# Investigation of Oxidopyrylium-Alkene [5+2] Cycloaddition Conjugate Addition Cascade ( $\mathbf{C}^{3}$ ) Sequences 

Justin A. Simanis, C. Marshall Law, Erica L. Woodall, Christopher G. Hamaker, John R. Goodell, T. Andrew Mitchell*<br>Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA<br>e-mail: tmitche@ilstu.edu

## Supporting Information - Experimental

## Table of Contents:

I. General Methods
II. Preparation and Characterization of Acetoxypyranones 1, 2a-f
III. Preparation and Characterization of [5+2] cycloadducts 3b,c,f,e
IV. Step-wise Preparation, and Characterization of [5+2] C ${ }^{3}$ cycloadducts 4b-e
V. Tandem Preparation, and Characterization of [5+2] $\mathrm{C}^{3}$ cycloadducts $\mathbf{4 a - d}$, $\mathbf{f}-\mathbf{m}$
VI. Conformational Analysis of Cycloadduct, Hydrate, and Hemiacetal Intermediates
VII. Additional X-Ray Crystallography Acquisition Parameters and Data

## GENERAL METHODS

All reactions were carried out under Ar atmosphere in oven-dried glassware. Diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ was dried over pressed Na . All other commercially available anhydrous solvents and reagents were used as received. 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) was distilled immediately prior to use. Thin layer chromatography was performed with glass or aluminum plates (silica gel $\mathrm{F}_{254}$, Art $5715,0.25 \mathrm{~mm}$ ), visualized by fluorescence quenching under UV light, and stained with potassium permanganate. Flash column chromatography was performed with silica gel 60 (200-400 mesh) as described by Still. ${ }^{1}$ Mass spectral data was acquired using positive mode Electrospray Ionization (ESI + ) and a high resolution Time of Flight (TOF) mass spectrometer. Infrared spectra were acquired on a FTIR spectrometer and were reported as wavenumbers $\left(\mathrm{cm}^{-1}\right)$. ${ }^{1} \mathrm{H}$ NMR spectra were acquired at 400 or 500 MHz and ${ }^{13} \mathrm{C}$ NMR spectra were acquired at 100 MHz or 125 MHz where noted. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported as in ppm, $(\delta)$ relative to the residual solvent peaks. ${ }^{1} \mathrm{H}$ NMR coupling constants $(J)$ are reported in Hertz (Hz), and multiplicities are indicated as follows: s (singlet), br. s (broad singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sept (septet), dd (doublet of doublets), ddd (doublet of doublet of doublets), dt (doublet of triplets), td (triplet of doublets), ddt (doublet of doublet of triplets), dq (doublet of quartets), qq (quartet of quartets), m (multiplet), app. (apparent). Based on intensity in the ${ }^{13} \mathrm{C}$ spectra, both magnetic and chemical shift equivalent peaks are noted in parentheses.

[^0]
## PREPARATION AND CHARACTERIZATION OF ACETOXYPYRANONES 1, 2a-f




3) AcCl, py., $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
1 (37\%, 3 steps)

Acetoxypyranone ${ }^{2}$ 1: To a flame-dried, 2-neck, round bottom flask was added Mg turnings ( $2.50 \mathrm{~g}, 102$ mmol, 1.50 equiv.), backfilled with Ar, and allowed to stir vigorously overnight. To the flask was then added anhydrous $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ and a condenser. $\mathrm{Next}, \sim 10 \%$ of 5-bromo-1-pentene $(8.0 \mathrm{~mL}, 68 \mathrm{mmol}$, 1.1 equiv.) was added through a pressure equalizing addition funnel followed by $\mathrm{I}_{2}$. Upon initiation, remaining 5-bromo-1-pentene was added dropwise over 10 min . The resulting solution was refluxed for 1 h , diluted with anhydrous $\mathrm{Et}_{2} \mathrm{O}(120 \mathrm{~mL})$, and cooled to $0^{\circ} \mathrm{C}$. Furfural ( $5.2 \mathrm{~mL}, 63 \mathrm{mmol}, 1.0$ equiv.) was added and the resulting solution was allowed to stir at $23{ }^{\circ} \mathrm{C}$ for 1 h at which point the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(75 \mathrm{~mL})$. The reaction was stirred for 10 min and was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(200 \mathrm{~mL})$. The combined organic solution was washed sequentially with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}$ $(100 \mathrm{~mL})$, and brine $(100 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was distilled under vacuum $\left(80^{\circ} \mathrm{C}, 1 \mathrm{~mm} \mathrm{Hg}\right)$ to afford the alcohol $\mathbf{S} 1$ (not shown) as a colorless oil (7.18 g, $43.2 \mathrm{mmol}, 70 \%)$. To a solution of $\mathbf{S} 1(7.18 \mathrm{~g}, 43.2 \mathrm{mmol}, 1.0$ equiv. $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(430 \mathrm{~mL})$ was added $\mathrm{VO}(\mathrm{acac})_{2}\left(1.15 \mathrm{~g}, 4.32 \mathrm{mmol}, 0.1\right.$ equiv.). The solution was cooled to $0^{\circ} \mathrm{C}$ and $5.5 \mathrm{M} t \mathrm{BuOOH}$ in decane ( $11.8 \mathrm{~mL}, 65 \mathrm{mmol}, 1.5$ equiv.) was added slowly. The reaction was allowed to warm to $23^{\circ} \mathrm{C}$ and stirred for 3 h , quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(200 \mathrm{~mL})$, and stirred for 1 h . The resulting emulsion was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{~mL})$, filtered over Celite to remove suspended solids, and separated. The resulting aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$. The combined organic solution was washed with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{x} 200 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to provide crude hydroxypyranone $\mathbf{S} 2$ (not shown). To a solution of $\mathbf{S 2}$ ( $\sim 43 \mathrm{mmol}, 1.0$ equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(110$

[^1]mL ) was added pyridine ( $7.0 \mathrm{~mL}, 87 \mathrm{mmol}, 2.0$ equiv.) followed by acetyl chloride ( $4.5 \mathrm{~mL}, 52 \mathrm{mmol}$, 1.2 equiv.) at $0{ }^{\circ} \mathrm{C}$. The resulting solution was allowed to warm to $23^{\circ} \mathrm{C}$ and stirred for 2 h . The solution was washed with ice cold sat. aq. $\mathrm{NaCl}(2 \times 50 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to provide crude 1 as a mixture of diastereomers (dr 2.4:1.0). Purification by flash column chromatography (hexanes: $\mathrm{Et}_{2} \mathrm{O} 75: 25$ ) delivered anti-1 as a yellow oil ( $4.07 \mathrm{~g}, 18.1 \mathrm{mmol}, 42 \%, \mathrm{dr}>19: 1$ ), anti-1/syn-1 mixture as a yellow oil ( $1.0 \mathrm{~g}, 4.5 \mathrm{mmol}, 10 \%$, dr 2.3:1.0), and $\operatorname{syn}-1$ as a yellow oil ( $1.3 \mathrm{~g}, 5.8 \mathrm{mmol}$, $13 \%, \mathrm{dr}>19: 1$ ): anti-1: $\mathbf{R}_{f}=0.28$ (hexanes: $\mathrm{Et}_{2} \mathrm{O} 75: 25$ ); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.88(\mathrm{dd}, J=10.3$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.98(\mathrm{~m}, 1 \mathrm{H})$, 4.97-4.94 (m, 1H), $4.47(\mathrm{dd}, J=7.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 1 \mathrm{H})$, 1.78-1.71(m, 1H), 1.55-1.48(m, 2H); ${ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 195.6, 169.7, 141.7, 138.4, 128.8, 115.0, 87.3, 75.9, 33.6, 29.3, 24.1, 21.1. syn-1: $\mathbf{R}_{f}=0.20$ (hexanes: $\mathrm{Et}_{2} \mathrm{O} 75: 25$ ); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.84(\mathrm{dd}, J=10.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=2.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.82-5.74 (m, 1H), 5.03-4.99 (m, 1H), 4.97-4.95 (m, 1H), 4.21 (dd, $J=7.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$, 2.12-2.04 (m, 2H), 1.88-1.83 (m, 2H), 1.65-1.48 (m, 2H). ${ }^{13} \mathbf{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}$ ) $\delta$ 195.7, 169.5, 142.9, 138.2, 128.6, 115.2, $87.8,79.7,33.5,32.4,24.7,21.2$. All other spectral data was consistent with previously published data. ${ }^{2}$

anti-1

Grubbs-Hoveyda



anti-2a (81\%, dr >19:1)
anti-Acetoxypyranone 2a: A solution of anti-1 ( $1.70 \mathrm{~g}, 7.58 \mathrm{mmol}, 1.0$ equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(39$ mL ) was degassed for 10 min by bubbling Ar via balloon. Crotonaldehyde ( $3.1 \mathrm{~mL}, 37.9 \mathrm{mmol}, 5.0$ equiv.) and Grubbs-Hoveyda $2^{\text {nd }}$ generation catalyst ( $357 \mathrm{mg}, 0.57 \mathrm{mmol}, 0.075$ equiv.) were added sequentially. The reaction was degassed for an additional 10 min . The reaction was allowed to stir at 23 ${ }^{\circ} \mathrm{C}$ for 24 h and concentrated. Purification by flash column chromatography (hexanes:EtOAc 80:20 to

