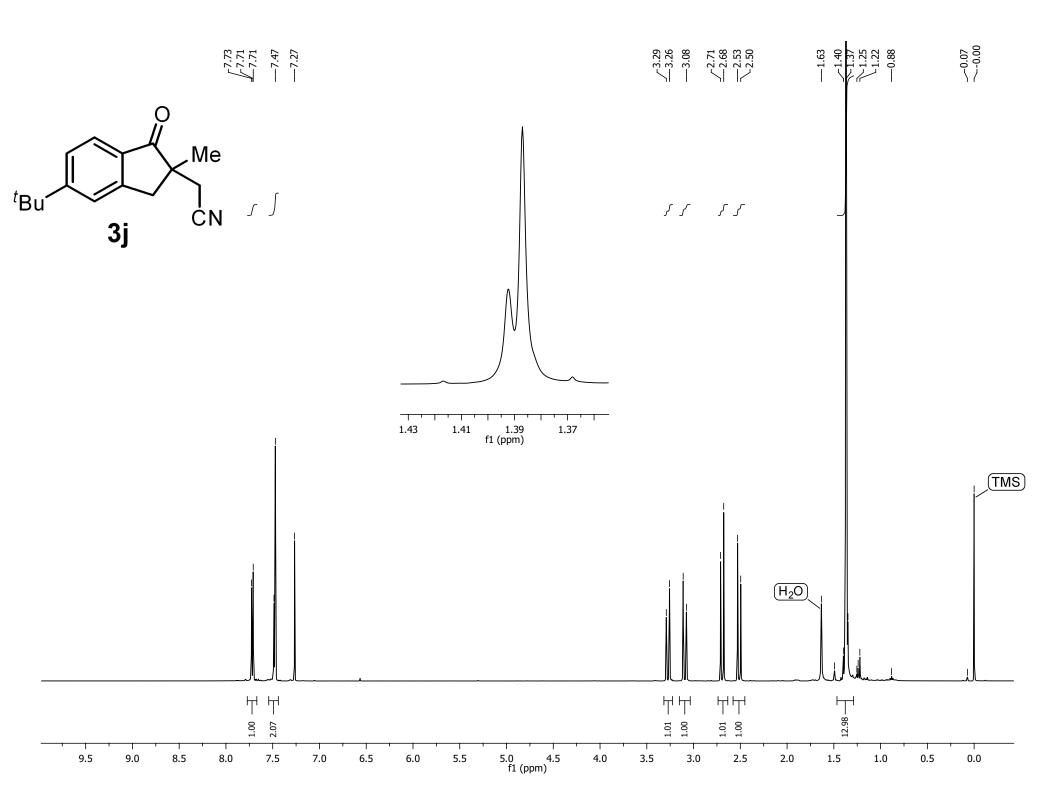

Tequency (MHz) 125.76 Nucleus 13C Number of Translerts 981 Origin Sepect 1200 Sevent 23768 Pulse Sequence 2303 104.88 SW(cyclical) Hz) 2376190 Solvent OHLOROFORM-4 Pulse Sequence 2303 104.88 SW(cyclical) Hz) 2376190 Solvent OHLOROFORM-4 Pulse Sequence 2303 104.88 SW(cyclical) Hz) 2376190 Solvent OHLOROFORM-4 Pulse Sequence 2303 104.88 SW(cyclical) Hz) 2376190 Solvent OHLOROFORM-4 Pulse Sequence 2303 104.88 SW(cyclical) Hz) 2376190 Solvent OHLOROFORM-4 Pulse Sequence 2303 104.88 SW(cyclical) Hz) 2376190 Solvent OHLOROFORM-4 Pulse Sequence 2303 104.88 SW(cyclical) Hz) 2376190 Solvent OHLOROFORM-4 Pulse Sequence 2303 104.88 SW(cyclical) Hz) 2376190 Solvent OHLOROFORM-4 Pulse Sequence 2303 104.88 SW(cyclical) Hz) 2376190 Solvent OHLOROFORM-4 Pulse Sequence 2303 104.88 SW(cyclical) Hz) 2376190 Solvent OHLOROFORM-4 Pulse Sequence 2303 104.88 SW(cyclical) Hz) 2376190 Solvent OHLOROFORM-4 Pulse Sequence 2303 104.88 SW(cyclical) Hz) 2376190 Solvent OHLOROFORM-4 Pulse Sequence 2303 104.88 SW(cyclical) Hz) 2376190 Solvent OHLOROFORM-4 Pulse Sequence 2303 104.88 SW(cyclical) Hz) 2376190 Solvent OHLOROFORM-4 Pulse Sequence 2303 104.88 SW(cyclical) Hz) 2376190 SW(cyclical) Hz	cquisition Time (sec) ate Stamp	1.1010 15 May 2013 1	Comment 19:19:12			BB/19F-1H/D Z-GRD Z11 File Name		Date een\Desktop\NR-3-27-13C\1	<u>15 May 201</u> \fid	J 13.13.12	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					13C						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{$				al) (Hz)							
$\begin{array}{c} 0.40\\ 0.35\\ 0.30\\ 0.25\\ 0.20\\ 0.15\\ 0.00\\ 0.00\\ 0.05\\ 0.00\\$	pectrum Offset (Hz)	12570.2578			STANDARD	Sweep Width (Hz)	29761.00	Temperature (degree C) 25.036		
	0.40 0.35 0.30 0.25 0.20 0.15		Me]	tor = 1	27 3539	2745 1 16.7371 16.7371 116.549 116.549 15.5954 13.4149	-77.25		47.0491 		
							t an - 1- da generation i blad anna de las	y some sin deters a some some some some some some some some		And the All and	-



