Rh(III)-catalyzed Olefinic C-H Alkynylation of Enamides at Room Temerature.

Chao Feng, Daming Feng and Teck-Peng Loh*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371

teckpeng@ntu.edu.sg.

Supporting Information

Table of Contents	Page No.
General Information	S-2
Experimental Section	S-3
Substrate Synthesis	S-3
Optimization of reaction condition	S-8
Rh(III)-catalyzed olefinic C-H alkynylation of enamides	S-9
Heck-type olefinic alkynylation of enamide 2a	S-10
Alkynylation reaction using other alkynyliodonium reagent	S-10
Sonogashira reaction of alkynylation product	S-11
Desilylation reaction of alkynylation product	S-11
Cycloaddition reaction of desilylation alkynylation product	S-12
Characterization of unknow substrates and alkynylation products	S-13
KIE study	S-22
Isotope experiment	S-23
¹ H and ¹³ C NMR spectra of products	S-28
X-ray Data	S-58

General information

[Cp*Rh(MeCN)₃][SbF₆]₂, [Cp*RhCl₂]₂, CuCl, PivOH and solvents were purchased from commercial suppliers and used as received unless otherwise noted. All reactions were carried out using 8mL sample vial or standard Schlenk technic. Reactions were monitored through thin layer chromatography [Merck 60 F254 precoated silica gel plate (0.2 mm thickness)]. Subsequent to elution, spots were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F 254 nm. Further visualization was possible using basic solution of potassium permanganate. Flash chromatography was performed using Merck silica gel 60 with distilled solvents. HRMS spectra were recorded on a Waters Q-Tof Permier Spectrometer. ¹H NMR and ¹³C NMR spectra were recorded using Bruker Avance 400 MHz spectrometers. Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of SiMe₄ (δ 0.00, singlet), methanol- d_4 (δ 3.31, quintet), DMSO-d₆ (δ 2.50, quintet). Multiplicities were given as: s (singlet); brs (broad singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet); ddd (doublets of doublets of doublet); td (triplet of doublet); m (multiplets); ddt (doublet of doublet of triplet) and etc. Coupling constants are reported as a J value in Hz. Carbon nuclear magnetic resonance spectra (^{13}C NMR) are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 77.00, triplet), methanol- $d_4(\delta 49.00, \text{heptet}), \text{DMSO-} d_6(\delta 40.00, \text{heptet})$

Experimental section

Substrate synthesis

Alkynyliodonium reagent 1 was synthesized following the reported method.^[1]

2a-2k, 2n-2r were synthesized using reported methods.^[2]

General reaction procedure A

Synthetic procedure: a) A mixture of ketone (1 equiv.), NaOAc (1.2 equiv.) and hydroxylamine hydrochloride (1.2 equiv.) in methanol (0.5M) was stirred for 2 h at 60 °C. Add water after cooling down to room temperature, then the mixture was extracted with ethyl acetate twice. The organic layer was collected, dried over MgSO₄ and *vacuo* to afford the ketoxime pure enough for next step.

b) To an oven-dried 50 mL two-neck RBF assembled with condenser was added the before-metioned ketoxime. The flask was vacuumed and back filled with N_2 for three times. Anhydrous toluene (0.5 M) was added followed by acetic anhydride (3 equiv.), acetic acid (3 equiv.) and iron powder (2 equiv.). The reaction flask was put into a 70 °C preheated oil bath and allowed to stir under nitrogen atomsphere. After reaction completed and cooling to room temperature, ethyl acetate was added and the mixture was filtered through a short pad of celite. The solution thus obtained was evapoured to product crude enamide, which was directly purified by column chromatography.

[2] (a) M. Berg, R. M. Haak, A. J. Minnaard, A. H. M. Vries, J. G. Vries, B. L. Feringa, *Adv. Synth. Catal.*, 2002, **344**, 1003; (b) M. J. Burk, G. Casy, N. B. Johnsonn, *J. Org. Chem.*, 1998, **63**, 6084; (c) H. Zhou, W. J. Chung, Y. H. Xu, T. P. Loh, *Chem. Commun.*, 2009, **23**, 3472.

^[1] J.P. Brand, J. Waser, Angew. Chem., Int. Ed., 2010, 49, 7304.

Reaction scheme for 2l synthesis

Synthetic procedure: a) The mixture of o-tolunitrile (20 mmol), NBS (21 mmol), and AIBN (1 mmol) in benzene (20 ml) was stirred at 80 $^{\circ}$ C for 1 h. After cooling to room temperature, the reaction was quenched with water and the mixture was extracted with ether followed by drying over MgSO₄. The organic solvent was evaporated to give the residue which is used directly in next step without purification.

b) To a suspension of AcOH (80 mmol) and K_2CO_3 (80 mmol) in DMF (90 mL) was added the crude 2-(bromomethyl)benzonitrile in DMF (10 mL) at room temperature, and the mixture was stirred at the same temperature for 1 hour. After quenching with water the mixture was extracted with ether followed by drying over MgSO₄. The organic solvent was evaporated to give the residue which is used directly in next step without purification.

c) To a suspension of K_2CO_3 (100 mmol) in 30 mL MeOH/H₂O (2:1) was added the above obtained 2-cyanobenzyl acetate. The mixture was stirred at room temperature and the progress of reaction was monitored through TLC. Once the reaction finished, water was added and thus resulting solution was extracted with ethyl acetate. After drying over MgSO₄, the organic solvent was evaporated and the residue was subjected to silica gel column chromatography to afford the desired product 2-(hydroxymethyl)benzonitrile in 75% yield.

d) To an oven-dried 50 mL two-neck RBF assembled with condenser was added 2-(hydroxymethyl)benzonitrile (5 mmol) and dry ether (10 mL). MeLi LiBr (7.5 mmol, 1M in ether) was slowly added into the solution under N₂ at 0 $^{\circ}$ C. After stirring for 2 hours at the same temperature, Ac₂O (15 mmol) was added and the resulting mixture was stirred at room temperature overnight. Saturated

NaHCO₃ solution was added followed by extraction with ethyl acetate (2×50 mL), and drying over MgSO₄. The organic solvent was evaporated and the residue was subjected to column chromatography on silica gel to deliver the product **2l** in 23% yield.

Reaction scheme for 2m synthesis

Synthetic procedure: a) An 50 mL RBF was charged with 2-fluorobenzonitrile (10 mmol), K_2CO_3 (20 mmol), pyridine (12 mmol), and DMSO (5 mL) sequentially. The reaction flask was subjected to a 90 °C preheated oil bath and stirred overnight, at which time the resulting mixture was cooled down to room temperature, diluted with ethyl acetate, and washed thoroughly with water. Removal of the solvent in vacuo and purification of the residue by silica gel column chromatography afforded the desired product 2-(piperidin-1-yl) benzonitrile in 90% yield.

b) To an oven-dried 50 mL two-neck RBF assembled with condenser was added 2-(piperidin-1-yl)benzonitrile and dry toluene (15 mL). MeMgBr (12 mmol, 3M in ether) was added to the solution under N₂ at room temperature. After stirring 10 minutes, the mixture was subjected to a 110 °C preheated oil bath and stirred overnight. After cooling to room temperature, Ac₂O (15 mmol) was added into the solution dropwise and the resulting mixture was stirred at room temperature for 2 hours, at which time saturated NaHCO₃ solution was added followed by extraction with ethyl acetate (2×50 mL), and drying over MgSO₄. The organic solvent was evaporated and the residue was subjected to column chromatography on silica gel to deliver the product **2m** in 56% yield.

Reaction scheme for 2s, 2v, 2w synthesis

Synthetic procedure: a) At room temperature TMSCl (10 mmol) was added to a solution of NaI (10 mmol) in MeCN (10 mL) followed by H_2O (5 mmol). After stirring for 10 minutes, alkyne (6 mmol) was added and the resulting solution was stirred for 1 hour at room temperature. The reaction was quenched with H_2O (20 mL) and extracted with ethyl acetate followed by drying over MgSO₄. The organic solvent was evaporated to give the crude (3- iodobut-3enyl)benzene, which is used directly in next step without further purification.

b) To an oven-dried 50 mL two-neck RBF assembled with condenser was added CuI (1.5 mmol), K_2CO_3 (9 mmol), acetamide (12 mmol). The flask was vacuumed and backfilled with N_2 for three times. Anhydrous THF (5 mL) was added followed by DMEDA (3 mmol) and crude (3-iodobut-3-enyl)benzene. The reaction flask was put into a 70 °C preheated oil bath and allowed to stir overnight. After cooling to room temperature, water was added and the mixture was extracted with ethyl acetate (2×50 mL) followed by drying over MgSO₄. The organic solvent was evaporated and the residue was subjected to column chromatography on silica gel to deliver the product.

Reaction scheme for 2t, 2u synthesis

Synthetic procedure: a) To an oven-dried 50 mL RBF, isobutyronitrile (22 mmol) was dissolved in THF (10 mL). The flask was subjected to a -78 °C cold bath and a 1M THF solution of LDA (24 mmol) was added dropwisely. The reaction was allowed to stir under -78 °C for 1 hour, and then R-Br (22 mmol)

was slowly dropped in the flask. Then the resulting mixture was naturally warmed up to room temperature. When the reaction finished, the mixture was quenched with saturated NH_4Cl solution and extracted with ethyl acetate. Removal of the solvent in vacuo and purification of the residue by silica gel column chromatography afforded the desired product.

b) To an oven-dried 50 mL RBF was added 3°-alkyl nitrile (10 mmol) and dry diethyl ether (15 mL). MeLi'LiBr (20 mmol, 3M in ether) was added to the solution under N₂ at 0 °C. After stirring 2 hours, Ac₂O (30 mmol) was added into the solution dropwise and the resulting mixture was stirred at room temperature for 2 hours, at which time saturated NaHCO₃ solution was added followed by extraction with ethyl acetate (2×50 mL), and drying over MgSO₄. The organic solvent was evaporated and the residue was subjected to column chromatography on silica gel to deliver the desired product.