70:30) delivered anti-2a as a brown oil ( $1.55 \mathrm{~g}, 6.14 \mathrm{mmol}, 81 \%, \mathrm{dr}>19: 1$ ): $\mathbf{R}_{\boldsymbol{f}}=0.23$ (hexanes:EtOAc 70:30); ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=10.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dt}$, $J=15.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{ddt}, J=15.7,7.8,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.49(\mathrm{dd}, J=7.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.77(\mathrm{~m}$, $1 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 195.2,194.0,169.6,157.9,141.8,133.3,128.6$, $87.0,75.5,32.4,29.1,23.0,21.0$; All other spectral data was consistent with previously published data. ${ }^{2}$

syn-Acetoxypyranone 2a: A solution of syn- $\mathbf{1}\left(400 \mathrm{mg}, 1.78 \mathrm{mmol}, 1.0\right.$ equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.0$ mL ) was degassed for 10 min by bubbling Ar via balloon. Crotonaldehyde ( $735 \mu \mathrm{~L}, 8.9 \mathrm{mmol}, 5.0$ equiv.) and Grubbs-Hoveyda $2^{\text {nd }}$ generation catalyst ( $84 \mathrm{mg}, 0.13 \mathrm{mmol}, 0.075$ equiv.) were added sequentially. The reaction was degassed for an additional 10 min . The reaction was allowed to stir at $23{ }^{\circ} \mathrm{C}$ for 24 h and concentrated. Purification by flash column chromatography (hexanes:EtOAc $80: 20$ to 70:30) delivered syn-2a as a brown oil ( $309 \mathrm{mg}, 1.23 \mathrm{mmol}, 69 \%, \mathrm{dr}>19: 1$ ): $\mathbf{R}_{f}=0.19$ (hexanes:EtOAc 70:30); ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=10.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dt}, J=$ $15.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=2.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=10.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{ddt}, J=15.7,7.8$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=8.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.67$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 195.0, 193.9, 169.1, 157.6, 143.5, 133.3, 128.6, 87.9, 79.0, 32.2, $31.6,23.5,21.0$; All other spectral data was consistent with previously published data. ${ }^{2}$

anti-Acetoxypyranone 2b: A solution of anti-1 ( $1.0 \mathrm{~g}, 4.46 \mathrm{mmol}, 1.0$ equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0$ mL ) was degassed for 5 min by bubbling Ar via balloon. Next, 3-Buten-2-one ( $2.24 \mathrm{~mL}, 26.8 \mathrm{mmol}, 6.0$ equiv.) and Grubbs-Hoveyda 2 nd generation catalyst ( $209.6 \mathrm{mg}, 0.33 \mathrm{mmol}, 0.075$ equiv) were added sequentially. The reaction was backfilled with Ar, degassed for an additional 5 min, and allowed to stir at $23{ }^{\circ} \mathrm{C}$ for 24 h at which point the reaction was concentrated via rotary evaporation. Purification by flash column chromatography (hexanes:EtOAc $80: 20$ to $70: 30$ ) delivered anti-2b as an olive green oil ( 983 mg , $4.34 \mathrm{mmol}, 83 \%, \mathrm{dr}>19: 1): \mathbf{R}_{\boldsymbol{f}}=0.23$ (hexanes:EtOAc 70:30); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.88(\mathrm{dd}, J$ $=10.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dt}, J=15.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.07(\mathrm{dt}, J=15.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=7.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}$, $3 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.7$, $195.3,169.7,147.6,141.8,131.8,128.8,87.2,75.7,32.3,29.3,27.0,23.4,21.1$; IR (film) $\boldsymbol{v}_{\max } 1751$, 1695, 1672, 1626, $1215 \mathrm{~cm}^{-1}$; ESI-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$289.1052, found 289.1048.

anti-Acetoxypyranone 2c: A solution of anti-1 ( $500 \mathrm{mg}, 2.23 \mathrm{mmol}, 1.0$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(11.0 \mathrm{~mL})$ was degassed for 5 min by bubbling Ar via balloon. Next, 1-penten-3-one (1.33 mL, 13.4 mmol, 6.0 equiv) and Grubbs-Hoveyda 2 nd generation catalyst ( $105 \mathrm{mg}, 0.167 \mathrm{mmol}, 0.075$ equiv) were added sequentially. The reaction was backfilled with Ar , degassed for an additional 5 min , and allowed to stir at $23{ }^{\circ} \mathrm{C}$ for 24 h at which point the reaction was concentrated via rotary evaporation. Purification by
flash column chromatography (hexanes:EtOAc 70:30) delivered anti-2c as an brown oil ( $526 \mathrm{mg}, 1.88$ $\mathrm{mmol}, 84 \%, \mathrm{dr}>19: 1): \mathbf{R}_{f}=0.30$ (hexanes:EtOAc 70:30); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.88(\mathrm{dd}, J=$ $10.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dt}, J=15.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.10$ (dt, $J=15.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=7.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.13$ $(\mathrm{s}, 3 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.2,195.4,169.6,146.2,141.8,130.6,128.7,87.2,75.7,33.4,32.2,29.3,23.4,21.1$, 8.3; IR (film) $\mathbf{v}_{\text {max }} 1752,1695,1671,1629,1174 \mathrm{~cm}^{-1}$; ESI-HRMS calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$ 303.1208, found 303.1197 .

anti-Acetoxypyranone 2d: To a vial was added anti-1 ( $400 \mathrm{mg}, 1.78 \mathrm{mmol}$, 1 equiv), followed by anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ and cis-2-butene-1,4-diol ( $880 \mu \mathrm{~L}, 10.7 \mathrm{mmol}, 6$ equiv.). The resulting solution was then degassed by bubbling argon gas for 5 min . Next, Grubbs-Hoveyda second generation catalyst was added ( $84 \mathrm{mg}, 0.134 \mathrm{mmol}, 0.075$ equiv). The reaction was backfilled with Ar , degassed for an additional 5 min , and allowed to stir at $23^{\circ} \mathrm{C}$ for 24 h at which point the reaction was concentrated via rotary evaporation. Purified by flash column chromatography (hexanes:EtOAc 50:50) to afford 2d as a yellow oil ( $303 \mathrm{mg}, 1.19 \mathrm{mmol}, 67 \%$ ) as a $7.4: 1$ mixture of $E: Z$ stereoisomers as determined by ${ }^{1} \mathrm{H}$ NMR; characterization data for $E-\mathbf{2 d}: \mathbf{R}_{\boldsymbol{f}}=0.28$ (hexanes:EtOAc $50: 50$ ); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.88$ (dd, $J=10.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=10.30 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.62(\mathrm{~m}, 2 \mathrm{H}), 4.47$ (dd, $J=7.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 2 \mathrm{H}) 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.71(\mathrm{~m}$, 1 H ), 1.55-1.48 (m, 2H), 1.28 (br. s, 1H); ${ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 195.6, 169.7, 141.7, 132.5, 129.7, 128.8, 87.2, 75.8, 63.7, 31.9, 29.2, 24.3, 21.0; IR (film) $v_{\max } 3439,1750,1694,1217 \mathrm{~cm}^{-1} ;$ ESIHRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$277.1052, found 277.1064.