8/20/2013 5:35:40 PM

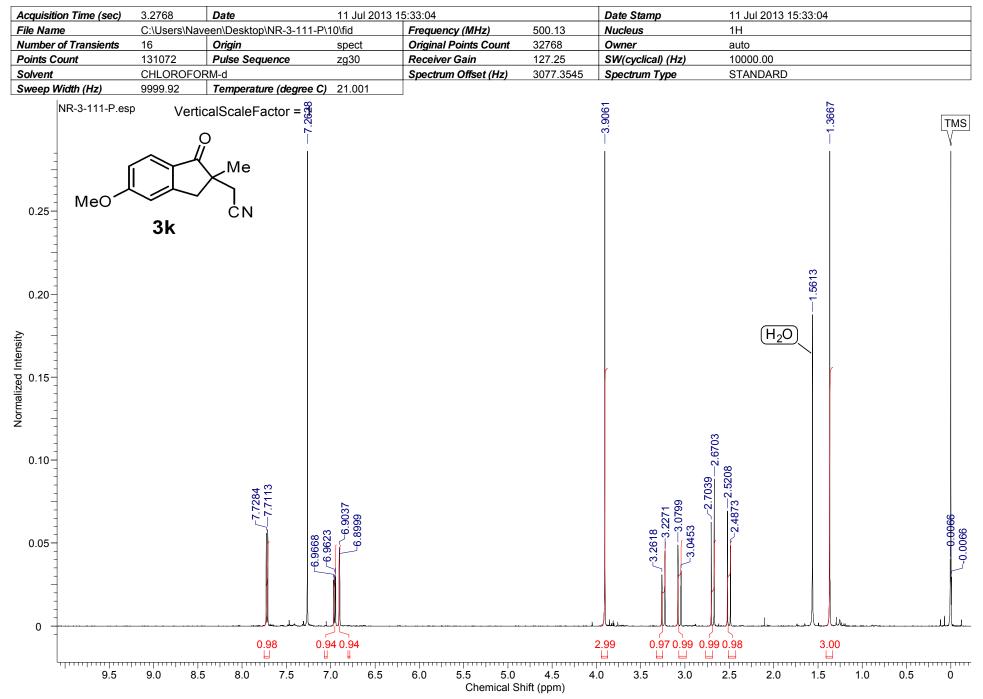
Acquisition Time (sec)	2.0001	Comment	NR-3-45-P Univ	ersity of Minnesota Departm	ent of Chemistrv	VAC-300	0/20/2013 3.33.40
Date	Apr 26 2013	Date Stamp	Apr 26 2013	File Name		een\Desktop\130426v3_2302.fic	l\fid
requency (MHz)	299.96	Nucleus	1H	Number of Transients	16	Original Points Count	11998
Points Count	131072	Pulse Sequence	s2pul	Receiver Gain	38.00	Solvent	CHLOROFORM-d
pectrum Offset (Hz)	2399.7534	Spectrum Type	STANDARD	Sweep Width (Hz)	5998.80	Temperature (degree C)	
NR-3-45-P.esp 0.45 0.40 0.35 0.30 0.25 0.20 0.15	Ľ K	7.17512 7.7656 7.6597 7.5129 7.4214 7.4214					1.7911 1.5514 1.5514 0 0 0.8299 -0.8049
0.05	4-44,	0.84 0.800.80 1.02	ingening frankrike of one of out-figure triple-strate states	unn ginn an san da bhrain inn an sin an ginn an	onard H <u>omeson of the sec</u> and	2.10 0.97 0.95 1.8	9 <u>3.00</u>
ا _ب	9.0 8.5	8.0 7.5 7.0	6.5 6.0	5.5 5.0 4.5 Chemical Shift (ppm)	4.0 3.5		1.5 1.0 0.5