Optimaization of reaction condition

			PhNHCOMe
	PhNHCOMe	[Cp*Rh(MeCN) ₃][SbF ₆] ₂	[
		1, Additive	
		Solvent, rt, 12 h	TIPS
	2a		3a
Entry	Additive	Solvent	$\mathbf{Yield}^{b}\left(\%\right)$
1	-	THF	50
2	-	DCE	52
3	-	DME	35
4	-	MeCN	<10
5	-	Acetone	83
6	-	Dioxane	<10
7	-	PhCl	59
8	-	MeOH	33
9	-	<i>t</i> -BuOH	81
10	NaOAc	Acetone	27
11	PivOH	Acetone	91
12	$AgSbF_6$	Acetone	59 ^c
13	-	Acetone	\mathbf{NR}^{d}
14	-	Acetone	\mathbf{NR}^{e}
15	PivOH	Acetone	\mathbf{NR}^{f}
16	PivOH	Acetone	80^g

Table 1 Optimization of reaction condition.^a

^{*a*} Unless otherwise noted, the reactions were carried out using **2a** (0.1 mmol), hypervalent aklynyliodonium reagent **1** (0.11 mmol), additive (0.01 mmol), catalyst (0.002 mmol) in solvent (0.5 mL) and stirred at room temperature for 12 h. ^{*b*} Isolated yields. ^{*c*} [Cp*RhCl₂]₂ (0.002 mmol) was used as the catalyst. ^{*d*} CuCl (0.01 mmol) was used as the catalyst. ^{*e*} Pd(OAc)₂ (0.005 mmol) was used at the catalyst. ^{*f*} No catalyst was added. ^{*g*} **2a** was used in 1g scale.

Rh(III) catalyzed olefinic C-H alkynylation of enamides

General reaction procedure B

Synthetic procedure: The enamide **2** (0.1 mmol, 1 equiv.), alkynyliodonium reagent **1** (0.11 mmol, 1.1 equiv.), $[Cp*Rh(MeCN)_3][SbF_6]$ (0.002 mmol, 2 mol %), PivOH (0.01 mmol, 10 mol %) and Acetone (0.5 mL) were placed in a 8 mL glass vial under air. After stirring at room temperature for 12 hours, saturated NaHCO₃ solution (5 mL) was added and the resulting mixture was extracted with dichloromethane (2x10mL). Removal of the solvent in vacuo and purified by column chromatography afforded the desired product **3**.

Large scale reaction

Synthetic procedure E: The *N*-(1-phenylvinyl)acetamide **2a** (1.0 g, 1 equiv.), alkynyliodonium reagent **1** (2.9 g, 1.1 equiv.), $[Cp*Rh(MeCN)_3][SbF_6]$ (105.4 mg, 2 mol %), PivOH (63 mg, 10 mol %) and Acetone (30 mL) were placed in a 100 mL RBF under air. After stirring at room temperature for 12 hours, saturated NaHCO₃ solution (50 mL) was added and the resulting mixture was extracted with dichloromethane (2x50mL). Removal of the solvent in vacuo and purified by column chromatography afforded the desired product **3a** 1.70 g (80% yield).

Heck-type alkynylation reaction of enamide

General reaction procedure C

Synthetic procedure: The enamide **2a** (0.1 mmol, 1 equiv.), $Pd(PPh_3)_2Cl_2$ (0.005 mmol, 5 mol %) and K_2CO_3 (0.25 mmol, 2.5 equiv.) was stirred in DMF at room temperature under N_2 atomosphere for 5 min. Then, bromoethynyl triisopropylsilane (0.11 mmol, 1.1 equiv.) was slowly added into the system. The reaction was then allowed to stir for 12 hours at 80 °C. After quenched with water, the mixture was extracted using ethylacetate. Then the organic layer was evaporated and the residue was directed subject to column chromatography on silica gel to afford the desired product 15.4 mg (45% yield).

Alkynylation reaction scheme using other alkynyliodonium reagent

General reaction procedure B

Synthetic procedure: The enamide **2a** (0.1 mmol, 1 equiv.), alkynyliodonium reagent (0.11 mmol, 1.1 equiv.), $[Cp*Rh(MeCN)_3][SbF_6]$ (0.002 mmol, 2 mol %), PivOH (0.01 mmol, 10 mol %) and Acetone (0.5 mL) were placed in a 8 mL glass vial under air. After stirring at room temperature for 12 hours, saturated NaHCO₃ solution (5 mL) was added and the resulting mixture was extracted with dichloromethane (2x10mL). Removal of the solvent in vacuo and purified by column chromatography afforded the desired product **4**.

Sonogashira reaction between 3a and 4-iodobenzonitrile. General reaction procedure D

Synthetic procedure: The **3a** (0.1 mmol, 1 equiv.), 4-iodobenzonitrile (0.11 mmol, 1.1 equiv.), $Pd(PPh_3)_2Cl_2$ (0.002 mmol, 2 mol %) and CuI (0.001 mmol, 1 mol %) was stirred in THF under N₂ atomosphere. After cooling down to 0 °C, TBAF (0.12 mmol, 1.2 equiv.) was slowly added. The reaction was allowed to stir for 2 hours under room temperature. After quenched with water, the mixture was extracted using dichloromethane. Then the organic layer was evaporated and the residue was directed subject to column chromatography on silica gel to afford the product **5** 22.3 mg (78% yield).

Desilylation reaction of 3a General reaction procedure E

Synthetic procedure: The **3a** (0.2 mmol, 1 equiv.) was dissolved into 1 mL THF in a 10 mL RBF. Then, the mixture of TBAF (0.4 mmol, 4 equiv.), acetic acid (0.6 mmol, 6 equiv.) and 1 mL THF was added dropwisely. The reaction was allowed to stir for 0.5 hour at room temperature and quenched with saturated NaHCO₃ solution. After extracting with dichloromethane (2x10mL), the organic layer was evaporated and the residue was subjected to column chromatography on silica gel to deliver the product **6** 33.7 mg (91% yield).

Cycloaddition reaction between 6 and benzyl azide General reaction procedure F

Synthetic procedure: The **6** (0.1 mmol, 1 equiv.) and BnN_3 (0.12 mmol, 1.2 equiv.) were dissolved into 1 mL CHCl₃ in a 5 mL RBF. Then the aqueous solution of CuSO₄·5H₂O (0.01 mmol, 0.1 equiv.) and sodium ascorbate (0.02 mmol, 0.2 equiv.) was added dropwisely. The reaction was allowed to stir for 36 hours under room temperature and quenched with saturated NH₃Cl solution. After extracting with dichloromethane (2x10mL), the organic layer was evaporated and the residue was subjected to column chromatography on silica gel to deliver the product **7** 28.0 mg (88% yield).

Characterization of unknow substrates and alkynylation products

N-(3,3,4-trimethylpenta-1,4-dien-2-yl)acetamide:

¹H NMR (400 MHz, CDCl₃): δ 1.15 (s, 6H), 1.73 (s, 3H), 2.08 (s, 3H), 2.13 (s, 2H), 4.70 (s, 1H), 4.79 (s, 1H), 4.87 (s, 1H), 5.71 (s, 1H), 6.60 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 24.3, 24.7, 27.0, 38.4, 48.7, 100.1, 114.5, 142.8, 146.4, 168.4

ppm.

N-(3,3-dimethyl-4-phenylbut-1-en-2-yl)acetamide:

145.9, 168.4 ppm.

4-acetamidopent-4-en-1-yl acetate:

ACO NHAC NHAC NHAC **1H NMR (400 MHz, CDCl₃):** δ 1.74-1.78 (m, 2H), 2.00 (m, 6H), 2.17 (t, J = 8.0 Hz, 2H), 4.03 (t, J = 8.0 Hz, 2H), 4.44 (s, 1H), 5.40 (s, 1H), 7.13 (brs, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 20.9, 24.4, 26.7, 63.4, 99.2, 140.5, 169.0, 171.2 ppm.

N-(oct-1-en-2-yl)acetamide:

¹³C NMR (100 MHz, CDCl₃): δ 14.0, 22.5, 24.5, 27.4, 28.6, 31.5, 35.7, 98.4, 141.3, 168.9 ppm.

(Z)-N-(1-phenyl-4-(triisopropylsilyl)but-1-en-3-yn-1-yl)acetamide:

Ph NHCOMe 3a Following the general reaction procedure B, **3a** was obtained as a white solid (31.0 mg, 0.091 mmol, Yield: 91%); m.p. = 78-80 °C; ¹H NMR (**400** MHz, CD₃OD): δ 1.14 (m, 21H), 2.12 (s, 3H), 6.03 (s, 1H), 7.34-7.49 (m, 5H) ppm; ¹³C NMR (**100** MHz, CD₃OD): δ 12.5, 19.1, 23.0, 99.4, 104.7, 126.8, 129.6, 130.2, 137.5, 146.8, 171.65 ppm; HRMS (ESI, m/z): calcd for C₂₁H₃₂NOSi [M+H]⁺ 342.2253, found: 342.2246.

(Z)-N-(1-(*m*-tolyl)-4-(triisopropylsilyl)but-1-en-3-yn-1-yl)acetamide:

Following the general reaction procedure B, **3b** was obtained as a white solid (32.7 mg, 0.092 mmol, Yield: 92%); m.p. = 67-69 °C; ¹H NMR (400 MHz, CD₃OD): δ 1.13 (m, 21H), 2.12 (s, 3H), 2.35 (s, 3H), 6.01(s, 1H), 7.16-7.30 (m, 4H) ppm; ¹³C NMR (100 MHz, CD₃OD):

δ 12.5, 19.1, 21.5, 23.0, 99.3, 104.6, 104.8, 124.1, 127.4, 129.5, 131.0, 137.4, 139.4, 146.9, 171.6 ppm; **HRMS (ESI, m/z):** calcd for $C_{22}H_{34}NOSi [M+H]^+$ 356.2410, found: 356.2413.