anti-Acetoxypyranone 2e: A solution of anti-1 ( $850 \mathrm{mg}, 3.79 \mathrm{mmol}, 1.0$ equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 9.5 mL ) was degassed for 10 min by bubbling Ar via balloon. Ethyl acrylate ( $2.43 \mathrm{~mL}, 22.8 \mathrm{mmol}, 6.0$ equiv) and Grubbs-Hoveyda $2^{\text {nd }}$ generation catalyst ( $178 \mathrm{mg}, 0.266 \mathrm{mmol}, 0.075$ equiv) were added sequentially. The reaction was backfilled with Ar , allowed to stir at $23^{\circ} \mathrm{C}$ for 24 h , and concentrated via rotary evaporation. Purification by flash chromatography (hexanes: $\mathrm{Et}_{2} \mathrm{O} 70: 30$ ) delivered anti-2e as a yellow oil ( $1.02 \mathrm{~g}, 3.44 \mathrm{mmol}, 91 \%, \mathrm{dr}>19: 1$ ): $\mathbf{R}_{\boldsymbol{f}}=0.32$ (hexanes:EtOAc $80: 20$ ); ${ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.93(\mathrm{dt}, J=15.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=10.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}$, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dt}, J=15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=7.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ (app. q, $J=7.2 \mathrm{~Hz}$, 2H), 2.25-2.19 (m, 2H), 2.13 (s, 3H), 1.97-1.92 (m, 1H), 1.81-1.72 (m, 1H), 1.63-1.55 (m, 2H), 1.28 (app. $\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 195.1, 169.4, 166.5, 148.3, 141.6, 128.5, 121.7, 86.9, $75.5,60.1,31.8,29.0,23.1,20.9,14.2$. All spectral data was consistent with previously published data. ${ }^{2}$

anti-Acetoxypyranone 2f: To a vial was added dimethylformamide ( 3.5 ml ), followed by tertbutyldimethylsilylchloride ( $226 \mathrm{mg}, 1.18 \mathrm{mmol}, 1.5$ equiv) and $N$, $N$-Diisopropylethylamine ( $205 \mu \mathrm{l}, 1.18$ mmol, 1.5 equiv). To this solution was then added anti-acetoxypyranone 2d ( $200 \mathrm{mg}, 0.786 \mathrm{mmol}, 1$ equiv.) as a suspension in DMF ( 2 mL ) dropwise. The flask was then backfilled with argon, capped, and allowed to stir 3 h at which point monitoring by TLC (hexanes:EtOAc 50:50) showed complete consumption of starting material. The reaction was then diluted with DI water ( 5 mL ), and extracted with
diethyl ether ( $3 \times 15 \mathrm{~mL}$ ). Organics were combined, washed with brine, dried over $\mathrm{MgSO}_{4}$, filtered, and concentrated via rotary evaporation. Purified by flash column chromatography (hexanes:EtOAc 80:20) to afford $\mathbf{2 f}$ as a clear colorless oil ( $173 \mathrm{mg}, 0.469 \mathrm{mmol}, 60 \%$ ) in an $10: 1$ mixture of $E: Z$ stereoisomers as determined by NMR; characterization data for $E-2 \mathbf{2 f}: \mathbf{R}_{f}=0.77$ (hexanes:EtOAc 50:50); ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.87(\mathrm{dd}, J=10.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.65-$ $5.49(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{dd}, J=7.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.87(\mathrm{~m}$, $1 \mathrm{H}), 1.80-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 195.5, 169.5, 141.5, 130.5, 129.7, 128.7, 87.1, 75.8, 63.9, 31.9, 29.2, 26.0(3), 24.3, 20.9, 18.4, -5.1(2); IR (film) $v_{\text {max }} 1756,1700,1217 \mathrm{~cm}^{-1}$; ESI-HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$391.1917, found 391.1915.

## PREPARATION AND CHARACTERIZATION OF [5+2] CYCLOADDUCTS 3b,c,f,e



Methyl-ketone cycloadduct 3b: To a solution of anti-2b (792 mg, $2.97 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}$ (15 mL ) was added $N$-methylpyrrolidine ( $1.24 \mathrm{~mL}, 11.9 \mathrm{mmol}, 4.0$ equiv). The reaction was allowed to stir for 2.5 h at $60^{\circ} \mathrm{C}$ and then concentrated. Purification by flash column chromatography (hexanes:EtOAc 70:30) afforded 3b as a white solid ( $535 \mathrm{mg}, 2.59 \mathrm{mmol}, 87 \%$, $\mathrm{dr}>19: 1$ ): $\mathbf{R}_{\boldsymbol{f}}=0.32$ (hexanes:EtOAc $70: 30) ;{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{dd}, J=9.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J$ $=6.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=7.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$, 2.10-1.98 (m, 1H), 1.96-1.84 (m, 2H), 1.80-1.71 (m, 2H); ${ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.3,196.6$, $150.0,127.0,98.4,76.5,65.3,47.7,31.9,30.2,29.9,25.8$; IR (film) $\mathbf{v}_{\max } 1700,1687,1053 \mathrm{~cm}^{-1}$; ESIHRMS calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$207.1021, found 207.1028.


Ethyl-ketone cycloadduct 3c: To a solution of anti-2c ( $100 \mathrm{mg}, 0.357 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(1.8$ $\mathrm{mL})$ was added $N$-methylpyrrolidine $(150 \mu \mathrm{~L}, 1.43 \mathrm{mmol}, 4.0$ equiv $)$. The reaction was allowed to stir for 3 h at $60^{\circ} \mathrm{C}$ and then concentrated via rotary evaporation. Purification by flash column chromatography (hexanes:EtOAc 70:30) afforded 3c as a white solid ( $66.5 \mathrm{mg}, 0.302 \mathrm{mmol}, 85 \%$ ): $\mathbf{R}_{f}=0.39$ (hexanes:EtOAc 70:30); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{dd}, J=9.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=9.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=6.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=7.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{ddd}, J=7.4,7.2,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.51(\mathrm{dq}, J=14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dq}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.84(\mathrm{~m}$,
$3 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{dd}, J=7.3,7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 208.1, 196.7, $150.1,126.9,98.4,76.6,64.3,47.9,36.0,31.9,30.2,25.8,7.6$; IR (film) $\mathbf{v}_{\text {max }} 1697,1035 \mathrm{~cm}^{-1}$; ESIHRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$243.0997, found 243.1002.


Silyl-ether cycloadduct 3f: To a vial containing anti-acetoxypyranone $\mathbf{2 f}$ ( $173 \mathrm{mg}, 0.469 \mathrm{mmol}, 1$ equiv.) was added $\mathrm{CH}_{3} \mathrm{CN}(4.7 \mathrm{~mL}$ ), and then $N$-methylpyrrolidine ( $195 \mu \mathrm{~L}, 1.88 \mathrm{mmol}$, 4 equiv.). The resulting solution was allowed to stir for 12 h at $60^{\circ} \mathrm{C}$ at which point monitoring by TLC (hexanes:EtOAc 70:30) showed complete consumption of starting material. The reaction was concentrated via rotary evaporation, and purified by flash column chromatography (hexanes:EtOAc 95:5) to afford $\mathbf{3 f}$ as a clear colorless oil ( $134 \mathrm{mg}, 0.434 \mathrm{mmol}, 92 \%$ ) in an $10: 1$ mixture of diastereomers as determined by NMR; characterization data for major diastereomer: $\mathbf{R}_{f}=0.76$ (hexanes:EtOAc 95:5); ${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.14(\mathrm{dd}, J=9.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=6.0,4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=10.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=10.3,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.15(\mathrm{~m}$, $1 \mathrm{H}), 1.95-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 197.4,150.6,128.0,98.3,77.9,64.0,54.5,47.6,31.4,30.2,26.0(3), 25.8$, 18.2, -5.3, -5.4; IR (film) $\mathbf{v}_{\text {max }} 1700,1086 \mathrm{~cm}^{-1}$; ESI-HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$309.1886, found 309.1889.