TMS

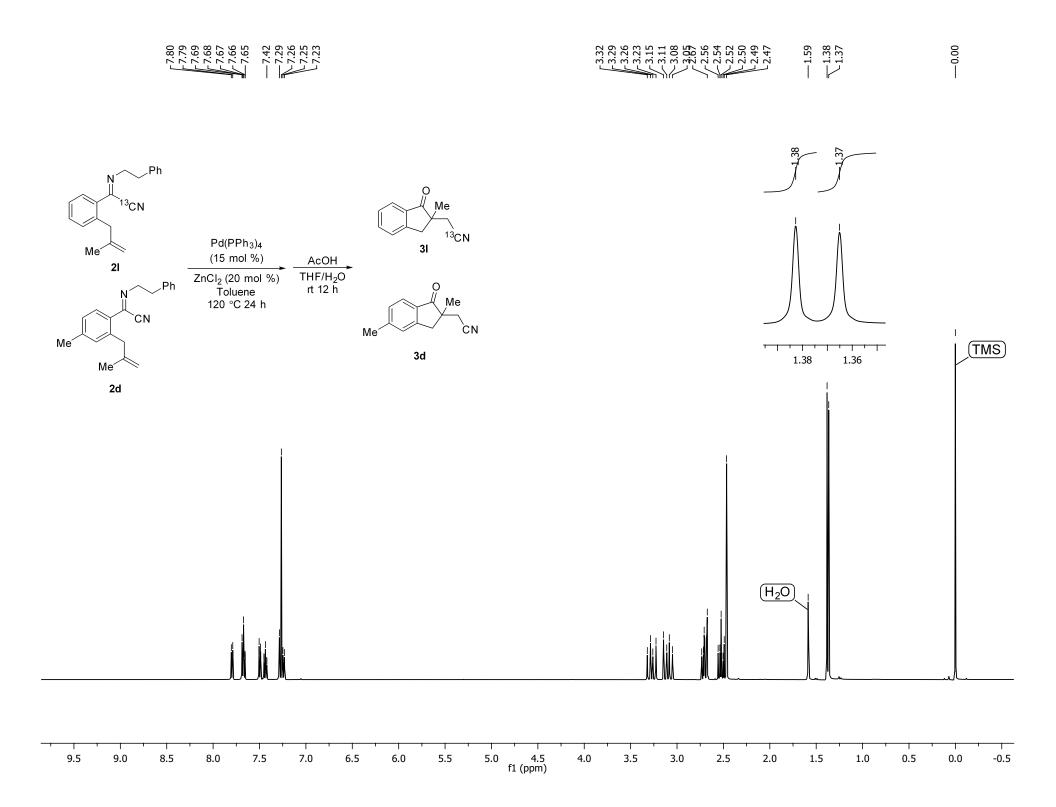

ate Stamp 2	27 Apr 2013 12:4	Comment 44·32	5 mm PABBO	BB/19F-1H/D Z-GRD Z1194 File Name		Date h\Desktop\NR-3-45-13C\1\t	27 Apr 2013 12:44:32 fid	
	125.76	Nucleus	13C	Number of Transients	1024	Origin	spect	
	32768	Owner	cdonrr	Points Count	32768	Pulse Sequence	zgpg30	
Receiver Gain	194.68	SW(cyclical) (Hz)	29761.90	Solvent	CHLOROFORM			
pectrum Offset (Hz)	2571.1660	Spectrum Type	STANDARD	Sweep Width (Hz)	29761.00	Temperature (degree C)	24.999	
NR-3-45-13C.esp 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.04 10 0.05 0.04 10 0.02 00 00 0.02	Vertical	ScaleFactor = 1	— —135.746		77.2528	-76.7472 ———————————————————————————————————		