(Z)-N-(1-(p-tolyl)-4-(triisopropylsilyl)but-1-en-3-yn-1-yl)acetamide:

Following the general reaction procedure B, **3c** was obtained as a white solid (31.8 mg, 0.089 mmol, Yield: 89%); m.p. = 140-142 °C; ¹H NMR (400 MHz, CD₃OD): δ 1.13 (m, 21H), 2.11 (s, 3H), 2.34 (s, 3H), 5.99 (s, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H) ppm;

¹³C NMR (100 MHz, CD₃OD): δ 12.5, 19.1, 21.3, 23.0, 99.0, 103.9, 104.9, 126.8, 130.3, 134.6, 140.6, 146.7, 171.6 ppm; HRMS (ESI, m/z): calcd for C₂₂H₃₄NOSi [M+H]⁺ 356.2410, found: 356.2414.

(Z)-N-(1-(4-methoxyphenyl)-4-(triisopropylsilyl)but-1-en-3-yn-1-yl) acetamide:

Following the general reaction procedure B, **3d** was obtained as a white solid (30.1 mg, 0.081 mmol, Yield: 81%); m.p. = 121-123 °C; ¹H NMR (400 MHz, **CD₃OD)**: δ 1.13 (m, 21H), 2.11 (s, 3H), 3.80 (s, 3H), 5.93 (s, 1H), 6.91 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 8.0

Hz, 2H) ppm; ¹³C NMR (100 MHz, CD₃OD): δ 12.6, 19.1, 23.1, 55.8, 98.5, 102.8, 105.1, 115.0, 128.3, 129.8, 146.4, 162.2, 171.6 ppm; HRMS (ESI, m/z): calcd for C₂₂H₃₄NO₂Si [M+H]⁺ 372.2359, found: 372.2365.

(Z)-N-(1-(4-(trifluoromethyl)phenyl)-4-(triisopropylsilyl)but-1-en-3-yn-1-yl) acetamide:

Following the general reaction procedure B, **3e** was obtained as a white solid (37.6 mg, 0.092 mmol, Yield: 92%); m.p. = 112-114 °C; ¹H NMR (400 MHz,

CD₃OD): δ 1.14 (m, 21H), 2.13 (s, 3H), 6.14 (s, 1H), 7.65(m, 4H) ppm; ¹³C **NMR (100 MHz, CD₃OD):** δ 12.5, 19.1, 23.0, 101.1, 104.2, 106.8, 125.6 (q, *J* = 270.0 Hz), 126.4, 127.4, 131.7 (q, *J* = 30.0 Hz), 141.3, 145.6, 171.8 ppm; **HRMS (ESI, m/z):** calcd for C₂₂H₃₁F₃NOSi [M+H]⁺ 410.2127, found: 410.2146.

(Z)-N-(1-(4-cyanophenyl)-4-(triisopropylsilyl)but-1-en-3-yn-1-yl)acetamide:

Following the general reaction procedure B, **3f** was obtained as a white solid (35.4 mg, 0.097 mmol, Yield: 97%); m.p. = 139-141 °C; ¹H NMR (400 MHz, CD₃OD): δ 1.14 (m, 21H), 2.13 (s, 3H), 6.17 (s, 1H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.70 (d, *J* = 8.0 Hz, 2H) ppm; ¹³C NMR

(100 MHz, CD₃OD): δ 12.5, 19.1, 23.0, 101.9, 104.0, 107.6, 113.2, 119.5, 127.6, 133.4, 142.1, 145.4, 171.8 ppm; HRMS (ESI, m/z): calcd for C₂₂H₃₁N₂OSi [M+H]⁺ 367.2206, found: 367.2214.

(Z)-N-(1-([1,1'-biphenyl]-4-yl)-4-(triisopropylsilyl)but-1-en-3-yn-1-yl) acetamide:

Following the general reaction procedure B, **3g** was obtained as a white solid (38.2 mg, 0.092 mmol, Yield: 92%); m.p. = 166-168 °C; ¹H NMR (400 MHz, CD₃OD): δ 1.13 (m, 21H), 2.14 (s, 3H), 6.08 (s, 1H), 7.31-7.35 (m, 1H), 7.41-7.44 (m, 2H), 7.54-7.62 (m, 6H) ppm; ¹³C

NMR (100 MHz, CD₃OD): δ 12.5, 19.2, 23.1, 99.7, 104.7, 104.8, 127.3, 127.9, 128.1, 128.7, 129.9, 136.3, 141.5, 143.2, 146.4, 171.8 ppm; **HRMS (ESI, m/z):** calcd for C₂₇H₃₆NOSi [M+H]⁺ 418.2566, found: 418.2555.

(Z)-N-(1-(4-bromophenyl)-4-(triisopropylsilyl)but-1-en-3-yn-1-yl)acetamide:

Following the general reaction procedure B, **3h** was obtained as a white solid (40.0 mg, 0.095 mmol, Yield: 95%); m.p. = 122-124 °C; ¹H NMR (400 MHz, CD₃OD): δ 1.13 (m, 21H), 2.11 (s, 3H), 6.05 (s, 1H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.51 (d, *J* = 8.0 Hz, 2H) ppm; ¹³C NMR

(100 MHz, CD₃OD): δ 12.5, 19.1, 23.0, 100.2, 104.5, 105.3, 124.1, 128.6, 132.7, 136.7, 145.9, 171.7 ppm; HRMS (ESI, m/z): calcd for C₂₁H₃₁BrNOSi [M+H]⁺ 420.1358, found: 420.1364.

(Z)-N-(1-(4-fluorophenyl)-4-(triisopropylsilyl)but-1-en-3-yn-1-yl)acetamide:

CD₃OD): δ 12.5, 19.1, 23.0, 99.5, 104.6, 116.4 (d, J = 22.0 Hz), 129.0 (d, J = 8.0 Hz), 133.8 (d, J = 3.0 Hz), 145.9, 164.8 (d, J = 247.0 Hz), 171.7 ppm; **HRMS (ESI, m/z):** calcd for C₂₁H₃₁FNOSi [M+H]⁺ 360.2159, found:360.2159.

(Z)-N-(1-(4-(methylsulfonyl)phenyl)-4-(triisopropylsilyl)but-1-en-3-yn-1-yl) acetamide:

Following the general reaction procedure B, **3j** was obtained as a white solid (41.5 mg, 0.099 mmol, Yield: 99%); m.p. = 160-162 °C; ¹H NMR (400 MHz, **CDCl₃):** δ 1.13 (m, 21H), 2.14 (s, 3H), 3.06 (s, 3H), 5.44 (s, 1H), 7.54 (d, J = 8.0 Hz, 2H), 7.59 (s, 1H),

7.89 (d, J = 8.0 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 11.1, 18.6, 23.7, 44.5, 100.2, 101.6, 102.5, 126.8, 127.4, 140.3, 141.0, 145.8, 168.2 ppm; HRMS (ESI, m/z): calcd for C₂₂H₃₄NO₃SSi [M+H]⁺ 420.2029, found: 420.2021.

(Z)-N-(1-(4-acetylphenyl)-4-(triisopropylsilyl)but-1-en-3-yn-1-yl)acetamide:

Following the general reaction procedure B, **3k** was obtained as a white solid (36.7 mg, 0.096 mmol, Yield: 96%); m.p. = 150-152 °C; ¹H NMR (400 MHz, CD₃OD): δ 1.14 (m, 21H), 2.13 (s, 3H), 2.59 (s, 3H), 6.17 (s, 1H), 7.59-7.62 (m, 2H), 7.96-7.98 (m, 2H) ppm; ¹³C NMR

(100 MHz, CD₃OD): δ 12.5, 19.1, 23.0, 26.7, 101.3, 104.4, 106.9, 127.0, 129.7, 138.4, 142.1, 145.9, 171.7, 199.7 ppm; HRMS (ESI, m/z): calcd for C₂₃H₃₄NO₂Si [M+H]⁺ 384.2359, found: 384.2356.

(Z)-2-(1-acetamido-4-(triisopropylsilyl)but-1-en-3-yn-1-yl)benzyl acetate:

Following the general reaction procedure B, **3l** was obtained as colorless oil (37.6 mg, 0.091 mmol, Yield: 91%); ¹H NMR (400 MHz, CD₃OD): δ 1.15 (m, 21H), 2.02 (s, 3H), 2.07 (s, 3H), 5.15 (s, 2H), 5.41 (s, 1H), 7.33-

7.42 (m, 4H) ppm; ¹³C NMR (100 MHz, CD₃OD): δ 12.5, 19.1, 20.9, 23.3, 99.7, 103.7, 104.2, 129.3, 129.9, 130.3,130.7, 135.1, 138.5, 146.6, 170.5, 172.4 ppm; **HRMS (ESI, m/z):** calcd for C₂₄H₃₆NO₃Si [M+H]⁺ 414.2464, found: 414.2468.

(Z)-N-(1-(2-(piperidin-1-yl)phenyl)-4-(triisopropylsilyl)but-1-en-3-yn-1-yl) acetamide:

Following the general reaction procedure B, **3m** was obtained as a white solid (40.7 mg, 0.096 mmol, Yield: 96%); m.p. = 79-81 °C; ¹H NMR (400 MHz, CD₃OD): δ 1.14 (m, 21H), 1.56-1.59 (m, 2H), 1.67-1.72 (m, 4H), 2.04 (s, 3H), 2.91-2.94 (m, 4H), 5.87 (s, 1H), 6.96-7.06 (m, 2H), 7.22-7.27

(m, 2H) ppm; ¹³C NMR (100 MHz, CD₃OD): δ 12.5, 19.2, 23.6, 25.3, 27.7, 99.8, 102.2, 104.9, 120.1, 123.5, 130.7, 131.3, 133.9, 147.1, 153.1, 170.0 ppm; HRMS (ESI, m/z): calcd for C₂₆H₄₁N₂OSi [M+H]⁺ 425.2988, found: 425.2985.