Ethyl-ester cycloadduct 3e: To a vial containing anti-acetoxypyranone $\mathbf{2 e}$ ( $1.02 \mathrm{~g}, 3.44 \mathrm{mmol}, 1$ equiv.) was added $\mathrm{CH}_{3} \mathrm{CN}(11.5 \mathrm{~mL})$. To this solution was added N -methylpyrrolidine ( $1.43 \mathrm{~mL}, 13.8 \mathrm{mmol}, 4$ equiv.). The vial was then capped and allowed to stir for 3.5 h at $60^{\circ} \mathrm{C}$ at which point monitoring by aliquot NMR showed complete consumption of starting material. The reaction was concentrated via rotary evaporation, and purified by flash column chromatography (hexanes:EtOAc 80:20) to give $\mathbf{3 e}$ as a yellow oil ( $702 \mathrm{mg}, 2.97 \mathrm{mmol}, 86 \%$ ): $\mathbf{R}_{\boldsymbol{f}}=0.35$ (hexanes:EtOAc 80:20) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ : $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.11(\mathrm{dd}, J=9.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=9.8,1 \mathrm{H}), 4.96(\mathrm{dd}, J=6.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.11($ app. dq, $J=$ $14.4,7.2,2 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{dd}, J=6.6,6.4,1 \mathrm{H}), 2.67(\mathrm{ddd}, J=9.0,6.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-$ $2.18(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.2,3 \mathrm{H})$. All additional spectral data was consistent with previously published data. ${ }^{3}$

[^2]
## STEPWISE PREPARATION AND CHARACTERIZATION OF [5+2] $\mathbf{C}^{3}$ CYCLOADDUCTS 4b-e



Methyl-lactol 4b: To a vial was added methyl-ketone cycloadduct 3b ( $30 \mathrm{mg}, 0.145 \mathrm{mmol}, 1.0$ equiv.) followed by THF ( 2 mL ) and $\mathrm{H}_{2} \mathrm{O}(200 \mu \mathrm{~L})$. To this solution was added $\mathrm{LiOH}(4.2 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.2$ equiv.). The reaction was capped and allowed to stir for 2 h at room temperature. The reaction was then acidified with addition of 1 N HCl , diluted with brine ( 2 mL ), and extracted with EtOAc ( $2 \times 3 \mathrm{~mL}$ ). Organics were combined, and concentrated via rotary evaporation. Purification by flash chromatography (hexanes:EtOAc 70:30) afforded lactol 4b as a white solid ( $25.7 \mathrm{mg}, 0.116 \mathrm{mmol}, 80 \%, \mathrm{dr}>19: 1$ ): $\mathbf{R}_{f}=$ 0.32 (hexanes:EtOAc 60:40); ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.35(\mathrm{dd}, J=6.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.63$ (ddd, $J=$ $6.9,4.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.70 (br. s, 1H), 2.69 (dd, $J=16.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (dd, $J=16.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.44 (dd, $J=6.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{ddd}, J=9.5,7.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 1 \mathrm{H})$, 1.95-1.87(m, 1H), 1.79-1.74 (m, 2H), 1.57-1.50(m, 1H), $1.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $211.2,104.2,99.9,84.2,73.1,58.0,52.1,41.0,33.5,32.3,27.2,24.2$; IR (film) $\mathbf{v}_{\text {max }} 3442,1713,1151$ $\mathrm{cm}^{-1}$; ESI-HRMS calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$247.0946, found 247.0948. Subjection of a concentrated solution of methyl-lactol $\mathbf{4 b}$ in chloroform to vapor diffusion of hexanes over several days at ambient temperature provided a crystalline solid which was subjected to crystallographic analysis via xray diffraction (Figure S1).


Figure S1. Connectivity Diagram of Methyl-Lactol 4b obtained by X-Ray Crystallographic Analysis


Ethyl-lactol 4c: To a vial was added methyl-ketone cycloadduct $\mathbf{3 c}$ ( $53 \mathrm{mg}, 0.241 \mathrm{mmol}, 1.0$ equiv.) followed by THF $(2.2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(220 \mu \mathrm{~L})$. To this solution was added $\mathrm{LiOH}(20 \mathrm{mg}, 0.481 \mathrm{mmol}, 2$ equiv.). The reaction was capped and allowed to stir for 24 h at room temperature. The reaction was then acidified with addition of 1 NHCl , diluted with brine $(5 \mathrm{~mL})$, and extracted with EtOAc $(2 \times 5 \mathrm{~mL})$. Organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated via rotary evaporation. Purification by flash chromatography (hexanes:EtOAc 80:20) afforded lactol 4 c as a white solid ( $23.9 \mathrm{mg}, 0.100 \mathrm{mmol}$, $41 \%, \mathrm{dr}>19: 1): \mathbf{R}_{f}=0.19$ (hexanes:EtOAc $\left.70: 30\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.36(\mathrm{dd}, J=7.1,5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.67(\mathrm{ddd}, J=7.1,4.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=16.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=16.1,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.48(\mathrm{dd}, J=5.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{ddd}, J=9.4,7.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.01(\mathrm{~m}$, $2 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.50(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{t}, 7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.3,106.9,99.9,83.8,73.1,56.1,51.4,41.2,33.6,32.4,30.6,27.2,8.6 ;$ IR (film) $\mathbf{v}_{\text {max }} 3368,1728,1147 \mathrm{~cm}^{-1}$; ESI-HRMS calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$261.1102, found
261.1102 Subjection of a solution of ethyl-lactol $\mathbf{4 c}$ in dichloromethane to slow evaporation over several days at ambient temperature provided a single crystal suitable for X-ray diffraction analysis (Figure S2).


Figure S2. ORTEP Diagram of Ethyl-Lactol 4c (Displacement Ellipsoids at 50\% Probability; H Atoms Drawn at Arbitrary Size)


Bis-ether 4d: To a vial was added silyl-ether cycloadduct $\mathbf{3 f}$ ( $133 \mathrm{mg}, 0.431 \mathrm{mmol}, 1$ equiv) and THF ( 4.3 mL ). The resulting solution was cooled to $0^{\circ} \mathrm{C}$, at which point TBAF ( $860 \mu \mathrm{~L}, 0.862 \mathrm{mmol}, 2$ equiv) was added. The vial was then capped and allowed to warm to room temperature while stirring. After 1.5 h TLC (hexanes:EtOAc 70:30) showed complete consumption of starting material at which point the reaction was diluted with diethyl ether ( 10 mL ), and washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{x} 10 \mathrm{~mL})$. The resulting organic fraction was then dried with $\mathrm{MgSO}_{4}$, filtered, and concentrated via rotary evaporation. The crude mixture was purified by flash column chromatography (hexanes:EtOAc 70:30 to 50:50) to afford desired compound $\mathbf{4 d}$ as a white solid ( $62.5 \mathrm{mg}, 0.322 \mathrm{mmol}, 75 \%$ ): $\mathbf{R}_{f}=0.46$ (hexanes:EtOAc $50: 50) ;{ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.09(\mathrm{dd}, J=7.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{ddd}, J=7.3,4.3,1.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.80(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=9.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=16.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{ddd}, J=6.3$, $3.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=16.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{ddd}, J=9.4,6.9,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.11-1.98 (m, 1H), 1.97-1.85 (m, 1H), 1.84-1.70(m, 2H), 1.65-1.50(m, 1H); ${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 211.2,100.2,83.9,72.9,70.2,56.1,50.1,41.9,33.6,32.4,27.0 ;$ IR (film) $v_{\max } 1717,1042 \mathrm{~cm}^{-1} ;$ ESI-HRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 217.0841$, found 217.0849. Trace amount of impure enonealcohol exo-3d from multiple reactions was collected as a yellow oil, and was repurified by flash column chromatography (hexanes:EtOAc 40:60) to afford material suitable for characterization; exo-3d: $\mathbf{R}_{f}=$ 0.24 (hexanes:EtOAc $40: 60) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20(\mathrm{dd}, J=9.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=$ $9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=10.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.0,9.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.53-2.48 (m, 1H), 2.38-2.31 (m, 2H), 1.82-1.64 (m, 6H); ${ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.7,152.0$, 126.2, $99.1,78.5,62.5,46.5,46.1,29.9,28.2,26.3$; IR (film) $\boldsymbol{v}_{\max } 3472,1684 \mathrm{~cm}^{-1}$; ESI-HRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$195.1021, found 195.1024. Subjection of a solution of bis-ether $\mathbf{4 d}$ in hexanes to slow evaporation over several days at ambient temperature provided a single crystal suitable for X-ray diffraction analysis (Figure S3).