8/20/2013 6:43:15 PM

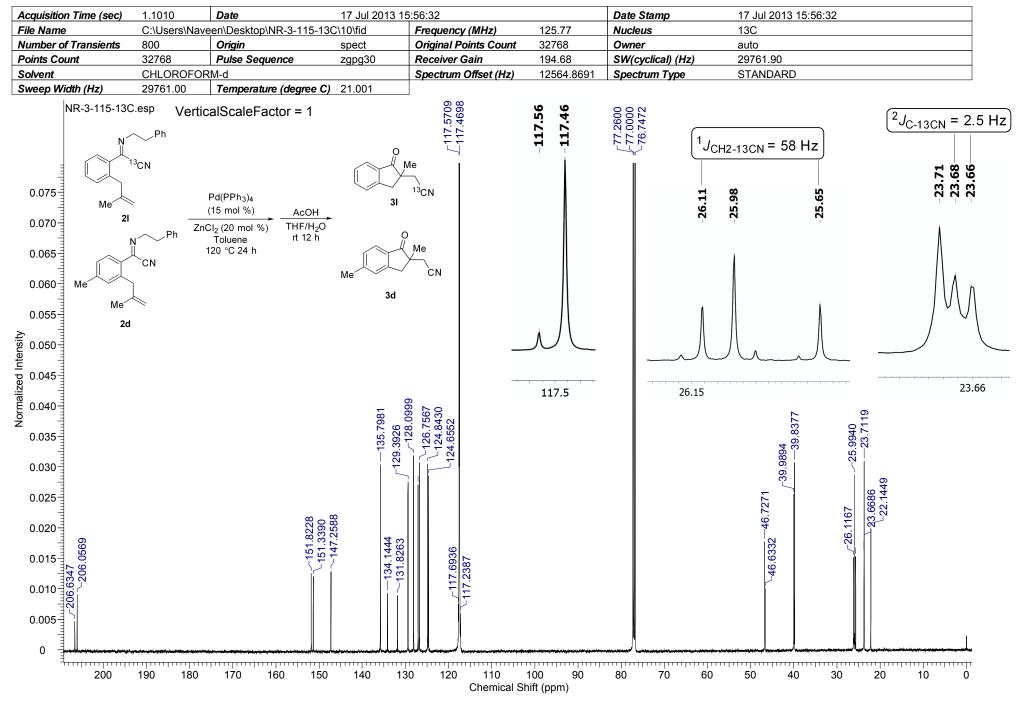
quisition Time (sec) te	2.0001 Apr 30 2013	Comment Date Stamp	Apr 30 2013	versity of Minnesota Departr File Name		en\Desktop\130430v3_6902.fid	\fid	
quency (MHz)	299.96	Nucleus	1H	Number of Transients	16	Original Points Count	11998	
ints Count	131072	Pulse Sequence	s2pul	Receiver Gain	38.00	Solvent	CHLOROFORM-d	
ectrum Offset (Hz)	2399.7534	Spectrum Type	STANDARD	Sweep Width (Hz)	5998.80		AMBIENT TEMPERATURE	
.55 .50 .50 .50 .50	esp Vertica	IScaleFactor = $\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & $					-1.3987	-0.0000
45	3i							
.30						-2.6984 -2.6117		
.20		0				9 544 0	-1.5542	
.15		4 1987 97.780				3.3459 <u>3</u> 3.2190 2.7544 2.5557	H ₂ O	
.10		7.9254 7.8987 7.8987 7.8987 7.6890			5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
0			dy-agencies was surgered attemption of the					
-		0.87 0.90 0.88			L	/ / / / 03 1.04 1.01 1.03 _ L_ L_ L_	3.00	
9.5				5.5 5.0 4.5 Chemical Shift (ppm)	4.0 3.5	3.0 2.5 2.0		 0


quisition Time (sec)	1.1010	Comment	5 mm PABBO B	B/19F-1H/D Z-GRD Z1194		Date	01 May 2013 17:04	1:48
te Stamp	01 May 2013 17:		13C	File Name		Desktop\NR-3-48-13C\1\f		
equency (MHz)	125.76	Nucleus		Number of Transients	1024	Origin Data Damas	spect	
iginal Points Count	32768	Owner	cdonrr	Points Count	32768	Pulse Sequence	zgpg30	
eceiver Gain	194.68	SW(cyclical) (Hz)	29761.90	Solvent	CHLOROFORM-		05.450	
ectrum Offset (Hz)	12570.2578	Spectrum Type	STANDARD	Sweep Width (Hz)	29761.00	Temperature (degree C)	25.159	
NR-3-48-13C.es 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	P Vertical	ScaleFactor = 1 Me CN	651 37.2124 3924 136.9307 534	<u>.3055</u> 125.3461 .3055 124.0678 316	77.2528		——————————————————————————————————————	~23.7644
	the transformation of the second sector and second second second second second second second second second seco	****	-12					ne th ere and the first over and a second second
		170 160 150	140 130	120 110 100	90 80	70 60 50	40 30	20 10

