Supporting Information

Learning from Nature: Introducing an Epiphyte-Host Relationship in the Synthesis of Alloy Nanoparticles by Co-Reduction Methods

Yue Yu, Qingbo Zhang, Qiaofeng Yao, Yi Zhan, Meihua Lu, Liuqing Yang, Chaohe Xu, Jianping Xie*, and Jim Yang Lee*

Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore

E-mail: chexiej@nus.edu.sg; cheleejy@nus.edu.sg

Materials and Methods

Materials

Palladium (II) chloride (PdCl₂, Sigma Aldrich, 98%), silver nitrate (AgNO₃, Merck, 99.8%), Chloroplatinic (IV) acid (H₂PtCl₆, Sigma Aldrich, 98%), hydrogen tetrachloroaurate (III) hydrate (HAuCl₄.xH₂O, Alfa Aesar, 49.87% Au), cetyltrimethylammonium bromide (CTAB, Sigma Aldrich, \geq 98%) and L-ascorbic acid (Sigma Aldrich, 99%) were used as received. Ultrapure Millipore water (18.2 M Ω) was used as the solvent throughout. 5 mM H₂PdCl₄ solution was prepared by dissolving 22.25 mg PdCl₂ in 25 mL 10 mM HCl solution.

Synthesis of Ag-Pd alloy nanoparticles (NPs). For the synthesis of Ag-Pd alloy NPs, a given volume of 5 mM AgNO₃ and 0.155 mL 38.8 mM ascorbic acid were added to 3 mL 16 mM CTAB solution. After thorough mixing, 90 μ L 5 mM H₂PdCl₄ was introduced. The solutions were mixed well and left on the shaker overnight. 10 μ L, 22.5 μ L, 38.6 μ L, 60 μ L, 90 μ L, 135 μ L, and 210 μ L of 5 mM AgNO₃ were used to prepare precursor mixtures with Ag atom% of 10%, 20%, 30%, 40%, 50%, 60% and 70% respectively.

Synthesis of Au-Pt alloy NPs. The preparation of Ag-Pt alloy NPs was similar to the preparation of Ag-Pd NPs except that H₂PdCl₄ in the growth solution was replaced by H₂PtCl₆, and the reaction time was extended to one week. In particular, a given volume of 5 mM AgNO₃ and 0.155 mL 38.8 mM ascorbic acid were added to 3 mL 16 mM CTAB solution. After thorough mixing, 90 μ L 5 mM H₂PdCl₄ were added. The solutions were well mixed and left on the shaker overnight. 10 μ L, 22.5 μ L, 38.6 μ L, 60 μ L, 90 μ L, 135 μ L, and 210 μ L of 5 mM AgNO₃ were used to prepare precursor mixtures with a Ag atom% of 10%, 20%, 30%, 40%, 50%, 60% and 70% respectively.

Materials characterizations.

The structures of the alloy NPs were analyzed by transmission electron microscopy (TEM), highresolution TEM (HRTEM) on a JEM-2010 and a JEM-2100F (JEOL) microscopes operating at 200 kV accelerating voltage. Field emission scanning electron microscopy (FESEM) (on a JEOL JSM-6700F equipped with scanning TEM (STEM) function operating at 25 kV) was used to evaluate overall particle morphology and product uniformity. EM samples were typically prepared by dispensing a drop of the washed product on a copper grid followed by drying in air at room temperature.

Electrochemical measurements. Electrochemical measurements were carried out in a standard 3-electrode cell under the control of a Metrohm Autolab type III potentiostat/galvanostat. The working electrode was a polished and cleansed glassy carbon electrode (diameter 5 mm). A Pt gauze and a Ag|AgCl (3 M KCl) electrode were used as the counter electrode and the reference electrode respectively. The Ag precursor solution was a 0.15 mM AgNO₃ in 16 mM CTAB solution. Electrochemical measurements by cyclic voltammetry were carried out at 10 mV/s.

Figure S1. Cyclic voltammetry of Ag reduction in a 0.15 mM AgNO₃ solution with 16 mM CTAB (pH value of 5.0). The electrode potential was estimated to be -0.12 V vs Ag|AgCl (0.385 V vs SHE). The interception of the line adjoining the Ag⁺/Ag reduction and oxidation peaks on the potential axis as the proxy of the reduction potential of Ag⁺.

Table S1. Underpotential shifts ΔE_{UPD} and Standard electrode potentials

Underpoter	Standard electrode potential			
Substrate/UPD metal ion	$\Delta E_{\text{UPD}}(V)$	References	(V)	
Pd/Ag ⁺	0.296	7	PdBr ₄ ²⁻ /Pd	0.49
Pt/Ag ⁺	0.336~0435	6, 7, 12	PtBr ₆ ²⁻ /Pt	0.613
Au/Ag ⁺	0.505~0.55	7, 12	AuBr ₄ -/Au	0.854

Table S2. Compositions (Ag atom%) of Ag-Pt and Ag-Pd NPs as determined by EDX and XPS measurements.