Figure S3. ORTEP Diagram of Bis-ether 4d
(Displacement Ellipsoids at 50\% Probability; H Atoms Drawn at Arbitrary Size)


Lactone 4e: Ester-cycloadduct $\mathbf{3 e}\left(702 \mathrm{mg}, 2.97 \mathrm{mmol}\right.$, 1 equiv.) was suspended in $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. To this mixture was added LiOH ( $285 \mathrm{mg}, 11.9 \mathrm{mmol}, 4$ equiv.). The reaction was then stirred at room temperature for 3 h at which point monitoring my TLC (hexanes:EtOAc 70:30) showed complete consumption of starting material. The solution was then extracted with EtOAc to remove organic impurities, acidified using 1 N HCl to $\mathrm{pH} \sim 3$, at which point acid cycloadduct was extracted with EtOAc ( $3 \times 35 \mathrm{~mL}$ ). Combined organic fractions were then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated via rotary evaporation to provide carboxylic acid $\mathbf{S 3}$ (not shown) as an impure pale yellow solid ( 728 mg ). A solution of crude carboxylic acid $\mathbf{S 3}\left(100 \mathrm{mg}, \sim 0.48 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was heated at $120^{\circ} \mathrm{C}$ in a microwave reactor for 20 min and then concentrated via rotary evaporation. Purification by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ :acetone $\left.95: 5\right)$ afforded $\mathbf{4 e}$ as a pale yellow solid $(36.3 \mathrm{mg}, 0.174$ $\mathrm{mmol}, 36 \%): \mathbf{R}_{f}=0.84\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ :acetone $\left.90: 10\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.39(\mathrm{dd}, J=7.7,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.14$ (ddd, $J=7.7,5.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=7.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=17.0,5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.69(\mathrm{dd}, J=17.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.53$ (app. td, $J=8.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 1 \mathrm{H})$, 2.05-1.76 (m, 3H), 1.65-1.55 (m, 1H); ${ }^{13} \mathbf{C}$ NMR (100 MHZ, $\left.\mathrm{CDCl}_{3}\right) \delta$ 207.7, 175.1, 100.2, 78.9, 75.8, 54.2, 47.8, 40.9, 33.8, 31.6, 26.7; IR (film) $\boldsymbol{v}_{\text {max }} 1765,1722,1025 \mathrm{~cm}^{-1}$; ESI-HRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$209.0814, found 209.0814. Subjection of a concentrated solution of lactone $4 \mathbf{e}$ in EtOAc to vapor diffusion of hexanes over several days at ambient temperature provided a single crystal suitable for X-ray diffraction analysis (Figure S4).


Figure S4. ORTEP Diagram of Lactone 4e
(Displacement Ellipsoids at 50\% Probability; H Atoms Drawn at Arbitrary Size)

## TANDEM PREPARACTION, AND CHARACTERIZATION OF CYCLOADDUCTS 4a-d, f-m

## General Procedure for Synthesis of Lactol 4a by Tandem [5+2] $\mathbf{C}^{3}$ of 2a (Table 1):



To a solution of $\mathbf{2 a}(100 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.0$ equiv. $)$ in $95: 5 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}\left(3.8 \mathrm{mLCH} \mathrm{H}_{3} \mathrm{CN}, 200 \mathrm{LL} \mathrm{H}_{2} \mathrm{O}\right)$ was added appropriate base ( $1.60 \mathrm{mmol}, 4.0$ equiv.; in the case of DBU: $0.40 \mathrm{mmol}, 1$ equiv.). The reaction was allowed to stir for 12 h at $60^{\circ} \mathrm{C}$ (in the case of entry $8: 23^{\circ} \mathrm{C}$ ) and then concentrated via rotary evaporation. Purification by flash chromatography (hexanes:EtOAc 70:30) afforded lactol 4a as a pale orange oil (dr >19:1): $\mathbf{R}_{\boldsymbol{f}}=0.08$ (hexanes:EtOAc 70:30); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.31$ (dd, $J=$ $6.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (br. s, 1 H ), 4.68 (ddd, $J=6.7,4.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ (br. s, 1H), $2.70(\mathrm{dd}, J=16.1$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=6.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=16.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{ddd}$, $J=9.3,6.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHZ}, \mathrm{CDCl}_{3}$ ) $\delta 211.1,99.7,99.6,82.7,72.9,55.8,53.0,41.2,33.4,32.3,27.0$; IR (film) $\mathbf{v}_{\text {max }} 3419,1724,1010 \mathrm{~cm}^{-1}$; ESI-HRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$233.0790, found 233.0785. See Table 1 in text for reported yields.


4a

py., $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \mathrm{~h}$


S4 (26\%, dr >19:1)

Lactol ester S4: Lactol ester $\mathbf{S} 4$ was synthesized in order to afford a derivative of lactol $\mathbf{4 a}$ that would form suitable crystals for X-ray crystallographic analysis. To a solution of lactol $\mathbf{4 a}(27 \mathrm{mg}, 0.13 \mathrm{mmol}$,
1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(320 \mu \mathrm{~L})$ was added pyridine ( $20 \mu \mathrm{~L}, 0.25 \mathrm{mmol}, 2.0$ equiv) and then biphenyl-4carbonyl chloride ( $33 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.2$ equiv) at $0{ }^{\circ} \mathrm{C}$. The resulting solution was allowed to warm to $23{ }^{\circ} \mathrm{C}$, stirred for 2 h , and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The solution was washed with ice cold sat. aq. $\mathrm{NaCl}(2 \times 2 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated via rotary evaporation. Purification by flash column chromatography (hexanes:EtOAc 90:10) afforded $\mathbf{S 4}$ as a white solid ( $13 \mathrm{mg}, 0.34 \mathrm{mmol}$, $26 \%, \mathrm{dr}>19: 1): \mathbf{R}_{f}=0.56$ (hexanes:EtOAc 70:30); ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08-8.05(\mathrm{~m}, 2 \mathrm{H})$, 7.68-7.66 (m, 2H), 7.63-7.61 (m, 2H), 7.49-7.46 (m, 2H), 7.43-7.40 (m, 1H), $6.39(\mathrm{~s}, 1 \mathrm{H}), 5.44$ (dd, $J=$ $7.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{ddd}, J=7.2,4.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=6.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=16.4$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=16.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 1 \mathrm{H})$, 1.87-1.79 (m, 2H), 1.69-1.62 (m, 1H); ${ }^{13} \mathbf{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 209.8,165.4,146.4,140.0$, 130.4(2), 129.1(2), 128.51, 128.47, 127.44(2), 127.29(2), 99.95, 99.89, 82.1, 74.7, 54.9, 53.0, 41.0, 33.5, 32.3, 27.0; IR (film) $\mathbf{v}_{\text {max }} 1766,1714,1225,1174,843,744,691 \mathrm{~cm}^{-1}$; ESI-HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$391.1545, found 391.1550. Subjection of lactol ester $\mathbf{S 4}$ to slow evaporation in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ over several days at ambient temperature provided a single crystal suitable for X-ray crystallographic analysis (Figure S5).