cquisition Time (sec) ate	0.6464 May 7 2013	Comment Date Stamp	May 7 2013	niversity of Minnesota Depart		en\Desktop\130507v3_6902.fid	fid
requency (MHz)	282.23	Nucleus	19F	Number of Transients	32	Original Points Count	64000
oints Count	65536	Pulse Sequence	s2pul	Receiver Gain	12.00	Solvent	CHLOROFORM-d
pectrum Offset (Hz)	-7240.9688	Spectrum Type	STANDARD	Sweep Width (Hz)	99009.90		AMBIENT TEMPERATURE
NR-3-48-19F-R 0.85 0.80 0.75 F ₃ C	VerticalSo						00067591- C ₆ F ₆
0.60							
0.55 0.50 0.45 0.40							
					64.2275		
0.35					Ť		
0.30							
).25							
0.20							
0.15							
).10 .05							
0							



$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Imber of Transients 1024 ints Count 32768 ints Count 29761 ints Count 29761 ints Count 29761 NR-3-133-13C.esp NR-3-133-13C.esp 0.65 0.65 0.65 0.65 0.60 3j 0.55 3j 0.55 0.30 0.40 0.35 0.30 0.25 0.20 0.20	24 Origin 768 Pulse Sequence ILOROFORM-d 761.00 Temperature (degree VerticalScaleFactor = 1 O	spect Original Points zgpg30 Receiver Gain Spectrum Offs	s Count 32768 Owner n 182.64 SW(cyclical) (Hz) set (Hz) 12569.4092 Spectrum Type	auto 29761.90 STANDARD
the Count 32708 [Puise Sequence zapg30 Receiver Gain 182.64 SW(cycleal (Hz) 29761.90 [Spectrum Offset (Hz) 29761.90 [Spectr	ints Count 32768 Vent CHLO eep Width (Hz) 29761 NR-3-133-13C.esp 0.70 0.65 .0.65 .0.60 .0.65 .0.60 .0.55 .0.55 .0.50 .0.55 .0.30 .0.35 .0.30 .0.35 .0.30	768 Pulse Sequence ILOROFORM-d 761.00 Temperature (degree VerticalScaleFactor = 1 O []	zgpg30 Receiver Gain Spectrum Offs	n 182.64 SW(cyclical) (Hi set (Hz) 12569.4092 Spectrum Type	29761.90 STANDARD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Vent CHLO eep Width (Hz) 29761 NR-3-133-13C.esp NR-3-133-13C.esp 0.65 Image: state	HLOROFORM-d 761.00 Temperature (degree VerticalScaleFactor = 1 O	Spectrum Offs	set (Hz) 12569.4092 Spectrum Type	STANDARD
$\frac{100}{100} \frac{100}{100} \frac{100}{100}{100} \frac{100}{100} \frac{100}{100}$	29761 NR-3-133-13C.esp NR-3-133-13C.esp 10.65 Bu 3j 0.55 0.50 0.45 0.40 0.45 0.40 0.35 0.30	761.00 Temperature (degree VerticalScaleFactor = 1 O			
1000000000000000000000000000000000000	NR-3-133-13C.esp NR-3-133-13C.esp 100 100 100 100 100 100 100 10	VerticalScaleFactor = 1 O []	C) 21.000	77.2600 77.0000 76.7472	1285
$\frac{1}{10000000000000000000000000000000000$	2.70 .65 .60 .65 .50 .55 .50 .45 .40 .35 .20 .20	о И		77.2600 77.0000 76.7472	1285
		~ I CN	125.9623 124.5036		.8282


9/26/2013 3:59:25 AM

quisition Time (sec)	1.1010	Date	11 Jul 201			Date Stamp	11 Jul 2013 19:06:24	
e Name		een\Desktop\NR-3-11		Frequency (MHz)	125.77	Nucleus	<u>13C</u>	
imber of Transients	1024	Origin Dulas Comusinas	spect	Original Points Count	32768	Owner	auto	
ints Count	32768	Pulse Sequence	zgpg30	Receiver Gain	194.68	SW(cyclical) (Hz)	29761.90	
lvent	CHLOROFOR		- 01 001	Spectrum Offset (Hz)	12569.4092	Spectrum Type	STANDARD	
eep Width (Hz)	29761.00	Temperature (degre						
NR-3-111-13C	. ^{esp} Vertic	calScaleFactor = 1 O ∐			77.2527	L76.747		
.45 MeO								
.40	3k							
.35								
.30								
25								
.20				-126.5978 -116.3071 09.7354		끂		
.15				— — 126.597 — — 116.307 — — 109.7354			40.0688 	
.10	0.402	166.1938	-154.4009	-127.2478 117.6575		46.8210		32
.05	07							TMS
0					****************			
-								

9/28/2013 6:34:11 PM

