Supporting Information

Pd Nanoparticle Concentration Dependent Self-assembly of Pd@SiO₂ Nanoparticles into Leaching Resistant Microcubes

Abheek Datta,[†] Anustup Sadhu,[†] Subhankar Santra,[†] S. M. Shivaprasad,[‡] Swadhin K. Mandal[†] and Sayan Bhattacharyya[†],*

[†]Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur - 741252, Nadia, W.B., India, and [‡]International Centre for Materials Science & Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore – 560064, India.

* Email for correspondence: sayanb@iiserkol.ac.in

S1. Experimental Section

Materials: TEOS (Si(OC₂H₅)₄, Merck India, synthesis grade), DTAB (Sigma Aldrich, 98%), potassium tetrachloropalladate (K₂PdCl₄, Arora Matthey Limited), tri-sodium citrate dihydrtate (Na₃C₆H₅O₇, Merck India, 99%), polyvinylpyrrolidone (PVP, Loba Chemie, Mol. Wt. 40,000), SDS (Merck \geq 90%), Triton®X-100 (Sigma-Aldrich, laboratory grade), hydrofluoric acid (HF, Merck, 40%), nitric acid (Suprapur, Merck, 65%), 4-bromo toluene (Sigma Aldrich, 98%), phenyl boric acid (Sigma Aldrich, 98%) and DMF (pro analysi N, N-dimethylformamide GR, Merck) were used without further purification.

Characterization: H₂ reduction of the Pd-SiO₂ composites were performed in a Carbolite wire-wound tube furnace - single zone, model MTF 12/38/400. The ICP-MS measurements were carried out in a Thermo Scientific X-series with Plasma lab software. 10 mg of the Pd-SiO₂ composites was mixed with 9 ml of distilled water and 1 ml HF followed by vigorous stirring for 2 h. The acidic solution was evaporated to dryness and the residue was kept in vacuum overnight. 5 ml of Suprapur HNO₃ was added to 2 mg of the dried residue and heated at 130°C for 0.5 h. The solution was made up to 40 ml with H₂O and 200 µL was pipetted out to prepare 500 ppb aqueous solution, which was the required concentration for ICP-MS measurements. TEM images were obtained by UHR-FEG-TEM, JEOL, JEM 2100 F model using 200 kV electron source. The XRD measurements were carried out with a Rigaku (mini flex II, Japan) powder X-ray diffractometer having Cu K α = 1.54059 Å radiation. FESEM images were recorded in Carl Zeiss SUPRA 55VP FESEM and the SEM images of the products from control experiments were recorded using the table-top Hitachi TM3000. EDAX studies were

performed with the Oxford Instruments X-Max with INCA software coupled to the FESEM. The Fourier transform infrared (FTIR) measurements were carried out with a Perkin Elmer spectrum RX1 with KBr pellets. XPS measurements were performed on the samples mounted on copper stubs with silver paste, using Al Ka radiation (1486.6 eV) in a commercial photoelectron spectrometer from VSW Scientific Instruments. The base pressure of the chamber was maintained around 5×10^{-10} mbar during the experiments. The solid-state ¹H NMR measurements were performed on a Bruker Avance III 500 MHz spectrometer under magic angle spinning (MAS). The spectra were collected at the MAS speed of 10000 Hz with an error of ±1 Hz. Solution state NMR was recorded with JEOL-400 MHz at 278 K with CDCl₃ as the solvent. All chemical shift values are referenced to tetramethylsilane (TMS). The surface area and porosity measurements were carried out with Micromeritics Gemini VII surface The а area analyzer. nitrogen adsorption/desorption isotherms were recorded 2-3 times to obtain reproducible results and reported by BJH (Barret-Joyner-Halenda) surface/volume mesopore analysis. The micropore volume was calculated using the Frenkel-Halsey-Hill isotherm equation. Each sample was degassed at 300°C for 2 h.

Materials Synthesis:

Pd NPs: Pd NPs were synthesized as reported by Šlouf *et al.*,¹ with slight modifications. 0.06 g of anhydrous K_2PdCl_4 was added to 4 mL of 1N HCl and the volume was made up to 200 mL with H₂O to prepare a 9.3 × 10⁻⁴ M solution of K₂PdCl₄. Aqueous solutions of 1% sodium citrate and 0.05 % NaOH was separately prepared. Thereafter, 30 mL of K₂PdCl₄ solution, 60 mL of citrate solution, and 210 mL of deionized water were mixed in a 500 mL round bottom flask and refluxed with intense stirring for 6 h. The pH of the solution was maintained at 10 with NaOH solution. At this step the Pd NP solution was synthesized.