Figure S5. ORTEP Diagram of Lactol Ester S4
(Displacement Ellipsoids at 50\% Probability; H Atoms Drawn at Arbitrary Size)


Methyl-lactol 4b: To a solution of anti-acetoxypyranone 2b ( $100 \mathrm{mg}, 0.375 \mathrm{mmol}, 1.0$ equiv.) in $1: 1$ $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}\left(1 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}, 1 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}\right)$ was added $N$-methylpyrrolidine ( $156 \mu \mathrm{~L}, 1.50 \mathrm{mmol}, 4.0$ equiv.). The reaction was allowed to stir for 2 h at $60^{\circ} \mathrm{C}$. The reaction was then concentrated via rotary evaporation. Purification by flash chromatography (hexanes:EtOAc 60:40) afforded lactol $\mathbf{4 b}$ as a white solid ( $62.9 \mathrm{mg}, 0.28 \mathrm{mmol}, 75 \%, \mathrm{dr}>19: 1$ ): $\mathbf{R}_{f}=0.32$ (hexanes:EtOAc 60:40). A small amount of unreacted cycloadduct intermediate 3b was also collected ( $6.5 \mathrm{mg}, 0.024 \mathrm{mmol}, 6 \%$ ). All spectral data matched that of $\mathbf{4 b}$ prepared from $\mathbf{3 b}$; see above for characterization data.


Ethyl-lactol 4c: To a solution of anti-acetoxypyranone $\mathbf{2 c}(100 \mathrm{mg}, 0.357 \mathrm{mmol}, 1.0$ equiv.) in $1: 1$ $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}\left(0.9 \mathrm{~mL} \mathrm{CH} \mathrm{H}_{3} \mathrm{CN}, 0.9 \mathrm{~mL} \mathrm{H} \mathrm{O}\right.$ ) was added N -methylpyrrolidine ( $150 \mu \mathrm{~L}, 1.43 \mathrm{mmol}, 4.0$ equiv.). The reaction was allowed to stir for 2 h at $60^{\circ} \mathrm{C}$. The reaction was then concentrated via rotary evaporation. Purification by flash chromatography (hexanes:EtOAc 80:20) afforded lactol $\mathbf{4 c}$ as a white solid ( $54.7 \mathrm{mg}, 0.230 \mathrm{mmol}, 64 \%, \mathrm{dr}>19: 1$ ): $\mathbf{R}_{\boldsymbol{f}}=0.19$ (hexanes:EtOAc 70:30). A small amount of unreacted cycloadduct intermediate $3 \mathbf{c}$ was also collected ( $12.4 \mathrm{mg}, 0.056 \mathrm{mmol}, 16 \%$ ). All spectral data matched that of $\mathbf{4 c}$ prepared from $\mathbf{3 c}$; see above for characterization data.


Bis-ether 4d: To a vial was added anti-acetoxypyranone 2d ( $120 \mathrm{mg}, 0.472 \mathrm{mmol}$, 1 equiv.) and $\mathrm{CH}_{3} \mathrm{CN}$ ( 4.7 mL ). Next was added $N$-methylpyrrolidine ( $195 \mu \mathrm{~L}, 1.88 \mathrm{mmol}, 4$ equiv). The vial was then capped and stirred at $60{ }^{\circ} \mathrm{C}$ for 8 h until monitoring by TLC (hexanes:EtOAc 70:30) showed complete consumption of starting material. The reaction was then concentrated via rotary evaporation. The crude mixture was purified by flash column chromatography (hexanes:EtOAc $70: 30$ to $50: 50$ ) to afford compound $4 \mathbf{d}$ as a white solid ( $75.6 \mathrm{mg}, 0.389 \mathrm{mmol}, 82 \%, \mathrm{dr}>19: 1$ ), and trace amount of impure enonealcohol exo-3d as a yellow oil. All spectral data matched that of exo-3d and $\mathbf{4 d}$ prepared from $\mathbf{3 f}$; see above for characterization data.

## General Procedure for Synthesis of Lactols 4f-m:



To a solution of acetoxypyranone $\mathbf{2 a}$ ( $125 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv, dr $\sim 2-3: 1$ ) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(5$ mL ) was added activated $4 \AA$ molecular sieves. Next, the appropriate alcohol ( 2 equiv.) was added, followed by DABCO ( $222 \mathrm{mg}, 1.98 \mathrm{mmol}, 4.0$ equiv). The reaction backfilled with Ar, sealed, and allowed to stir for at $60^{\circ} \mathrm{C}$ until complete consumption of starting material (reaction time denoted below, and in table 4), after which point the reaction was concentrated via rotary evaporation. The crude reaction mixture was then purified by flash column chromatography to deliver pure lactols $\mathbf{4 f} \mathbf{- m}$.


Lactol 4f: According to the general procedure, $\mathbf{2 a}(125 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv, dr 2.4:1) was reacted with DABCO ( $222 \mathrm{mg}, 1.98 \mathrm{mmol}, 4.0$ equiv). Synthesis of $\mathbf{4 f}$ deviated from the general procedure by utilizing 95:5 $\mathrm{CH}_{3} \mathrm{CN}$ : $\mathrm{MeOH}\left(4.75 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}, 250 \mu \mathrm{~L} \mathrm{MeOH}\right)$ and $3 \AA$ molecular sieves. The reaction was stirred for 6 hr at $60^{\circ} \mathrm{C}$, and then concentrated via rotary evaporation. Purification by flash column chromatography (hexanes:EtOAc 95:5) afforded $\mathbf{4 f}$ as a pale yellow oil $(70 \mathrm{mg}, 0.31 \mathrm{mmol}, 63 \%$, dr $>19: 1): \mathbf{R}_{f}=0.56$ (hexanes:EtOAc 70:30); ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.24(\mathrm{dd}, J=6.8,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.76(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{ddd}, J=6.8,4.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{dd}, J=16.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.50$ $(\mathrm{m}, 2 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 2 \mathrm{H})$, 1.59-1.54 (m, 1H); ${ }^{13} \mathbf{C}$ NMR (125 MHZ, $\mathrm{CDCl}_{3}$ ) $\delta 210.8,105.8,99.5,82.7,72.5,55.1,54.5,53.0,41.2$, 33.4, 32.3, 26.9; IR (film) $\boldsymbol{v}_{\text {max }}$ 2934, 1728, 1094, $1027 \mathrm{~cm}^{-1}$; ESI-HRMS calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{Na}]^{+}$247.0946, found 247.0945.


Lactol 4g: According to the general procedure, 2a ( $125 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv, dr 2.4:1) was reacted with DABCO ( $222 \mathrm{mg}, 1.98 \mathrm{mmol}, 4.0$ equiv), and 5 -hexen-1-ol ( $120 \mu \mathrm{~L}, 0.99 \mathrm{mmol}, 2$ equiv.). The reaction was stirred for 6 hr at $60^{\circ} \mathrm{C}$, and then concentrated via rotary evaporation. Purification by flash column chromatography (hexanes:EtOAc $90: 10$ ) afforded $\mathbf{4 g}$ as a colorless oil ( $77 \mathrm{mg}, 0.26 \mathrm{mmol}, 53 \%$, dr >19:1): $\mathbf{R}_{f}=0.83$ (hexanes:EtOAc 70:30); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.79$ (ddt, $J=17.0,10.2,6.7$, $1 \mathrm{H}), 5.25(\mathrm{dd}, J=6.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.93(\mathrm{~m}, 2 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{ddd}, J=6.6,4.4,2.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.61(\mathrm{dt}, J=9.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dt}, J=9.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=16.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=$ $16.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=6.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{ddd}, J=9.3,6.8,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.08-2.00 (m, 3H), 1.94-1.87 (m, 1H), 1.81-1.73(m, 2H), 1.60-1.52(m, 3H), 1.44-1.38 (m, 2H); ${ }^{13} \mathbf{C}$ NMR (125 MHZ, $\mathrm{CDCl}_{3}$ ) $\delta 211.0,138.8,114.7,104.7,99.6,83.0,72.5,67.2,55.3,53.0,41.3,33.56$, 33.45, 32.3, 29.1, 27.0, 25.6; IR (film) $\mathbf{v}_{\text {max }} 2936,1729,1640,1100,1065 \mathrm{~cm}^{-1}$; ESI-HRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$315.1572, found 315.1568.