(Z)-N-(1-(2-chlorophenyl)-4-(triisopropylsilyl)but-1-en-3-yn-1-yl)acetamide:

Following the general reaction procedure B, **3n** was obtained as a white solid (35.1 mg, 0.094 mmol, Yield: 94%); m.p. = 89-91 °C; ¹H NMR (400 MHz, CD₃OD): δ 1.15 (m, 21H), 2.04 (s, 3H), 5.45 (s, 1H), 7.29-7.40 (m, 4H) ppm; ¹³C NMR (100 MHz, CD₃OD): δ 12.5, 19.1, 23.0, 100.2, 103.5,

104.3,128.0, 130.9, 131.0, 132.0, 133.3, 137.1, 146.0, 170.6 ppm; **HRMS (ESI,** m/z): calcd for C₂₁H₃₁ClNOSi [M+H]⁺ 376.1863, found: 376.1876.

(Z)-N-(1-(naphthalen-2-yl)-4-(triisopropylsilyl)but-1-en-3-yn-1-yl) acetamide:

Following the general reaction procedure B, **30** was obtained as a white solid (34.9 mg, 0.087 mmol, Yield: 87%); m.p. = 134-136 °C; ¹H NMR (400 MHz, CD₃OD): δ 1.15 (m, 21H), 2.18 (s, 3H), 6.19 (s, 1H), 7.46-7.49 (m, 2H), 7.61 (d, J = 8.0 Hz, 1H), 7.80-7.87

(m, 3H), 7.93 (s, 1H) ppm; ¹³C NMR (100 MHz, CD₃OD): δ 12.5, 19.2, 23.1, 100.0, 104.9, 105.4, 124.3, 126.3, 127.6, 127.8, 128.6, 129.3, 129.6, 134.6, 135.2, 146.7, 171.8 ppm; **HRMS (ESI, m/z)**: calcd for C₂₅H₃₄NOSi [M+H]⁺ 392.2410, found: 392.2414.

(Z)-N-(1-(thiophen-2-yl)-4-(triisopropylsilyl)but-1-en-3-yn-1-yl)acetamide:

Following the general reaction procedure B, **3p** was obtained as a white solid (22.5 mg, 0.065 mmol, Yield: 65%); m.p. = 108-110 °C; ¹H NMR (400 MHz, CD₃OD): δ 1.12 (m, 21H), 2.10 (s, 3H), 6.05 (s, 1H), 7.02-7.04 (m, 1H), 7.23-7.24 (m, 1H), 7.39-7.40 (m, 1H) ppm; ¹³C NMR (100 MHz, CD₃OD):

δ 11.2, 17.7, 21.5, 98.7, 102.8, 103.0, 125.3, 126.4, 127.6, 139.5, 140.8, 170.2 ppm; **HRMS (ESI, m/z):** calcd for $C_{19}H_{30}NOSSi [M+H]^+$ 348.1817, found: 348.1820.

N-(3-((triisopropylsilyl)ethynyl)-2*H*-chromen-4-yl)acetamide:

Following the general reaction procedure B, **3q** was obtained as a white solid (25.3 mg, 0.069 mmol, Yield: 69%); m.p. = 180-182 °C; ¹H NMR (400 MHz, CD₃OD): δ 1.13 (m, 21H), 2.14 (s, 3H), 4.79 (s, 2H), 6.82-6.96 (m, 2H), 7.16-7.20 (m, 2H) ppm; ¹³C NMR (100 MHz, CD₃OD): δ 12.4, 19.1, 22.9,

68.6, 101.6, 102.8, 112.4, 117.1, 122.2, 122.8, 124.6, 131.5, 136.2, 156.2, 172.1 ppm; **HRMS (ESI, m/z):** calcd for $C_{22}H_{32}NO_2Si$ [M+H]⁺ 370.2202, found:370.2207.

N-(2-((triisopropylsilyl)ethynyl)-1H-inden-3-yl)acetamide:

Following the general reaction procedure B, **3r** was obtained as a white solid (21.6 mg, 0.061 mmol, Yield: 61%); m.p. = 151-153 °C; ¹H NMR (400 MHz, CD₃OD): δ 1.14 (m, 21H), 2.17 (s, 3H), 3.56 (s, 2H), 7.27-7.42 (m, 4H) ppm; ¹³C NMR (100 MHz, CD₃OD): δ 12.5, 19.1, 22.8, 41.0, 101.4, 2120 8, 124.0, 127.7, 141.0, 142.7, 144.2, 171.7, 178.1, ppm;

103.2, 119.8, 120.8, 124.9, 127.7, 141.9, 142.7, 144.2, 171.7, 178.1 ppm; **HRMS (ESI, m/z):** calcd for $C_{22}H_{32}NOSi [M+H]^+$ 354.2253, found: 354.2254.

(Z)-N-(1-phenyl-6-(triisopropylsilyl)hex-3-en-5-yn-3-yl)acetamide:

Following the general reaction procedure B, **3s** was obtained as colorless oil (30.6 mg, 0.083 mmol, Yield: 83%); ¹H NMR (400 MHz, CDCl₃): δ 1.11 (m, 21H),

³⁵ ^{TIPS} 2.10 (s, 3H), 2.79-2.99 (m, 4H), 4.69 (s, 1H), 7.18-7.29 (m, 5H), 7.77 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 11.2, 18.7, 24.7, 34.9, 35.2, 90.3, 98.3, 102.0, 126.0, 128.3, 128.5, 141.2, 150.9, 167.5 ppm; HRMS (ESI, m/z): calcd for C₂₃H₃₆NOSi [M+H]⁺ 370.2566, found: 370.2559.

(Z)-N-(5,5,6-trimethyl-1-(triisopropylsilyl)hepta-3,6-dien-1-yn-4-yl) acetamide:

Following the general reaction procedure B, 3t was obtained as colorless oil (32.5 mg, 0.090 mmol, Yield: 90%); ¹H **NMR (400 MHz, CD₃OD):** δ 1.09 (m, 27H), 1.75 (s, 3H), 2.06 (s, 3H), 2.18 (s, 2H), 4.69 (s, 1H), 4.87 (s, 1H), 5.63 (s, 1H) ppm; ¹³C NMR (100 MHz, CD₃OD): δ 12.5, 19.1, 23.0, 25.0, 26.5, 41.3,

96.2, 104.8, 106.6, 115.4, 143.9, 154.8, 171.2 ppm; HRMS (ESI, m/z): calcd for C₂₁H₃₈NOSi [M+H]⁺ 348.2723, found: 348.2724.

(Z)-N-(2,2-dimethyl-1-phenyl-6-(triisopropylsilyl)hex-3-en-5-yn-3-yl) acetamide:

Following the general reaction procedure B, 3u was Ph NHCOMe obtained as colorless oil (38.4 mg, 0.097 mmol, Yield: 97%); ¹H NMR (400 MHz, CD₃OD): δ 1.02 (s, 6H), 1.11 3u TIPS (m, 21H), 2.09 (s, 3H), 2.62 (1s, 2H), 5.48 (s, 1H), 7.13-7.26 (m, 5H) ppm; ¹³C NMR (100 MHz, CD₃OD): δ 12.5, 19.1, 23.1, 25.7, 42.1, 46.7, 96.2, 104.7, 107.3, 127.3, 128.7, 131.8, 139.2, 154.4, 171.4 ppm; **HRMS (ESI, m/z):** calcd for $C_{25}H_{40}NOSi [M+H]^+ 398.2879$, found: 398.2881.

(Z)-4-acetamido-7-(triisopropylsilyl)hept-4-en-6-yn-1-yl acetate:

Following the general reaction procedure B, 3v was obtained as colorless oil (30.0 mg, 0.082 mmol, Yield: 82%); ¹H NMR (400 MHz, CDCl₃): δ 1.10 (m, 21H),

1.85 (t, 2H), 2.06 (d, J = 8.0 Hz, 6H), 2.77 (t, J = 8.0 Hz, 2H), 4.09 (t, J = 8.0 Hz, 2H), 4.71 (s, 1H), 7.74 (s, 1H) ppm; ¹³C NMR (100 **MHz, CDCl₃**): δ 11.2, 18.7, 21.0, 24.7, 27.1, 29.6, 63.7, 90.4, 98.5, 101.8, 150.3, 167.3, 171.1 ppm; **HRMS (ESI, m/z):** calcd for $C_{20}H_{36}NO_2Si [M+H]^+$ 366.2464, found: 366.2464.

(Z)-N-(1-(triisopropylsilyl)dec-3-en-1-yn-4-yl)acetamide:

Following the general reaction procedure B, 3w was NHCOMe obtained as colorless oil (30.1 mg, 0.086 mmol, Yield: 86%); ¹H NMR (400 MHz, CDCl₃): δ 0.86-0.89 (m, TIPS 3w 3H), 1.08 (m, 21H), 1.26-1.34 (m, 6H), 1.46-1.48 (m, 2H), 2.06 (s, 3H), 2.66-2.69 (m, 2H), 4.69 (s, 1H), 7.72 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 11.2, 14.0, 18.7, 22.6, 24.7, 28.1, 28.9, 31.6, 32.9, 89.5,

97.8, 102.3, 152.1, 167.4 ppm; **HRMS** (**ESI, m/z**): calcd for $C_{21}H_{40}NOSi$ [M+H]⁺ 350.2879, found: 350.2876.

(Z)-N-(2,2-dimethyl-6-(triisopropylsilyl)hex-3-en-5-yn-3-yl)acetamide:

Following the general reaction procedure B, **3x** was obtained as a white solid (26.7 mg, 0.083 mmol, Yield: 83%); m.p. = 122-124 °C ¹H NMR (400 MHz, CD₃OD): δ 1.10 (m, 30H), 2.04 (s, 3H), 5.67 (s, 1H) ppm; ¹³C NMR (100 MHz, CD₃OD):

δ 12.5, 19.1, 22.9, 28.3, 38.2, 95.8, 104.6, 106.0, 156.0, 171.4 ppm; **HRMS** (**ESI, m/z**): calcd for C₁₉H₃₆NOSi [M+H]⁺ 322.2566, found: 322.2565.