Ag atom% in the	Ag atom% in Ag-Pt alloy NPs		Ag atom% in Ag-Pd alloy NPs	
precursor mixture	EDX	XPS	EDX	XPS
10	16.98	15.81	5.39	4.06
20	24.09	23.22	11.49	8.26
30	33.57	32.32	17.89	16.46
40	44.05	43.68	23.98	24.23
50	52.11	50.63	29.92	33.36
60	55.24	54.84	34.78	37.72
70	55.78	55.84	36.10	40.83

Figure S2. Representative EDX (A and C) and Ag 3d XPS spectra (B and D) of Ag-Pt alloy NPs (A and B) and Ag-Pd alloy NPs (C and D). The NPs were prepared with 50 atom% of Ag in the precursor mixture.

Figure S3. TEM images of Ag-Pt alloy NPs prepared with different Ag contents in the precursor solution. (A) to (F) were prepared with 10, 20, 30, 40, 50 and 60 atom% of Ag respectively in the precursor solution. The Ag-Pt NPs were dendritic with rough surface similar to those prepared in the CTAB-AA system.^{1,2}

Table S3. Compositions (Ag atom%) of Ag-Pt and Ag-Pd NPs before and after the addition of Pt(IV) or Pd(II) ions, as measured by EDX analysis. The as-synthesized alloy NP solution was centrifuged to remove the unreacted ascorbic acid and redispersed in aqueous CTAB. The H₂PtCl₆ or H₂PdCl₄ concentrations were 9 μ M for alloy NPs with a Ag atom% of ~24% and 16 μ M for alloy NPs with a Ag atom% of ~34%.

Alloy Ag conte growth so	A a contont in	Ag atom % in alloy NPs	% decrease	
	growth solution	after reaction with Pt(in Ag	
		before	after	content
Ag-Pt NPs	20 atom% of Ag	24.09	22.74	5.60%
Ag-Pd NPs	40 atom% of Ag	23.98	19.67	17.97%
Ag-Pt NPs	30 atom% of Ag	33.57	30.87	8.04%
Ag-Pd NPs	60 atom% of Ag	34.78	29.15	16.19%

Feeding Ag atom%	Ag atom% in Ag-Au NPs		
in solution	EDX	XPS	
10	5.39	4.06	
20	10.83	29.93	
30	13.89	37.42	
40	15.79	35.68	
50	14.65	36.83	
60	15.53	34.63	
70	16.91	36.46	

Table S4. Composition (Ag atom%) of Ag-Au NPs as determined by EDX and XPS analyses.

Figure S4. Plot of EDX and XPS measurements of Ag atom% in Ag-Au NPs (the experimentally measured values are also given in Table S4) against the Ag content in the growth solution.. The Ag atom% in the Au-Ag NPs are nearly constant regardless of the Ag⁺ concentration in the growth solution. The Ag atom% measured by XPS were higher than those measured by EDX indicating a core-shell structure.

Table S5. Ag atom% measured by EDX in the Ag-Pt and Ag-Pd alloy NPs under different reaction conditions. Reference condition: [CTAB] = 16 mM, [HCl] = 0 mM, [NaBr] = 0 mM, $[H_2PdCl_4]$ (or $[H_2PtCl_6]$) = 0.15 mM, and $[AgNO_3] = 64 \mu M$ for 30 Ag atom% or $[AgNO_3] = 150 \mu M$ for 50 Ag atom%. The reactant concentrations were the same as the reference condition unless specified.

	Ag-Pt NPs	Ag-Pt NPs	Ag-Pd NPs	Ag-Pd NPs
Reaction conditions	prepared at 30	prepared at 50	prepared at 30	prepared at 50
	atom% of Ag	atom% of Ag	atom% of Ag	atom% of Ag
Reference condition	33.57	52.11	17.89	29.92
[CTAB] = 4 mM	30.69	53.26	16.41	27.78
[CTAB] = 32 mM	32.23	54.05	18.17	29.05
[HCl] = 16 mM	32.98	50.12	15.65	29.66
[NaBr] = 16 mM	32.74	53.03	17.72	26.23

Figure S5. Plot of Ag atom% (measured by EDX) in Ag-Pt and Ag-Pd alloy NPs (the experimentally measured values are also given in Table S5) versus reaction conditions which differed by capping agent or additive concentration. Reference condition: [CTAB] = 16 mM, [HCI] = 0 mM, [NaBr] = 0 mM. All reactant concentrations were the same as the reference condition unless specified.

References

(1) Lee, H.; Habas, S. E.; Kweskin, S.; Butcher, D.; Somorjai, G. A.; Yang, P.: Morphological Control of Catalytically Active Platinum Nanocrystals. *Angew. Chem.* **2006**, *118*, 7988-7992.

(2) Hong, J. W.; Kang, S. W.; Choi, B.-S.; Kim, D.; Lee, S. B.; Han, S. W.: Controlled Synthesis of Pd–Pt Alloy Hollow Nanostructures with Enhanced Catalytic Activities for Oxygen Reduction. *ACS Nano* **2012**, *6*, 2410-2419.