Lactol 4h: According to the general procedure, $\mathbf{2 a}(125 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv, $\mathrm{dr} 3.3: 1)$ was reacted with DABCO ( $222 \mathrm{mg}, 1.98 \mathrm{mmol}, 4.0$ equiv), and 4-methoxy benzyl alcohol ( $124 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 2.0$ equiv.). The reaction was stirred for 1 hr at $60^{\circ} \mathrm{C}$, and then concentrated via rotary evaporation. Purification by flash column chromatography (hexane:EtOAc 80:20) afforded 4h as a white solid (101 $\mathrm{mg}, 0.306 \mathrm{mmol}, 62 \%, \mathrm{dr}>19: 1$ ): $\mathbf{R}_{f}=0.65$ (hexane:EtOAc 70:30); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26$ (app. d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 6.90 (app. d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 5.31 (dd, $J=6.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ (s, 1H), 4.62 (ddd, $J=6.5,4.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.75$ (dd, $J=16.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=6.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=16.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.24(\mathrm{~m}$, $1 \mathrm{H}), 2.17$ (ddd, $J=9.3,6.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.62-$ $1.53(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 211.0,159.5,129.8(2), 129.7,114.0(2), 103.5,99.6,82.9$, $72.6,68.5,55.4,55.2,53.0,41.3,33.5,32.4,27.0$; IR (film) $\boldsymbol{v}_{\text {max }} 1721,1612,1246,828 \mathrm{~cm}^{-1}$; ESIHRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$353.1365, found 353.1351. Subjection of a concentrated solution lactol $\mathbf{4 h}$ in EtOAc to slow evaporation over several days at ambient temperature provided a single crystal suitable for X-ray crystallographic analysis (Figure S6).


Figure S6. ORTEP Diagram of Lactol 4h
(Displacement Ellipsoids at 50\% Probability; H Atoms Drawn at Arbitrary Size)


Lactol 4i: According to the general procedure, $\mathbf{2 a}(125 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv, dr $2.0: 1)$ was reacted with DABCO ( $222 \mathrm{mg}, 1.98 \mathrm{mmol}, 4.0$ equiv), and propargyl alcohol ( $59 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 2.0$ equiv). The reaction was stirred for 2.5 hr at $60^{\circ} \mathrm{C}$, and then concentrated via rotary evaporation. Purification by flash column chromatography (hexane:EtOAc 90:10) afforded $\mathbf{4 i}$ as colorless oil $(69.6 \mathrm{mg}, 0.280 \mathrm{mmol}, 57 \%$, $\mathrm{dr}>19: 1): \mathbf{R}_{\boldsymbol{f}}=0.65$ (hexane:EtOAc $\left.60: 40\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.27(\mathrm{dd}, J=7.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.08(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{ddd}, J=7.0,4.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=15.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=15.8,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=16.1 .4 .2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=6.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=16.1,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.42(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.72(\mathrm{~m}, 2 \mathrm{H})$, $1.62-1.53(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.6,103.0,99.5,82.5,79.2,74.6,72.9,55.0,53.8$, $52.8,41.1,33.4,32.2,26.9$; IR (film) $\mathbf{v}_{\text {max }} 1726,1023 \mathrm{~cm}^{-1}$; ESI-HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{Na}]^{+}$271.0946, found 271.0945.


Lactol 4j: According to the general procedure, 2a( $125 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv, $\mathrm{dr} 3.3: 1$ ) was reacted with DABCO ( $222 \mathrm{mg}, 1.98 \mathrm{mmol}, 4.0$ equiv), and isopropanol ( $77 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 2.0$ equiv). The reaction was stirred for 4 hr at $60^{\circ} \mathrm{C}$, and then concentrated via rotary evaporation. Purification by flash column chromatography (hexane:EtOAc 90:10) afforded $\mathbf{4 j}$ as a white solid ( $66.2 \mathrm{mg}, 0.262 \mathrm{mmol}, 53 \%$, $\mathrm{dr}>19: 1$ ): $\mathbf{R}_{f}=0.76$ (hexane:EtOAc 70:30); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.27(\mathrm{dd}, J=6.8,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.98(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{ddd}, J=6.8,4.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{qq}, J=6.24,6.16,1 \mathrm{H}), 2.71(\mathrm{dd}, J=16.0,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50(\mathrm{dd}, J=16.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=6.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{ddd}, J=9.2$, $6.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J$ $=6.24,3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.16,3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.2,102.8,99.5,83.1,72.2,68.8$, 55.6, $53.1,41.3,33.5,32.4,27.0,23.7,21.8$; IR (film) $\mathbf{v}_{\text {max }} 1720,1013,989 \mathrm{~cm}^{-1}$; ESI-HRMS calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 275.1259$, found 275.1262.


Lactol 4I: According to the general procedure, 2a ( $125 \mathrm{mg}, 0.50 \mathrm{mmol}, 2.4$ equiv, $\mathrm{dr} 2.0: 1$ ) was reacted with DABCO ( $222 \mathrm{mg}, 1.98 \mathrm{mmol}, 4.0$ equiv), and $p$-Cresol ( $105 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 2.0$ equiv). The reaction was stirred for 1.5 hr at $60^{\circ} \mathrm{C}$, and then concentrated via rotary evaporation. Purification by flash column chromatography (hexane:EtOAc 90:10) afforded $\mathbf{4 I}$ as a white solid ( $30 \mathrm{mg}, 0.100 \mathrm{mmol}, 20 \%, \mathrm{dr}$ >19:1): $\mathbf{R}_{\boldsymbol{f}}=0.79$ (hexane:EtOAc 70:30); ${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.06$ (app. d, $J=8.4,2 \mathrm{H}$ ), 6.86
(app. d, $J=8.4,2 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=7.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{ddd}, J=7.1,4.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (dd, $J=6.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=16.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=16.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.23(\mathrm{~m}$, $5 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 210.7,154.4,131.7,130.1(2), 116.6(2), 103.4,99.7,82.8,73.4,55.3,53.1,41.2,33.5,32.4$, 27.0, 20.7; IR (film) $\mathbf{v}_{\text {max }} 1722,1508,985,814 \mathrm{~cm}^{-1}$; ESI-HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$ 323.1259, found 323.1258. Subjection of lactol $\mathbf{4 1}$ to slow evaporation in acetone over several days at ambient temperature provided a single crystal suitable for X-ray crystallographic analysis (Figure S7).


Figure S7. ORTEP Diagram of Lactol 41 (Displacement Ellipsoids at 50\% Probability; H Atoms Drawn at Arbitrary Size)


4m (73\%, dr >19:1)
Lactol 4m: According to the general procedure, $\mathbf{2 a}(125 \mathrm{mg}, 0.50 \mathrm{mmol}, 2.4$ equiv, dr 2.0:1) was reacted with DABCO ( $222 \mathrm{mg}, 1.98 \mathrm{mmol}, 4.0$ equiv), and Boc-L-serine methyl ester ( $205 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 2.0$ equiv). The reaction was stirred for 2 hr at $60^{\circ} \mathrm{C}$, and then concentrated via rotary evaporation. Purification by flash column chromatography (hexane:EtOAc 70:30) afforded $\mathbf{4 m}$ as purple oil ( 150 mg ,
$0.365 \mathrm{mmol}, 73 \%, \mathrm{dr}=1: 1$; inseparable): $\mathbf{R}_{\boldsymbol{f}}=0.49$ (hexane:EtOAc $60: 40$ ); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) $\delta 5.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, 8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{t}, J=6.6,1 \mathrm{H}), 5.15(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}$, $1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.63-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.35(\mathrm{~m}, 3 \mathrm{H}), 3.99(\mathrm{dd}, J=9.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.78(\mathrm{~m}$, 2H), 3.75 (d, J = 2.2 Hz, 6H), 3.61 (dd, $J=10.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (dd, $J=9.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68$ (dd, $J=$ 9.0, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 4 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.84$ $(\mathrm{m}, 2 \mathrm{H}), 1.83-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.64$, $210.60,171.1,171.0,155.5,155.4,105.3,104.7,99.6,99.5,82.51,82.50,80.24,80.16,72.82,72.81$, $68.1,67.2,54.99,54.97,54.0,53.8,52.9,52.8,52.6,52.5,41.1(2), 33.4(2), 32.3(2), 28.4(6), 26.9(2)$; IR (film) $\mathbf{v}_{\text {max }} 3354,1714,1161 \mathrm{~cm}^{-1}$, ESI-HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NO}_{8}[\mathrm{M}+\mathrm{H}]^{+}$412.1971, found 412.1972.