(Z)-methyl 2-acetamido-5-(triisopropylsilyl)pent-2-en-4-ynoate:

 $\begin{array}{c} {}^{\text{MeO}_2\text{C}} \overset{\text{NHCOMe}}{\longrightarrow} & \text{Following the general reaction procedure B, 3y was} \\ {}^{\text{obtained as colorless oil (20.1 mg, 0.062 mmol, Yield: 62%);} \\ {}^{\text{1}} H \ \text{NMR} \ (400 \ \text{MHz}, \ \text{DMSO-}d_6): \delta \ 1.06 \ (\text{m}, \ 30\text{H}), \ 1.93 \ (\text{s}, \ 3\text{H}), \ 3.69 \ (\text{s}, \ 3\text{H}), \ 6.32 \ (\text{s}, \ 1\text{H}), \ 9.57 \ (\text{s}, \ 1\text{H}) \ \text{ppm;} \ {}^{13}\text{C} \ \text{NMR} \\ \hline (100 \ \text{MHz}, \ \text{DMSO-}d_6): \delta \ 11.1, \ 18.9, \ 22.7, \ 52.9, \ 101.9, \ 104.6, \ 111.6, \ 137.8, \ 164.6, \ 168.6 \ \text{ppm;} \ \text{HRMS} \ (\text{ESI, m/z): calcd for } C_{17}\text{H}_{30}\text{NO}_3\text{Si} \ [\text{M+H}]^+ \ 324.1995, \ found: \ 324.1986. \end{array}$

(E)-N-(1-phenyl-4-(triisopropylsilyl)but-1-en-3-yn-1-yl)acetamide:

Following the general reaction procedure C, the desired product was obtained as a white solid (15.4 mg, 0.045 mmol, Yield: 45%); m.p. = 94-96 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.97 (m, 21H), 1.98 (s, 3H), 6.70 (s, 1H),

7.30-7.36 (m, 4H), 7.57-7.58 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 11.2, 18.5, 24.4, 95.2, 96.5, 104.2, 128.2, 128.4, 129.0, 136.0, 145.1, 169.2 ppm; HRMS (ESI, m/z): calcd for C₂₁H₃₂NOSi [M+H]⁺ 342.2253, found: 342.2249.

(Z)-N-(5,5-dimethyl-1-phenylhex-1-en-3-yn-1-yl)acetamide:

Ph_NHCOMe Following the general reaction procedure B, **4a** was obtained as a white solid (21.0 mg, 0.087 mmol, Yield: 87%); m.p. = 126-128 °C; ¹H NMR (**400** MHz, CD₃OD): δ 1.29 (m, 9H), 2.13 (s, 3H), 5.88 (s, 1H), 7.32-7.45 (m, 5H) ppm; ¹³C NMR (**100** MHz,

CD₃OD): δ 22.8, 29.4, 31.4, 76.9, 105.0, 107.7, 126.6, 129.5, 129.7, 137.8, 144.6, 171.8 ppm; **HRMS (ESI, m/z):** calcd for C₁₆H₂₀NO [M+H]⁺ 242.1545, found: 242.1547.

(Z)-N-(4-(4-cyanophenyl)-1-phenylbut-1-en-3-yn-1-yl)acetamide:

Ph NHCOMe Following the general reaction procedure D, 5 was obtained as a white solid (22.9 mg, 0.080 mmol, Yield: 80%); m.p. = 192-194 °C ¹H NMR (400 MHz, DMSO d_6): δ 2.07-2.09 (m, 3H), 6.09 (s, 1H), 7.38-7.40 (m, 3H), 7.50-7.52 (m, 2H), 7.64 (d, J = 8.0 Hz, 2H), 7.87 (d, J =

8.0 Hz, 2H), 9.78 (s, 1H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 22.9, 91.8, 94.8, 99.6, 110.4, 118.5, 126.0, 127.9, 128.4, 129.2, 131.8, 132.5, 136.2, 147.4, 168.3 ppm; **HRMS (ESI, m/z):** calcd for C₁₉H₁₅N₂O [M+H]⁺ 287.1184, found: 287.1196.

(Z)-N-(1-phenylbut-1-en-3-yn-1-yl)acetamide:

Ph NHCOMe Following the general reaction procedure E, **6** was obtained as a white solid (17.0 mg, 0.092 mmol, Yield: 92%); m.p. = 162-164 °C ¹H NMR (400 MHz, CD₃OD): δ 2.13 (s, 3H), 3.74 (s, 1H), 5.81 (s, 1H), 7.34-7.35 (m, 3H), 7.44-7.45 (m, 2H) ppm; ¹³C NMR (100 MHz, CD₃OD): δ 22.9, 80.8, 86.4, 102.6, 126.9, 129.5, 130.2, 137.5, 147.8, 172.0 ppm; HRMS (ESI, m/z): calcd for C₁₂H₁₂NO [M+H]⁺ 186.0919, found: 186.0910.

(Z)-N-(2-(1-benzyl-1H-1,2,3-triazol-4-yl)-1-phenylvinyl)acetamide:

Ph NHCOMe Following the general reaction procedure F, **7** was obtained as colorless oil (28.9 mg, 0.091 mmol, Yield: 91%); ¹H NMR (400 MHz, DMSO- d_6): δ 2.10 (s, 3H), 5.67 (s, 2H), 6.79 (s, 1H), 7.29-7.42 (m, 8H), 7.50-7.52 (m, 2H), 8.16 (s, 1H), 9.59 (s, 1H) ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 23.7, 53.2, 112.3, 123.9, 126.0, 128.4, 128.8, 129.2, 135.7, 136.5, 138.2, 143.7, 168.9 ppm; HRMS (ESI, m/z): calcd for C₁₉H₁₉N₄O [M+H]⁺ 319.1559, found: 319.1571. **KIE study**

Synthetic procedure: The *N*-(1-phenylvinyl)acetamide **2a** (0.1 mmol, 1 equiv.), **2a-d**₂ (0.1 mmol, 1 equiv.), hypervalent alkynyliodonium reagent **1** (0.1 mmol, 1 equiv.), [Cp*Rh(MeCN)₃][SbF₆] (0.004 mmol, 2 mol %), PivOH (0.02 mmol, 10 mol %) and Acetone (1 mL) were placed in a 8 mL glass vial under air. After stirring at room temperature for 12 hours, saturated NaHCO₃ solution (10 mL) was added and the resulting mixture was extracted with dichloromethane (2x20mL). Removal of the solvent in vacuo and purified by column chromatography afforded the the mixture of **3a** and **3a-d**₁.

 $(^{1}H NMR in DMSO-d_{6})$

Isotope experiment

Synthetic procedure: The *N*-(1-phenylvinyl)acetamide 2a (0.2 mmol, 1 equiv.), ¹³C labeled hypervalent alkynyliodonium reagent 1-C¹³ (0.22 mmol, 1.1 equiv.), [Cp*Rh(MeCN)₃][SbF₆] (0.004 mmol, 2 mol %), PivOH (0.02 mmol, 10 mol %) and Acetone (1 mL) were placed in a 8 mL glass vial under air. After stirring at room temperature for 12 hours, saturated NaHCO₃ solution (10 mL) was added and the resulting mixture was extracted with dichloromethane (2x20mL). Removal of the solvent in vacuo and purified by column chromatography afforded the desired product 3a-C¹³ 54.8 mg (80% yield).

(¹H NMR, 13C NMR and Hmbc in CD₃OD)

Hmbc

S24

Desilylation reaction of 3a-C¹³

General reaction procedure D

Synthetic procedure: The ¹³C labeled **3a-C**¹³ (0.1 mmol, 1 equiv.) was dissolved into 0.5 mL THF in a 10 mL RBF. Then added the mixture of TBAF (0.2 mmol, 2 equiv.), AcOH(0.3 mmol, 3 equiv.) and 0.5 mL THF dropwisely. The reaction was allowed to stir for 0.5 hour under room temperature and quenched with saturated NaHCO₃ solution (10 mL). After the extraction with dichloromethane (2x10mL), the organic layer was evaporated and the residue was subjected to column chromatography on silica gel to deliver the product **6**-C¹³ 16.7 mg (90% yield).

(¹H NMR, 13C NMR, Dept 90, Dept 135 and Hmqc in CD₃OD)

Dept 90

Dept 135

Hmqc

¹H and ¹³C NMR spectra of products

¹H NMR & ¹³C NMR in DMSO- d_6

X-ray data

NHAc

TIPS

Table 1. Sample and crystal data for 3g.

Identification code	3g		
Chemical formula	C ₂₇ H ₃₅ NOSi		
Formula weight	417.65		
Temperature	103(2) K		
Wavelength	0.71073 Å		
Crystal size	0.120 x 0.390 x 0.400 mm		
Crystal habit	colorless block		
Crystal system	monoclinic		
Space group	P 1 21/c 1		
Unit cell dimensions	a = 11.5690(11) Å	$\alpha = 90^{\circ}$	
	b = 9.0333(9) Å	$\beta = 95.9944(13)^{\circ}$	
	c = 46.939(5) Å	$\gamma = 90^{\circ}$	
Volume	4878.6(8) Å ³		
Z	8		
Density (calculated)	1.137 g/cm^3		
Absorption coefficient	0.114 mm ⁻¹		
F(000)	1808		

Table 2. Data collection and structure refinement for 3g.

Theta range for data collection	3.07 to 25.38 °
Index ranges	-13<=h<=13, -10<=k<=10, -56<=l<=54

Reflections collected	31196		
Independent reflections	8673 [R(int) = 0.03	89]	
Coverage of independent reflections	97.0%		
Absorption correction	multi-scan		
Max. and min. transmission	0.9860 and 0.9560		
Refinement method	Full-matrix least-sq	uares on F ²	
Refinement program	SHELXL-2013 (Sheldrick, 2013)		
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	8673 / 0 / 555		
Goodness-of-fit on F ²	1.021		
Δ/σ_{max}	0.001		
Final R indices	7084 data; I>2σ(I)	R1 = 0.0458, wR2 = 0.1005	
	all data	R1 = 0.0587, wR2 = 0.1069	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0406P) ² +3.0763P] where P=(F_o^2 +2 F_c^2)/3		
Largest diff. peak and hole	0.439 and -0.318 eÅ	-3	
R.M.S. deviation from mean	0.045 eÅ ⁻³		

Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters (\AA^2) for 3g.