*Mesoporous SiO*₂: Mesoporous SiO₂ was synthesized by acid hydrolysis of TEOS. 1.2 ml of TEOS and 0.05 g of DTAB were taken in a round bottom flask and 30 ml of distilled water was added to it. The pH of the solution was maintained at 2 by adding 1 (N) hydrochloric acid (HCl) and stirred overnight at 70°C. Upon completion of the reaction, the product was separated by centrifugation and washed three times with ethanol followed by drying at 150°C for 2 h. The above protocol was performed separately in air and N₂. A part of the AS samples was reduced under H₂ flow at 550°C for 2 h.

*Pd-SiO*₂ *Core-shell Composites and Microcubes:* After refluxing the Pd NP solution comprising 30 mL K₂PdCl₄, 60 mL sodium citrate, 210 mL H₂O and NaOH to maintain pH~10, 0.05 g of DTAB was added to the Pd NP solution and stirred for 0.5 h. 1N HCl was added to the solution to maintain an acidic pH~2 and stoichiometric quantity of TEOS was added to load the Pd NPs inside SiO₂. The mixture was stirred overnight at 70°C separately in air and N₂. The products were centrifuged and washed three times with ethanol. The AS products were dried at 150°C for 2 h and reduced under H₂ flow at 550°C for 2 h.

*Pd NPs immobilized on Mesoporous SiO*₂ *Surface:* H-550 pristine SiO₂ (prepared in air) and colloidal Pd NP solution were prepared as described previously. An aqueous solution of PVP was prepared by dissolving 0.067 g of PVP in 50 ml distilled water. 0.01 g of SiO₂ was mixed with the PVP solution and stirred for 1 h followed by addition of required amount of Pd NP colloidal solution to obtain Pd NPs attached to the surface of

porous SiO₂. The final solution was stirred for 6 h followed by separation of the products by centrifugation. The products were washed three times with ethanol and dried at 150° C for 2 h.

Suzuki Miyaura Coupling Reactions and Recyclability Tests: Suzuki Miyaura crosscoupling reactions were performed with 0.41 wt% Pd@SiO₂ microcubes and 0.37 wt% Pd NPs immbolized on mesoporous SiO₂. For optimized reaction conditions, the catalysis reactions were performed in a 25 ml schlenk flask. A mixture of 4-bromotoluene (1 mmol), phenylboronic acid (1.5 mmol, 0.182 g), K₂CO₃ (2 mmol, 0.27g), Pd-SiO₂ catalyst (5-6 mg) and DMF:H₂O (1:3; 5 ml) was heated at 100°C with constant stirring for 6 h under N₂ atmosphere. After the completion of reaction the product was separated by column chromatography and characterized by NMR studies. For the recyclability tests, the product mixture was filtered and the solid catalyst obtained was washed with distilled water and ethanol followed by drying in vacuum for 2h. Then the recovered catalyst was used for further reactions.

Figure S2: XRD patterns of H-550 Pd-SiO₂ composites with Pd wt% of (a) 0.14 (air), (b) 0.09 (N₂), (c) 0.41 (air), (d) 0.34 (N₂) and (e) 0.37 (deposited outside SiO₂). The Pd⁰ reflections are indicated and the asterick (*) shows the peaks of amorphous SiO₂.

Figure S3: FESEM images of the as-synthesized Pd-SiO₂ composites with Pd wt% of (a) 0 (air), (b) 0 (N₂), (c) 0.14 (air), (d) 0.09 (N₂), (e) 0.41 (air) and (f) 0.34 (N₂).

Figure S4: FESEM images of H-550 Pd-SiO₂ composites with Pd wt% of (a) 0 (air), (b) 0 (N₂), (c) 0.09 (N₂). (d) 0.37 wt% Pd deposited outside mesoporous SiO₂ and (e) enlarged view of the marked area in (*d*) with arrows showing the PVP capped Pd NPs.

Figure S5: EDAX spectra of a 0.34 wt% Pd-SiO₂ microcube synthesized in N₂, showing the relative increase of Pd concentration from the surface to the core of the microcube groove.

Figure S6: FESEM image of ~1 wt% Pd-SiO₂ microcube synthesized in air.

Figure S7: Nitrogen adsorption/desorption isotherms of H-550 Pd-SiO₂ composites with Pd wt% of (a) 0 (air), (b) 0 (N₂) and (c) 0.09 (N₂). Inset (d) show the enlarged view of the low pressure hysteresis.

Sample	Pd NP	Air		N2			
	(weight %)	SA	D (nm)	V	SA	D (nm)	V
		(m^{2}/g)		(cm^3/g)	(m^{2}/g)		(cm^{3}/g)
	0	573.5	3.2 (sharp),	0.9	580.5	3.8	0.49
AS			6.6 (strong),				
			9.2 (broad)				
	0.14, 0.09	8.2			11.0		0.14
	0.41, 0.34	0.17			0.15		
	0	512.0	13.8	1.8	510.9	3.8 (sharp),	0.38
H-550						5.0 (broad)	
	0.14, 0.09	49.0		0.04	0.03		
	0.41, 0.34	1.4		0.03	1.0		

Table S8: Surface area (SA), pore diameter (D) and pore volume (V) of the AS and H-550 samples.

