Supporting Information

Efficient optical resolution of water-soluble self-assembled tetrahedral M_4L_6 cages with 1,1'-bi-2-naphthol

Shigang Wan, Li-Rong Lin,* Lili Zeng, Yiji Lin, and Hui Zhang*

Table of Content

1.	GeneralS2
2.	Resolution of cage T with Leu ⁺ and Bcic ⁺
3.	Resolution of cage T with $[Ru(phen)_3](PF_6)_2$
4.	Resolution of cage T with BINOL
5.	Resolution of cage $(Me_4N)_4[Ni_4L_6]$ with BINOLS3
6.	The chiral stability of resolved cages upon complexation of cyclohexaneS3
7.	Figure S1. CD spectra of cage T resolved by Leu ⁺ and Bcic ⁺ S4
8.	Firure S2. ¹ H NMR spectrum of resolved cage TS4
9.	Figure S3. ¹³ C NMR spectrum of resolved cage TS4
10.	Figure S4. HR-ESI-MS of resolved cage TS5
11.	Figure S5. HR-ESI-MS of resolved cage $(Me_4N)_4[Ni_4L_6]$ S6
12.	Figure S6. CD spectra of the resolved $(Me_4N)_4[Ni_4L_6]$ S6
13.	Figure S7. Dynamic CD spectra of $\Delta\Delta\Delta\Delta$ -T and $\Lambda\Lambda\Lambda\Lambda$ -T·····S7
14.	Figure S8. CD spectra of $\Delta\Delta\Delta\Delta$ -T varied with time at 323 K······S7
15.	Figure S9 . The ¹ H NMR spectrum of $C_6H_{12} \subset \Delta\Delta\Delta\Delta$ -TS7
16.	Figure S10 . Fluorescence responses of (<i>R</i>)- and (<i>S</i>)-BINOL upon addition of $\Lambda\Lambda\Lambda\Lambda$ -T······S8
17.	Scheme S1. Optical resolution of T using (S)-BINOL in methanol
18.	Scheme S2. Optical resolution of T using (<i>R</i>)-BINOL······S9
19.	Reference S9

1. General

The NMR spectra were measured with a Bruker Unity 500 MHz spectrometer using TMS as an internal standard for ¹H NMR and a Bruker Unity 850 MHz spectrometer using 2-methyl-2-propanol as an internal standard for ¹³C NMR. Circular dichroism (CD) spectra were measured with a Jasco J-810 spectropolarimeter. The slit band width of CD spectra measurements was set at 2 nm. Mass spectral data were acquired using a Bruker Fourier transform ICR spectrometer. Fluorescence spectra were recorded on a F-7000 fluorescence spectrophotometer at an excitation wavelength of 280 nm with both of excitation and emission monochromators set at 2.5 nm. Elemental analyses for C, H, and N were performed on an Elementar Vario EL III elemental analyzer. Racemic $(Me_4N)_4[Fe_4L_6]$ and $(Me_4N)_4[Ni_4L_6]$ were synthesized according to literature.^[S1,S2] The $[Ru(phen)_3](PF_6)_2$ was synthesized and resolved according to published procedures.^[S3,S4] Solvents and commercially available reagents were used without further purification.

2. Resolution of cage T with Leu⁺ and Bcic⁺.

Rac-(Me₄N)₄[Fe₄L₆] 36 mg and Leu⁺ 12 mg (Bcic⁺ 17 mg) were added to a 50 mL flask containing methanol 15 mL. The reaction was stirred for 1 h at 50 °C. The less soluble salt ($\Lambda\Lambda\Lambda\Lambda$ -T) was collected by centrifugation, washed with a small portion of methanol, and dried under vacuum. The remaining methanolic solution was concentrated on a rotational evaporator and the more soluble salt was obtained. The Leu⁺ (Bcic⁺) ions were exchanged against Me₄N⁺ on a cation exchange column. (Me₄N)₄[Fe₄L₆] with enantiomer excess were isolated by slow vapor diffusion of acetone into their aqueous solutions.

3. Resolution of cage T with [Ru(phen)₃](PF₆)₂

Rac-(Me₄N)₄[Fe₄L₆] 36 mg and [Ru(phen)₃](PF₆)₂ 9 mg were added to a 50 mL flask containing methanol 15 mL. The reaction was stirred for 1 h at 50 °C. The less soluble salt ($\Lambda\Lambda\Lambda\Lambda$ -T) was collected by centrifugation, washed with a small portion of methanol, and dried under vacuum. The remaining methanolic solution was concentrated on a rotational evaporator and the more soluble salt was obtained. The [Ru(phen)₃]²⁺ ions were exchanged against Me₄N⁺ on a cation exchange column. (Me₄N)₄[Fe₄L₆] with enantiomer excess were isolated by slow vapor diffusion of acetone into their aqueous solutions.