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.82360(15)	0.4763(2)	0.30068(4)	0.0240(4)
C2	0.77806(16)	0.4778(2)	0.32686(4)	0.0255(5)
C3	0.71858(16)	0.6009(2)	0.33513(4)	0.0254(5)
C4	0.70517(15)	0.7227(2)	0.31723(4)	0.0246(5)
C5	0.75059(15)	0.7210(2)	0.29107(4)	0.0226(4)
C6	0.81079(14)	0.5975(2)	0.28219(4)	0.0201(4)
C7	0.85909(15)	0.5969(2)	0.25413(4)	0.0201(4)
C8	0.95205(15)	0.5041(2)	0.24910(4)	0.0241(4)
C9	0.99664(15)	0.5032(2)	0.22307(4)	0.0242(5)
C10	0.95265(15)	0.5965(2)	0.20083(4)	0.0198(4)

	x/a	y/b	z/c	U(eq)
C11	0.85881(15)	0.6875(2)	0.20565(4)	0.0204(4)
C12	0.81318(15)	0.6870(2)	0.23156(4)	0.0212(4)
C13	0.00367(15)	0.6023(2)	0.17351(4)	0.0196(4)
C14	0.83057(15)	0.5795(2)	0.13961(4)	0.0208(4)
C15	0.76273(17)	0.6495(2)	0.11423(4)	0.0301(5)
C16	0.11631(15)	0.5739(2)	0.17086(4)	0.0219(4)
C17	0.16707(15)	0.5755(2)	0.14452(4)	0.0220(4)
C18	0.21353(15)	0.5754(2)	0.12269(5)	0.0234(4)
C19	0.16905(16)	0.6008(2)	0.05802(4)	0.0265(5)
C20	0.04500(16)	0.5625(3)	0.06438(5)	0.0358(5)
C21	0.19843(19)	0.5217(3)	0.03074(5)	0.0362(5)
C22	0.40165(15)	0.7086(2)	0.09124(4)	0.0222(4)
C23	0.47186(17)	0.7027(2)	0.06534(5)	0.0308(5)
C24	0.35508(17)	0.8651(2)	0.09513(5)	0.0313(5)
C25	0.34624(15)	0.3746(2)	0.08701(4)	0.0213(4)
C26	0.44924(16)	0.3467(2)	0.10977(5)	0.0284(5)
C27	0.25294(17)	0.2552(2)	0.08878(5)	0.0291(5)
C28	0.53115(16)	0.4615(2)	0.22544(4)	0.0252(5)
C29	0.57615(17)	0.4656(2)	0.19935(4)	0.0292(5)
C30	0.53257(17)	0.5630(2)	0.17839(4)	0.0293(5)
C31	0.44262(17)	0.6571(2)	0.18353(4)	0.0288(5)
C32	0.39819(16)	0.6545(2)	0.20977(4)	0.0240(4)
C33	0.44153(15)	0.5574(2)	0.23127(4)	0.0202(4)
C34	0.39754(15)	0.5574(2)	0.25990(4)	0.0194(4)
C35	0.47169(15)	0.5227(2)	0.28432(4)	0.0236(4)
C36	0.43467(15)	0.5254(2)	0.31100(4)	0.0238(4)
C37	0.32021(15)	0.5625(2)	0.31521(4)	0.0182(4)
C38	0.24570(15)	0.5985(2)	0.29091(4)	0.0227(4)
C39	0.28319(15)	0.5961(2)	0.26396(4)	0.0224(4)
C40	0.28313(14)	0.5660(2)	0.34423(4)	0.0186(4)
C41	0.08740(15)	0.5933(2)	0.35917(4)	0.0207(4)
C42	0.99832(16)	0.7075(2)	0.36496(5)	0.0284(5)
C43	0.34115(15)	0.4987(2)	0.36698(4)	0.0212(4)
C44	0.31372(15)	0.5177(2)	0.39547(4)	0.0203(4)
C45	0.29014(15)	0.5353(2)	0.41978(4)	0.0213(4)
C46	0.08091(15)	0.6107(2)	0.44883(4)	0.0226(4)
C47	0.03122(16)	0.6807(2)	0.47463(5)	0.0304(5)
C48	0.01156(17)	0.4733(2)	0.43835(5)	0.0320(5)
C49	0.29744(16)	0.4343(2)	0.48109(4)	0.0244(4)
C50	0.2492(2)	0.2800(2)	0.47412(5)	0.0356(5)

	x/a	y/b	z/c	U(eq)
C51	0.28440(17)	0.4739(3)	0.51232(4)	0.0310(5)
C52	0.31414(15)	0.7631(2)	0.46613(4)	0.0250(5)
C53	0.44711(17)	0.7502(3)	0.47127(5)	0.0358(5)
C54	0.28005(18)	0.8851(2)	0.44436(5)	0.0364(6)
N1	0.93062(12)	0.65003(17)	0.14899(3)	0.0202(4)
N2	0.18217(12)	0.64955(17)	0.34801(3)	0.0194(3)
01	0.79951(11)	0.46517(15)	0.15060(3)	0.0280(3)
O2	0.07463(11)	0.46165(15)	0.36377(3)	0.0286(3)
Si1	0.28300(4)	0.56494(6)	0.08926(2)	0.01865(13)
Si2	0.24334(4)	0.58210(6)	0.45484(2)	0.01907(13)

Table 4. Bond lengths (Å) for 3g.

C1-C2	1.387(3)	C1-C6	1.396(3)
C1-H1	0.95	C2-C3	1.385(3)
С2-Н2	0.95	C3-C4	1.383(3)
С3-Н3	0.95	C4-C5	1.385(3)
C4-H4	0.95	C5-C6	1.402(3)
С5-Н5	0.95	C6-C7	1.483(3)
C7-C12	1.396(3)	C7-C8	1.403(3)
C8-C9	1.375(3)	C8-H8	0.95
C9-C10	1.396(3)	С9-Н9	0.95
C10-C11	1.399(2)	C10-C13	1.467(3)
C11-C12	1.375(3)	C11-H11	0.95
C12-H12	0.95	C13-C16	1.347(2)
C13-N1	1.422(2)	C14-O1	1.225(2)
C14-N1	1.354(2)	C14-C15	1.497(3)
C15-H15A	0.98	C15-H15B	0.98
C15-H15C	0.98	C16-C17	1.423(3)
C16-H16	0.95	C17-C18	1.206(3)
C18-Si1	1.839(2)	C19-C21	1.535(3)
C19-C20	1.536(3)	C19-Si1	1.895(2)
C19-H19	1.0	C20-H20A	0.98
C20-H20B	0.98	C20-H20C	0.98
C21-H21A	0.98	C21-H21B	0.98
C21-H21C	0.98	C22-C24	1.531(3)
C22-C23	1.532(3)	C22-Si1	1.8843(19)
C22-H22	1.0	C23-H23A	0.98
C23-H23B	0.98	C23-H23C	0.98
C24-H24A	0.98	C24-H24B	0.98

C24-H24C	0.98	C25-C27	1.535(3)
C25-C26	1.536(3)	C25-Si1	1.8758(19)
С25-Н25	1.0	C26-H26A	0.98
C26-H26B	0.98	C26-H26C	0.98
C27-H27A	0.98	C27-H27B	0.98
C27-H27C	0.98	C28-C29	1.380(3)
C28-C33	1.400(3)	C28-H28	0.95
C29-C30	1.376(3)	С29-Н29	0.95
C30-C31	1.384(3)	С30-Н30	0.95
C31-C32	1.383(3)	C31-H31	0.95
C32-C33	1.390(3)	С32-Н32	0.95
C33-C34	1.486(3)	C34-C35	1.394(3)
C34-C39	1.401(2)	C35-C36	1.365(3)
С35-Н35	0.95	C36-C37	1.400(2)
С36-Н36	0.95	C37-C38	1.394(3)
C37-C40	1.470(3)	C38-C39	1.380(3)
C38-H38	0.95	С39-Н39	0.95
C40-C43	1.346(3)	C40-N2	1.417(2)
C41-O2	1.221(2)	C41-N2	1.362(2)
C41-C42	1.503(3)	C42-H42A	0.98
C42-H42B	0.98	C42-H42C	0.98
C43-C44	1.417(3)	C43-H43	0.95
C44-C45	1.211(3)	C45-Si2	1.834(2)
C46-C47	1.530(3)	C46-C48	1.531(3)
C46-Si2	1.8887(18)	C46-H46	1.0
C47-H47A	0.98	C47-H47B	0.98
C47-H47C	0.98	C48-H48A	0.98
C48-H48B	0.98	C48-H48C	0.98
C49-C50	1.525(3)	C49-C51	1.532(3)
C49-Si2	1.879(2)	C49-H49	1.0
C50-H50A	0.98	C50-H50B	0.98
C50-H50C	0.98	C51-H51A	0.98
C51-H51B	0.98	C51-H51C	0.98
C52-C54	1.526(3)	C52-C53	1.536(3)
C52-Si2	1.880(2)	С52-Н52	1.0
C53-H53A	0.98	C53-H53B	0.98
С53-Н53С	0.98	C54-H54A	0.98
C54-H54B	0.98	C54-H54C	0.98
N1-H1A	0.88	N2-H2A	0.88

Table 5. Bond angles () for 3g.