## CONFORMATIONAL ANALYSIS OF CYCLOADDUCT, HYDRATE, AND HEMIACETAL INTERMEDIATES

Conformation searches cycloadducts 3a-c, proposed hydrate intermediates 9a-c, and ( $R$ )- and (S)hemiacetals S5 were performed. Initial structures were generated utilizing a systematic conformation searching approach, and minimized with the MMFF94 force field using the Spartan ' 02 software package (Wavefunction, Inc.). Multiple representative low energy conformers generated from the search were transferred to the Gaussian '03 software package (Gaussian, Inc.), and geometries were optimized using Density Functional Theory (DFT) at the B3LYP level of theory, and a $6-31 \mathrm{G}^{* *}$ basis set with $\mathrm{d}(6)$ Cartesian diffuse functions. The conductor polarized continuum model (CPCM) was used to account for acetonitrile solvation effects on conformational energies. All relative energy values are reported in kcalmol ${ }^{-1}$.




9a orientation 1
$\mathbf{E}_{\text {Rel }}=\mathbf{0 . 0 0}$
presumed unproductive conformer



9a orientation 2
$\mathbf{E}_{\text {Rel }}=\mathbf{1 . 7 2}$


epi-4a



9a orientation 3 $\mathrm{E}_{\text {Rel }}=\mathbf{1 . 1 2}$


$4 a$

Figure S8. Relative Energy Values of Cycloadduct 3a, Hydrate Intermediate 9a, and Lactol 4a Conformers


Figure S9. Relative Energy Values of Cycloadduct 3b, Hydrate Intermediate 9b, and Lactol $\mathbf{4 b}$ Conformers



9c orientation 1
$\mathrm{E}_{\text {Rel }}=1.49$
presumed unproductive conformer


9c orientation 2


epi-4c
not observed


9c orientation 3
$\mathrm{E}_{\text {Rel }}=\mathbf{0 . 8 3}$


4c major epimer

Figure S10. Relative Energy Values of Cycloadduct 3c, Hydrate Intermediate 9c, and Lactol $\mathbf{4 c}$ Conformers


Figure S11. Relative Energy Values of (S)-hemiacetal Intermediate S5 Derived from Addition of Methanol to 3a Orientation 1


* carbonyl projected into concave face; leads to formation of (S)-hemiacetal

(R)-S5
(R)-hemiacetal orientation 1

presumed unproductive conformer

(R)-S5
(R)-hemiacetal orientation 2

presumed unproductive conformer

(R)-S5
(R)-hemiacetal orientation 3
$\mathbf{E}_{\text {Rel }}=2.17$

observed product

Figure S12. Relative Energy Values of (R)-hemiacetal Intermediate S5 Derived from Addition of Methanol to 3a Orientation 2

## ADDITIONAL X-RAY CRYSTALLOGRAPHY ACQUISITION PARAMETERS AND DATA

X-ray crystallographic studies were performed at Illinois State University on a Bruker APEX II CCD diffractometer at $100(2) \mathrm{K}$ using $\mathrm{MoK} \alpha$ radiation $(\lambda=0.71073 \AA$ ). All crystals were mounted on a polyamide loop using mineral oil. The data were processed using the Bruker SAINT software package and were corrected for absorption using the SADABS. Structures were solved by direct methods using either SIR92 ${ }^{4}$ or SHELXS-97. ${ }^{5}$ The data were refined using SHELXL-97 within the WINGX ${ }^{6}$ software package. All non-H atoms were refined anisotropically. Hydrogen atoms attached to carbon were assigned positions based on the geometries of their attached carbons. Hydroxyl hydrogens were assigned positions based on the Fourier difference map. See Table S1 for final refinement parameters.

[^3]Table S1: Crystallographic Data

|  | 4c | 4d | 4 e | 4h | 41 | S4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CCDC deposit number | 1003498 | 1003499 | 1003500 | 1003501 | 1003502 | 1003601 |
| Empirical formula | $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}$ | $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$ | $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$ | $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5}$ | $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}$ | $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{5}$ |
| Formula weight | 238.27 | 194.22 | 208.21 | 330.37 | 300.34 | 390.42 |
| crystal size (mm) | $0.206 \times 0.173 \times 0.059$ | $0.164 \times 0.157 \times 0.085$ | $0.239 \times 0.235 \times 0.120$ | $0.238 \times 0.132 \times 0.041$ | $0.303 \times 0.124 \times 0.106$ | $0.255 \times 0.174 \times 0.150$ |
| Temperature (K) | 100(2) | 100(2) | 100(2) | 100(2) | 100(2) | 100(2) |
| crystal system | tetragonal | orthorhombic | monoclinic | monoclinic | monoclinic | monoclinic |
| space group | $I 4_{1} / a$ | $P 2_{1} 2_{1} 2_{1}$ | $P 2_{1} / c$ | Pc | $P 2_{1}$ | $P 2{ }_{1} / n$ |
| $a(\AA)$ | 23.3014(13) | 7.1815(2) | 11.8981(3) | 16.831(4) | 9.8857(3) | 8.2563(4) |
| $b(\AA)$ | 23.3014(13) | 8.0509(2) | 9.1977(2) | 8.3170 (19) | 7.1169(2) | 12.5278(7) |
| $c(\AA)$ | 8.5463(5) | 15.9570(5) | 8.6578(2) | 11.555(3) | 10.7398(4) | 18.4201(10) |
| $\beta\left({ }^{\circ}\right)$ | 90 | 90 | 97.9810(10) | 100.853(4) | 93.306(2) | 94.169(3) |
| $V\left(\AA^{3}\right)$ | 4640.3(5) | 922.59(4) | 938.29(4) | 1588.6(6) | 754.35(4) | 1900.21(17) |
| $Z / Z$ | 16/1 | $4 / 1$ | $4 / 1$ | $4 / 2$ | $2 / 1$ | $4 / 1$ |
| $\rho_{\text {calcd }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ | 1.364 | 1.398 | 1.474 | 1.381 | 1.322 | 1.365 |
| $\mu\left(\mathrm{mm}^{-1}\right)$ | 0.100 | 0.101 | 0.113 | 0.099 | 0.093 | 0.095 |
| $F(000)$ | 2048 | 416 | 440 | 704 | 320 | 824 |
| Data / restraints / parameters | 2369 / 0 / 159 | 1161 / 0 / 127 | 1922 / 0 / 136 | $3040 / 2 / 435$ | 2190 / 1/200 | 4036 / 0 / 262 |
| $R_{1}:[I>2 \sigma(I)] /$ all | $0.0337 / 0.0391$ | 0.0293 / 0.0307 | 0.0334 / 0.0347 | 0.0280 / 0.0339 | 0.0274 / 0.0281 | 0.0407 / 0.0433 |
| $w R_{2}:[I>2 \sigma(I)] /$ all | 0.0854 / 0.0896 | $0.0738 / 0.0752$ | 0.0836 / 0.0847 | $0.0656 / 0.0680$ | 0.0703 / 0.0709 | 0.1062 / 0.1083 |
| GOF on $F^{2}$ | 1.042 | 1.056 | 1.054 | 1.033 | 1.035 | 1.056 |
| Largest peak/hole (e/ $/ \AA^{3}$ ) | $0.331 /-0.237$ | $0.272 /-0.171$ | $0.041 /-0.177$ | $0.155 /-0.184$ | $0.233 /-0.156$ | $0.486 /-0.244$ |


[^0]:    ${ }^{1}$ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.

[^1]:    ${ }^{2}$ Woodall, E. L.; Simanis, J. A.; Hamaker, C. G.; Goodell, J. R.; Mitchell, T. A. Org. Lett. 2013, 15, 3270-3273.

[^2]:    ${ }^{3}$ Burns, N. Z.; Witten, M. R.; Jacobsen, E. N. J. Am. Chem. Soc. 2011, 133, 14578-14581

[^3]:    ${ }^{4}$ Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A. J. Appl. Crystallogr. 1993, 26, 343.
    ${ }^{5}$ Sheldrick GM (1997) SHELX 97, program for crystal structure refinement; University of Göttingen, Germany
    ${ }^{6}$ Farrugia, L. J. J. Appl. Cryst. 1999, 32, 837.