4. Resolution of cage T with BINOL.

Rac-(Me₄N)₄[Fe₄L₆] 108 mg and (*S*)-BINOL (or (*R*)-BINOL) 36 mg were added to a 25 mL flask containing 6 mL water/methanol (v/v = 1:1). The reaction was stirred for 1 h at 50 °C. The less soluble diastereoisomer was collected by centrifugation and washed with water (3×2 mL) and then with acetone, after that dried in vacuum, and last dissolved in 4 mL water/methanol (v/v = 1:1). $\Delta\Delta\Delta\Delta$ -T was obtained by slow vapor diffusion of acetone into the water/methanol solution

for several days. Yield: 35%. AAAA-T was obtained from slow vapor diffusion of acetone into the filtrate. Yield: 45%. ¹H NMR (500 MHz, 298 K, D₂O): δ = 9.29 (s, 12H, imine), 8.66 (d, 12H, 3pyridine), 8.34 (t, 12H, 4-pyridine), 7.72 (t, 12H, 5-pyridine), 7.50 (d, 12H, 6-pyridine), 7.09 (d, 12H, 6,6'-benzidine), 6.38 (s, 12H, 3,3'-benzidine), 5.78 (d, 12H, 5,5'-benzidine), 3.30 ppm (s, [NMe₄]⁺). ¹³C NMR (212.5 MHz, 298 K, D₂O, referenced to 2-methyl-2-prop-anol at 29.5 ppm as internal standard): $\delta = 176.0, 157.9, 155.7, 150.0, 143.1, 139.7, 135.9, 132.0, 131.9, 129.8, 121.7,$ 120.8. HR-ESI-MS: m/z: 1123.0083 ($[Fe_4L_6]^{4-} + Na^+$), 548.0199 ($[FeL_2]^{2-}$), 836.0117 ($[Fe_2L_3]^{2-}$), 1412.9976 $([Fe_4L_5]^{2-}).$ Elemental 1124.5048 $([Fe_3L_4]^{2-}),$ analysis calcd for C₁₆₀H₁₄₄N₂₈Fe₄O₃₆S₁₂·Me₂CO·20(H₂O): C 48.20, H 4.72, N 9.66; found C 48.31, H 4.80, N 9.50.

5. Resolution of cage $[Ni_4L_6]^4$ with BINOL.

Rac-(Me₄N)₄[Ni₄L₆] 108 mg and (*S*)-BINOL (or (*R*)-BINOL) 36 mg were added to a 25 mL flask containing 6 mL water/methanol (v/v = 1:1). The reaction was stirred for 1 h at 50°C. The less soluble diastereoisomer was collected by centrifugation and washed with water (3 × 2 mL) and then with acetone, after that dried in vacuum, and last dissolved in 4 mL water/methanol (v/v = 1:1). $\Delta\Delta\Delta\Delta$ -(Me₄N)₄[Ni₄L₆] was obtained by slow vapor diffusion of acetone into the water/methanol solution for several days. Yield: 30%. $\Lambda\Lambda\Lambda\Lambda$ -(Me₄N)₄[Ni₄L₆] was obtained from slow vapor diffusion of acetone into the filtrate. Yield: 40%. HR-ESI-MS: m/z: 1143.7192 ([Ni₄L₆]⁴⁻+Me₄N⁺), 839.0130 ([Ni₂L₃]²⁻), 1128.0081 ([Ni₃L₄]²⁻), 1418.0025 ([Ni₄L₅]²⁻).

6. The chiral stability of resolved cages upon complexation of cyclohexane.

Aqueous solution of $\Delta\Delta\Delta\Delta$ -T (2.5 mL, 1.4×10^{-5} M⁻¹) and excess cyclohexane (0.1 mL, 1.52 mmol) were added to a cuvette. The sealed cuvette was heated in a water bath to 323 K for 6 h, and reaction progress was monitored by CD spectra.

7. *Figure S1*. CD spectra of cage T resolved by Leu⁺ and Bcic⁺.

8. *Figure S2.* ¹H NMR spectrum of the resolved cage **T**.

9. *Figure S3*. ¹³C NMR spectrum of the resolved cage T.

11. Figure S5. HR-ESI-MS of the resolved cage (Me₄N)₄[Ni₄L₆].

12. *Figure S6.* CD spectra of the resolved tetranuclear cluster $[Ni_4L_6]^{4-}$: $\Delta\Delta\Delta\Delta$ (a) and $\Lambda\Lambda\Lambda\Lambda$ (b) forms.

13. *Figure S7.* Dynamic CD spectra of $\Delta\Delta\Delta\Delta$ -T and $\Lambda\Lambda\Lambda\Lambda$ -T taken immediately after preparation of the 0.01 mM solution and after 30 days.

14. *Figure S8.* CD spectra of $\Delta\Delta\Delta\Delta$ -T varied with time at 323 K: a) in the presence of cyclohexane (C₆H₁₂); b) in the absence of C₆H₁₂.

15. *Figure S9*. The ¹H NMR spectrum of $C_6H_{12} \subset \Delta\Delta\Delta\Delta$ -T.

16. *Figure S10*. Fluorescence responses of (a) (*R*)-BINOL (2×10^{-5} M) and (b) (*S*)-BINOL (2×10^{-5} M) upon addition of $\Lambda\Lambda\Lambda\Lambda$ -T at 1.25×10^{-6} M intervals; (c) the Benesi-Hildebrand plots.

17. Scheme S1. Optical resolution of T using (S)-BINOL in methanol.

18. *Scheme S2*. Optical resolution of **T** using (*R*)-BINOL in 1:1 water-methanol solution followed by removal of (*R*)-BINOL during crystallization.

19. Reference

- [S1] P. Mal, D. Schultz, K. Beyeh, K. Rissanen, J. R. Nitschke, Angew. Chem. Int. Ed. 2008, 47, 8297 -8301.
- [S2] T. K. Ronson, C. Giri, N. K. Beyeh, A. Minkkinen, F. Topić, J. J. Holstein, K. Rissanen, J. R. Nitschke, *Chem. Eur. J.* 2013, 19, 3374-3382.
- [S3] J. N. Braddock, T. J. Meyer, J. Am. Chem. Soc. 1973, 95, 3158-3162.
- [S4] K. A. McGee, K. R. Mann, J. Am. Chem. Soc. 2009, 131, 1896-1902.