C2-C1-C6	121.19(19)	С2-С1-Н1	119.4
C6-C1-H1	119.4	C3-C2-C1	120.13(19)
С3-С2-Н2	119.9	С1-С2-Н2	119.9
C4-C3-C2	119.77(19)	С4-С3-Н3	120.1
С2-С3-Н3	120.1	C3-C4-C5	120.04(19)
C3-C4-H4	120.0	С5-С4-Н4	120.0
C4-C5-C6	121.24(19)	С4-С5-Н5	119.4
С6-С5-Н5	119.4	C1-C6-C5	117.63(18)
C1-C6-C7	121.60(17)	C5-C6-C7	120.77(17)
C12-C7-C8	117.26(17)	C12-C7-C6	121.55(16)
C8-C7-C6	121.19(17)	C9-C8-C7	121.23(18)
С9-С8-Н8	119.4	С7-С8-Н8	119.4
C8-C9-C10	121.28(17)	С8-С9-Н9	119.4
С10-С9-Н9	119.4	C9-C10-C11	117.54(17)
C9-C10-C13	121.76(16)	C11-C10-C13	120.69(17)
C12-C11-C10	121.14(18)	C12-C11-H11	119.4
C10-C11-H11	119.4	C11-C12-C7	121.50(17)
С11-С12-Н12	119.3	С7-С12-Н12	119.3
C16-C13-N1	118.83(17)	C16-C13-C10	123.73(17)
N1-C13-C10	117.31(15)	O1-C14-N1	122.57(18)
O1-C14-C15	122.62(17)	N1-C14-C15	114.78(17)
C14-C15-H15A	109.5	C14-C15-H15B	109.5
H15A-C15-H15B	109.5	C14-C15-H15C	109.5
H15A-C15-H15C	109.5	H15B-C15-H15C	109.5
C13-C16-C17	124.71(18)	C13-C16-H16	117.6
C17-C16-H16	117.6	C18-C17-C16	177.8(2)
C17-C18-Si1	177.07(18)	C21-C19-C20	110.49(17)
C21-C19-Si1	111.66(13)	C20-C19-Si1	113.58(15)
С21-С19-Н19	106.9	С20-С19-Н19	106.9
Si1-C19-H19	106.9	С19-С20-Н20А	109.5
С19-С20-Н20В	109.5	H20A-C20-H20B	109.5
С19-С20-Н20С	109.5	H20A-C20-H20C	109.5
H20B-C20-H20C	109.5	C19-C21-H21A	109.5
C19-C21-H21B	109.5	H21A-C21-H21B	109.5
C19-C21-H21C	109.5	H21A-C21-H21C	109.5
H21B-C21-H21C	109.5	C24-C22-C23	110.45(17)
C24-C22-Si1	112.24(12)	C23-C22-Si1	112.37(14)
C24-C22-H22	107.2	С23-С22-Н22	107.2
Si1-C22-H22	107.2	С22-С23-Н23А	109.5
С22-С23-Н23В	109.5	H23A-C23-H23B	109.5

С22-С23-Н23С	109.5	H23A-C23-H23C	109.5
H23B-C23-H23C	109.5	C22-C24-H24A	109.5
C22-C24-H24B	109.5	H24A-C24-H24B	109.5
C22-C24-H24C	109.5	H24A-C24-H24C	109.5
H24B-C24-H24C	109.5	C27-C25-C26	110.26(16)
C27-C25-Si1	111.15(13)	C26-C25-Si1	112.95(14)
С27-С25-Н25	107.4	С26-С25-Н25	107.4
Si1-C25-H25	107.4	C25-C26-H26A	109.5
C25-C26-H26B	109.5	H26A-C26-H26B	109.5
С25-С26-Н26С	109.5	H26A-C26-H26C	109.5
H26B-C26-H26C	109.5	С25-С27-Н27А	109.5
С25-С27-Н27В	109.5	H27A-C27-H27B	109.5
С25-С27-Н27С	109.5	H27A-C27-H27C	109.5
H27B-C27-H27C	109.5	C29-C28-C33	120.83(19)
С29-С28-Н28	119.6	С33-С28-Н28	119.6
C30-C29-C28	120.50(19)	С30-С29-Н29	119.7
С28-С29-Н29	119.7	C29-C30-C31	119.61(19)
С29-С30-Н30	120.2	С31-С30-Н30	120.2
C32-C31-C30	120.05(19)	С32-С31-Н31	120.0
С30-С31-Н31	120.0	C31-C32-C33	121.16(18)
С31-С32-Н32	119.4	С33-С32-Н32	119.4
C32-C33-C28	117.83(18)	C32-C33-C34	121.65(17)
C28-C33-C34	120.50(17)	C35-C34-C39	116.94(17)
C35-C34-C33	120.28(16)	C39-C34-C33	122.75(16)
C36-C35-C34	121.68(17)	С36-С35-Н35	119.2
С34-С35-Н35	119.2	C35-C36-C37	121.72(17)
С35-С36-Н36	119.1	С37-С36-Н36	119.1
C38-C37-C36	116.96(17)	C38-C37-C40	122.52(16)
C36-C37-C40	120.51(16)	C39-C38-C37	121.32(17)
С39-С38-Н38	119.3	С37-С38-Н38	119.3
C38-C39-C34	121.37(17)	С38-С39-Н39	119.3
С34-С39-Н39	119.3	C43-C40-N2	119.38(17)
C43-C40-C37	123.77(16)	N2-C40-C37	116.82(15)
O2-C41-N2	123.27(17)	O2-C41-C42	122.61(17)
N2-C41-C42	114.11(17)	C41-C42-H42A	109.5
C41-C42-H42B	109.5	H42A-C42-H42B	109.5
C41-C42-H42C	109.5	H42A-C42-H42C	109.5
H42B-C42-H42C	109.5	C40-C43-C44	123.49(17)
C40-C43-H43	118.3	C44-C43-H43	118.3
C45-C44-C43	179.4(2)	C44-C45-Si2	172.75(17)
C47-C46-C48	111.20(16)	C47-C46-Si2	112.86(13)

C48-C46-Si2	114.63(13)	C47-C46-H46	105.8
C48-C46-H46	105.8	Si2-C46-H46	105.8
C46-C47-H47A	109.5	C46-C47-H47B	109.5
H47A-C47-H47B	109.5	C46-C47-H47C	109.5
H47A-C47-H47C	109.5	H47B-C47-H47C	109.5
C46-C48-H48A	109.5	C46-C48-H48B	109.5
H48A-C48-H48B	109.5	C46-C48-H48C	109.5
H48A-C48-H48C	109.5	H48B-C48-H48C	109.5
C50-C49-C51	110.40(17)	C50-C49-Si2	114.81(14)
C51-C49-Si2	113.73(14)	C50-C49-H49	105.7
С51-С49-Н49	105.7	Si2-C49-H49	105.7
C49-C50-H50A	109.5	C49-C50-H50B	109.5
H50A-C50-H50B	109.5	C49-C50-H50C	109.5
H50A-C50-H50C	109.5	H50B-C50-H50C	109.5
C49-C51-H51A	109.5	C49-C51-H51B	109.5
H51A-C51-H51B	109.5	C49-C51-H51C	109.5
H51A-C51-H51C	109.5	H51B-C51-H51C	109.5
C54-C52-C53	110.15(17)	C54-C52-Si2	111.39(14)
C53-C52-Si2	112.19(14)	С54-С52-Н52	107.6
С53-С52-Н52	107.6	Si2-C52-H52	107.6
С52-С53-Н53А	109.5	C52-C53-H53B	109.5
H53A-C53-H53B	109.5	С52-С53-Н53С	109.5
H53A-C53-H53C	109.5	H53B-C53-H53C	109.5
C52-C54-H54A	109.5	C52-C54-H54B	109.5
H54A-C54-H54B	109.5	C52-C54-H54C	109.5
H54A-C54-H54C	109.5	H54B-C54-H54C	109.5
C14-N1-C13	122.43(16)	C14-N1-H1A	118.8
C13-N1-H1A	118.8	C41-N2-C40	123.82(16)
C41-N2-H2A	118.1	C40-N2-H2A	118.1
C18-Si1-C25	107.62(9)	C18-Si1-C22	107.68(9)
C25-Si1-C22	110.35(8)	C18-Si1-C19	108.72(9)
C25-Si1-C19	110.93(9)	C22-Si1-C19	111.40(9)
C45-Si2-C49	108.38(9)	C45-Si2-C52	107.00(9)
C49-Si2-C52	109.12(9)	C45-Si2-C46	106.25(9)
C49-Si2-C46	116.95(9)	C52-Si2-C46	108.68(9)

Table 6. Anisotropic atomic displacement parameters (\AA^2) for 3g.