Figure S9: Nitrogen adsorption/desorption isotherms of as-synthesized Pd-SiO₂ composites with Pd wt% of (a) 0 (air), (b) 0 (N₂), (c) 0.14 (air) and (d) 0.09 (N₂). Insets (a, b) show the corresponding pore size distribution and inset (c) shows the enlarged view of the low pressure hysteresis.

S10. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis (TGA) of AS 0.41 wt% Pd-SiO₂ microcubes in air showed that at 246, 550 and 950°C, the corresponding weight losses were 6, 20 and 30 wt%, respectively. At \leq 246°C, the weight loss corresponds to the melting of citrate and DTAB and also the loss of adsorbed H₂O. At 550°C, the hydrogenation temperature, the remaining loss of 14 wt% was primarily due to the loss of DTAB close to the surface of the microcubes. The additional DTAB trapped within the microcube grooves contributed in stabilizing the cube structure. When the microcubes were heated at higher temperatures in air, the trapped DTAB and silanol groups were also lost, which amounts to ~10 wt% at 950°C. TGA analysis of the H-550 microcubes showed ~6 wt% loss at 950°C. Thus ~14 wt% DTAB contributed in the morphological transformation and ~6 wt% DTAB helped in stabilizing the microcube structure.

Figure S10: TGA plots of AS and H-550 0.41 wt% Pd-SiO₂ microcubes in air.

Figure S11: FTIR spectra of the AS and H-550 0.34-0.41 wt% Pd-SiO₂ microcubes prepared in air and N₂. The bands: (1) O-H stretching, (2, 3) C-CH₂ stretching (from DTAB),^{2, 3} (4, 5) N-CH₃ stretching (from DTAB),² (6) Si-O-Si stretching (TO₃ mode),^{3, 4} (7) Si-O-Si stretching (TO₂ mode)³ and (8) Si-O-Si stretching (TO₁ mode).³

Figure S12: SEM images of the ~0.35 wt% Pd-SiO₂ composites obtained from control experiments performed in air. (a) as-synthesized SiO₂ without Pd NPs and DTAB, (b) hydrogenated (a), (c) as-synthesized Pd-SiO₂ without DTAB, (d) hydrogenated (c), (e) as-synthesized Pd-SiO₂ with 0.025 g DTAB, (f) hydrogenated (e), (g) as-synthesized Pd-SiO₂ with 0.1 g DTAB, (h) hydrogenated (g), (i) as-synthesized Pd-SiO₂ with 0.05 g SDS, (j) hydrogenated (i), (k) as-synthesized Pd-SiO₂ with 0.05 g Triton X-100, (l) hydrogenated (k).

DTAB plays a key role in stabilizing the porous structure of pristine SiO_2 and without DTAB random shapes were obtained. The same holds true for the Pd-SiO₂ composites without DTAB, where after hydrogenation, the Pd-SiO₂ stacks did not assemble into microcubes. During the formation of the microcubes, 0.05 g DTAB was optimized. Half the amount of DTAB resulted in a mixture of a gluey mass over the plate-like structures and grooved microcubes were not observed after hydrogenation. With 0.1 g of DTAB, broken microcubes were obtained, showing that 0.05 g DTAB is the optimum concentration in making the microcubes. Control experiments were also performed with an anionic surfactant, sodium dodecyl sulfate (SDS) and a neutral surfactant Triton®X-100. Both formed irregular to cube-like shapes.

Figure S13: XPS spectra. (Top panel) H-550 0.41 wt% Pd-SiO₂ microcubes synthesized in air and (bottom panel) 0.37 wt% Pd NPs deposited outside mesoporous SiO₂. The fitted spectral positions of the deconvoluted Si 2p,⁵⁻⁸ O 1s,⁹⁻¹¹ and C 1s levels,¹² match well with the literature reports.

Sample	Element	B.E. (eV)	FWHM	State	Relative
					area %
0.41 wt% Pd-	Pd $d_{5/2}$	335.1	1.63	Pd^0	64
SiO ₂ (air) H-		336.8	2.92	Pd^{2+}	36
550	Pd $d_{3/2}$	340.2	2.22	Pd^0	63
		342.4	2.58	Pd^{2+}	37
	Si 2p	103.3	2.40	SiO_2	93
		103.6	1.9	Si-OH	05
		103.9	1.6	Si-OH	02
	C 1s	284.2	3.34	C=C	69
		284.6	2.60	C-OH	31
	O 1s	532.9	2.50	SiO ₂	79
		533.4	1.50	Pd-O	21
0.37 wt% Pd	Pd $d_{5/2}$	335.4	1.65	Pd ⁰	57
deposited		337.1	3.00	Pd^{2+}	43
outside SiO ₂	Pd $d_{3/2}$	340.6	1.43	Pd^0	51
		342.1	2.58	Pd^{2+}	49
	Si 2p	102.4	2.40	SiO_2	100
	C ls	284.6	2.24	C=C	85
		286.8	3.00	C-OH	15
	O ls	532.4	2.40	SiO ₂	89
		533.0	4.00	Pd-O	11

Table S14: Deconvoluted XPS peaks at different binding energies (B.E.), their full width at half maximum (FWHM) and corresponding assignment.

Table S15: Suzuki-Miyaura cross-coupling of phenylboronic acid and 4-bromotoluene, catalyzed by 0.41 weight% Pd-SiO₂ microcubes using various bases and solvents. All reactions were performed at 100°C for 6 h.

Base	Solvent	Yield (%)
K ₂ CO ₃	DMF: H ₂ O (1:3)	~99
K ₃ PO ₄	DMF:H ₂ O (1:1)	~86
K ₃ PO ₄	Iso-propanol	~79
Cs_2CO_3	DMF	~75
K_2CO_3	DMF	~74
Cs_2CO_3	Dioxane	~69
NaOMe	Dioxane	~55

Figure S15: ¹H NMR spectrum of the product.

S16: Turnover number (TON) and Turnover frequency (TOF)

Figure S16: Catalytic activity of H-550 0.41 wt% Pd-SiO₂ microcubes and 0.37 wt% Pd NPs deposited outside mesoporous SiO₂.

Note: When the initial concentration of DTAB was lowered, the Pd NPs were exposed outside leading to higher chances of leaching. With higher concentration of DTAB than the threshold amount of 0.05 g, DTAB formed a thick coating around the microcubes providing limited access to the reactants. With 0.025g and 0.1 g DTAB the Pd-SiO₂ microcubes showed isolated yields of 27 and 15%, respectively.

Figure S17: FESEM images of the $Pd@SiO_2$ microcube catalyst after (a) 5th and (b) 10th cycle and Pd NP - mesoporous SiO_2 catalyst after (c) 5th and (d) 10th cycle. The dotted arrows in (a) show the holes created by leaching of the surface unprotected Pd NPs and the solid arrows in (b) show the exfoliation of the outer layer of the microcube.

In comparison, commercial silica supported Pd catalyst systems undergo fast deactivation due to leaching of the nanoparticles and Pd nanoparticles anchored on conventional silica show diminished catalytic activity due to excessive leaching.^{13, 14}

References

1 M. Šlouf, E. Pavlova, M. Bhardwaj, J. Plěstil, H. Onderková, A. A. Philimonenko and P. Hozák, *Mater. Lett.*, 2011, **65**, 1197-1200.

2 R. B. Viana, A. B. F. da Silva and A. S. Pimentel, *Adv. Phys. Chem.*, 2012, **903272-**(1-14).

3 P. Innocenzi, P. Falcaro, D. Grosso and F. Babonneau, J. Phys. Chem. B, 2003, 107, 4711-4717.

4 J. Osswald and K. T. Fehr, J. Mater. Sci., 2006, 41, 1335-1339.

5 G. Kumar, G. R. Blackburn, R. G. Albridge, W. E. Moddeman and M. M. Jones, *Inorg. Chem.*, 1972, **11**, 296-300.

6 A. Tressaud, S. Khairoun, H. Tohara and N. Watanabe, *Anorg. Allg. Chem.*, **1986**, **540**, 291-299.

7 M. C. Militello and S. J. Simko, Surf. Sci. Spectra., 1994, 3, 387-392.

8 T. H. Fleisch, G. W. Zajac, J. O. Schreiner and G. Mains, *Appl. Surf. Sci.*, 1986, 26, 488-497.

9 S. Salimian and M. Delfino, J. Appl. Phys., 1991, 70, 3970-3972.

10 S. L. Andersson and T. M. S. Scurrell, J. Catal., 1979, 59, 340-356.

11 D. Sprenger, H. Bach, W. Meisel and P. Gütlich, J. Non-cryst. Solids, 1990, **126**, 111-129.

12 S. Santra, P. Ranjan, P. Bera, P. Ghosh and S. K. Mandal, *RSC Adv.*, 2012, **2**, 7523–7533.

13 Y. Ji, S. Jain and R. J. Davis, J. Phys. Chem. B, 2005, 109, 17232-17238.

14 V. Polshettiwar, C. Len, A. Fihri, Coord. Chem. Rev., 2009, 253, 2599-2626.