The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

U_{11}	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂

	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0202(9)	0.0237(11)	0.0285(12)	-0.0021(9)	0.0045(8)	0.0001(8)
C2	0.0239(10)	0.0269(11)	0.0258(12)	0.0035(9)	0.0035(8)	-0.0042(8)
C3	0.0214(9)	0.0350(12)	0.0202(11)	-0.0050(9)	0.0046(8)	-0.0056(8)
C4	0.0193(9)	0.0273(11)	0.0278(12)	-0.0053(9)	0.0051(8)	-0.0006(8)
C5	0.0195(9)	0.0223(11)	0.0264(11)	0.0005(9)	0.0041(8)	-0.0011(8)
C6	0.0143(8)	0.0221(11)	0.0238(11)	-0.0008(8)	0.0018(8)	-0.0024(7)
C7	0.0160(8)	0.0202(10)	0.0245(11)	-0.0023(8)	0.0039(8)	-0.0023(7)
C8	0.0199(9)	0.0271(11)	0.0256(12)	0.0049(9)	0.0037(8)	0.0043(8)
C9	0.0172(9)	0.0272(11)	0.0291(12)	0.0022(9)	0.0066(8)	0.0076(8)
C10	0.0170(8)	0.0187(10)	0.0241(11)	-0.0015(8)	0.0039(8)	-0.0019(7)
C11	0.0194(9)	0.0170(10)	0.0252(11)	0.0021(8)	0.0038(8)	0.0012(7)
C12	0.0179(9)	0.0197(10)	0.0265(12)	-0.0029(8)	0.0050(8)	0.0037(7)
C13	0.0204(9)	0.0138(10)	0.0251(11)	-0.0025(8)	0.0050(8)	-0.0013(7)
C14	0.0199(9)	0.0170(10)	0.0266(11)	-0.0056(8)	0.0071(8)	0.0009(7)
C15	0.0289(10)	0.0260(12)	0.0338(13)	-0.0013(10)	-0.0039(9)	-0.0007(9)
C16	0.0200(9)	0.0226(11)	0.0237(11)	-0.0018(9)	0.0052(8)	0.0004(8)
C17	0.0179(9)	0.0184(10)	0.0301(12)	-0.0015(9)	0.0044(9)	-0.0014(7)
C18	0.0191(9)	0.0193(11)	0.0323(13)	-0.0012(9)	0.0053(9)	0.0000(7)
C19	0.0240(10)	0.0189(11)	0.0358(13)	0.0041(9)	-0.0011(9)	0.0006(8)
C20	0.0212(10)	0.0331(13)	0.0517(15)	-0.0015(11)	-0.0033(10)	0.0019(9)
C21	0.0394(12)	0.0398(14)	0.0281(13)	0.0080(10)	-0.0025(10)	-0.0056(10)
C22	0.0178(9)	0.0191(10)	0.0298(12)	0.0017(9)	0.0029(8)	-0.0006(7)
C23	0.0237(10)	0.0273(12)	0.0434(14)	0.0046(10)	0.0123(9)	-0.0032(8)
C24	0.0273(10)	0.0209(11)	0.0456(14)	-0.0037(10)	0.0041(10)	-0.0028(8)
C25	0.0226(9)	0.0188(10)	0.0236(11)	0.0008(8)	0.0078(8)	0.0032(8)
C26	0.0241(10)	0.0241(11)	0.0374(13)	0.0041(9)	0.0049(9)	0.0049(8)
C27	0.0306(10)	0.0172(11)	0.0393(13)	0.0028(9)	0.0026(9)	-0.0006(8)
C28	0.0256(10)	0.0237(11)	0.0266(12)	-0.0002(9)	0.0034(9)	0.0011(8)
C29	0.0266(10)	0.0314(12)	0.0307(13)	-0.0054(10)	0.0078(9)	0.0009(9)
C30	0.0281(10)	0.0401(13)	0.0208(11)	-0.0051(10)	0.0077(9)	-0.0089(9)
C31	0.0296(10)	0.0327(12)	0.0237(12)	0.0032(9)	0.0004(9)	-0.0036(9)
C32	0.0212(9)	0.0256(11)	0.0252(12)	-0.0002(9)	0.0025(8)	0.0004(8)
C33	0.0179(9)	0.0204(11)	0.0219(11)	-0.0020(8)	0.0007(8)	-0.0042(7)
C34	0.0201(9)	0.0141(10)	0.0240(11)	-0.0018(8)	0.0031(8)	-0.0019(7)
C35	0.0155(9)	0.0283(11)	0.0276(12)	0.0013(9)	0.0053(8)	0.0021(8)
C36	0.0187(9)	0.0296(11)	0.0229(11)	0.0023(9)	0.0015(8)	0.0019(8)
C37	0.0185(8)	0.0137(10)	0.0226(11)	-0.0024(8)	0.0031(8)	-0.0021(7)
C38	0.0161(9)	0.0239(11)	0.0283(12)	-0.0025(9)	0.0028(8)	0.0007(8)
C39	0.0191(9)	0.0239(11)	0.0236(11)	-0.0005(9)	-0.0008(8)	0.0004(8)
C40	0.0161(8)	0.0145(10)	0.0254(11)	-0.0025(8)	0.0040(8)	-0.0008(7)

	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C41	0.0171(9)	0.0225(11)	0.0220(11)	-0.0022(8)	-0.0004(8)	-0.0006(7)
C42	0.0180(9)	0.0278(12)	0.0401(13)	0.0004(10)	0.0064(9)	0.0023(8)
C43	0.0189(9)	0.0214(11)	0.0242(11)	-0.0017(8)	0.0062(8)	0.0034(7)
C44	0.0151(8)	0.0198(10)	0.0262(12)	0.0020(8)	0.0028(8)	0.0015(7)
C45	0.0177(9)	0.0178(10)	0.0280(12)	0.0022(9)	0.0009(8)	0.0010(7)
C46	0.0183(9)	0.0222(11)	0.0278(11)	0.0031(9)	0.0053(8)	0.0003(7)
C47	0.0207(9)	0.0321(12)	0.0398(13)	0.0002(10)	0.0097(9)	0.0021(8)
C48	0.0222(10)	0.0308(12)	0.0432(14)	-0.0044(10)	0.0041(9)	-0.0053(9)
C49	0.0214(9)	0.0283(12)	0.0242(11)	0.0036(9)	0.0064(8)	0.0021(8)
C50	0.0494(13)	0.0251(12)	0.0328(13)	0.0070(10)	0.0058(10)	0.0041(10)
C51	0.0289(10)	0.0386(13)	0.0256(12)	0.0039(10)	0.0041(9)	-0.0003(9)
C52	0.0207(9)	0.0264(11)	0.0292(12)	-0.0061(9)	0.0095(8)	-0.0047(8)
C53	0.0238(10)	0.0427(14)	0.0404(14)	0.0036(11)	0.0013(9)	-0.0113(9)
C54	0.0279(11)	0.0204(12)	0.0623(17)	0.0018(11)	0.0109(10)	-0.0010(9)
N1	0.0184(7)	0.0199(9)	0.0234(9)	0.0034(7)	0.0067(6)	-0.0022(6)
N2	0.0201(8)	0.0135(8)	0.0252(9)	0.0015(7)	0.0052(7)	0.0035(6)
01	0.0271(7)	0.0172(8)	0.0399(9)	0.0009(6)	0.0044(6)	-0.0037(6)
O2	0.0225(7)	0.0197(8)	0.0436(9)	0.0009(7)	0.0035(6)	-0.0028(5)
Si1	0.0163(2)	0.0162(3)	0.0243(3)	0.0008(2)	0.0059(2)	0.00119(19)
Si2	0.0161(2)	0.0199(3)	0.0218(3)	0.0005(2)	0.0049(2)	-0.0005(2)

Table 7. Hydrogen atomic coordinates and isotropic atomic displacement parameters $({\rm \AA}^2)$ for 3g.

	x/a	y/b	z/c	U(eq)
H1	-0.1358	0.3912	0.2952	0.029
H2	-0.2123	0.3941	0.3391	0.031
Н3	-0.3129	0.6017	0.3530	0.03
H4	-0.3352	0.8076	0.3229	0.03
H5	-0.2592	0.8052	0.2789	0.027
H8	-0.0152	0.4407	0.2640	0.029
H9	0.0586	0.4377	0.2202	0.029
H11	-0.1740	0.7508	0.1908	0.025
H12	-0.2511	0.7493	0.2341	0.025
H15A	-0.2236	0.5950	0.0968	0.045
H15B	-0.2123	0.7525	0.1125	0.045
H15C	-0.3203	0.6469	0.1167	0.045
H16	0.1654	0.5512	0.1878	0.026
H19	0.1704	0.7095	0.0540	0.032
H20A	-0.0097	0.5861	0.0476	0.054

	x/a	y/b	z/c	U(eq)
H20B	0.0252	0.6203	0.0809	0.054
H20C	0.0403	0.4567	0.0687	0.054
H21A	0.1981	0.4144	0.0338	0.054
H21B	0.2756	0.5529	0.0262	0.054
H21C	0.1404	0.5474	0.0148	0.054
H22	0.4565	0.6858	0.1086	0.027
H23A	0.4210	0.7261	0.0479	0.046
H23B	0.5043	0.6032	0.0637	0.046
H23C	0.5352	0.7750	0.0678	0.046
H24A	0.4200	0.9353	0.0972	0.047
H24B	0.3140	0.8684	0.1123	0.047
H24C	0.3015	0.8919	0.0784	0.047
H25	0.3758	0.3654	0.0678	0.026
H26A	0.4235	0.3576	0.1289	0.043
H26B	0.5109	0.4186	0.1074	0.043
H26C	0.4790	0.2463	0.1076	0.043
H27A	0.2874	0.1572	0.0866	0.044
H27B	0.1899	0.2707	0.0734	0.044
H27C	0.2219	0.2613	0.1074	0.044
H28	0.5614	0.3927	0.2396	0.03
H29	0.6377	0.4007	0.1958	0.035
H30	0.5640	0.5657	0.1605	0.035
H31	0.4114	0.7235	0.1690	0.035
H32	0.3370	0.7202	0.2132	0.029
H35	0.5500	0.4965	0.2824	0.028
H36	0.4880	0.5015	0.3271	0.029
H38	0.1675	0.6251	0.2930	0.027
H39	0.2303	0.6213	0.2478	0.027
H42A	-0.0448	0.7382	0.3468	0.043
H42B	0.0373	0.7937	0.3743	0.043
H42C	-0.0557	0.6652	0.3775	0.043
H43	0.4038	0.4350	0.3638	0.025
H46	0.0680	0.6849	0.4330	0.027
H47A	-0.0522	0.6984	0.4700	0.046
H47B	0.0707	0.7749	0.4794	0.046
H47C	0.0433	0.6136	0.4911	0.046
H48A	0.0138	0.4004	0.4539	0.048
H48B	0.0457	0.4301	0.4220	0.048
H48C	-0.0692	0.5013	0.4325	0.048
H49	0.3830	0.4272	0.4798	0.029

	x/a	y/b	z/c	U(eq)
H50A	0.2953	0.2066	0.4858	0.053
H50B	0.2533	0.2589	0.4538	0.053
H50C	0.1681	0.2752	0.4784	0.053
H51A	0.2017	0.4826	0.5149	0.046
H51B	0.3233	0.5684	0.5171	0.046
H51C	0.3198	0.3962	0.5249	0.046
H52	0.2853	0.7928	0.4847	0.03
H53A	0.4775	0.7164	0.4537	0.054
H53B	0.4681	0.6789	0.4867	0.054
H53C	0.4804	0.8471	0.4767	0.054
H54A	0.3173	0.9782	0.4510	0.055
H54B	0.1954	0.8976	0.4423	0.055
H54C	0.3056	0.8579	0.4258	0.055
H1A	-0.0488	0.7283	0.1396	0.024
H2A	0.1806	0.7432	0.3428	0.023