Electronic Supplementary information

# The unprecedented catalytic activity of alkanolamine CO<sub>2</sub> scrubbers in the cycloaddition of CO<sub>2</sub> and oxiranes: A DFT endorsed study

# Kuruppathparambil Roshith Roshan,<sup>a</sup> Bo Mi Kim,<sup>a</sup> Jose Tharun, <sup>a</sup> Amal Cherian Kathalikkattil,<sup>a</sup> Yong Son Won<sup>b</sup> and Dae Won Park<sup>\* a</sup>

#### Materials used

All the alkanolamines and epoxides were purchased from Sigma Aldrich with 99.5% purity. Methanol was purchased from TCI chemicals Korea holding a purity of 99.5% and the water was of double distilled quality.  $CO_2$  was obtained from MS Gas Corporation, Korea.

#### **Coupling reaction**

All the reactions were carried out in a 25 mL stainless-steel batch reactor with a magnetic stirrer at 500 rpm. In a typical batch reaction process, a pre-decided amount of the catalyst was charged into the reactor containing 42.8 mmol of PO. The reaction was carried out under a preset pressure of carbon dioxide at different temperatures. After the completion of the reaction, the reactor was cooled to zero degree and the products were identified by a gas chromatograph (Agilent HP 6890 A) equipped with a capillary column (HP-5, 30 m × 0.25  $\mu$ m) using a flame ionized detector. The product was confirmed by identifying with the peak of authentic sample and the yield was determined by using an internal standard method with toluene as the standard. The synthesized cyclic carbonates were further purified by column chromatography and the proton NMR chemical shift values were authenticated with literature data and are produced in S5 of this ESI.



42.8 mmol PO, 120 °C, 0.8 mol% DMPA, 3 h

**Fig. S1 d)** *Time study* 42.8 mmol PO, 120 °C, 0.8 mol% DMPA, 3 h

5

Reaction parameter study of  $PO-CO_2$  cycloaddition with N,N-dimethylaminopropanol (DMPA) as catalyst.

120

| Catalyst                            |                                              | Reaction conditions |                             |          |     |     |                 |
|-------------------------------------|----------------------------------------------|---------------------|-----------------------------|----------|-----|-----|-----------------|
|                                     |                                              | Catalyst            | Temperature/CO <sub>2</sub> | _ ~ ~ ~  |     |     |                 |
|                                     |                                              | amount              | pressure/time               | PC Yield | TON | TOF | Ref.            |
|                                     | (D. ) 11D                                    |                     |                             | (%)      |     |     |                 |
| Ammonium<br>salts                   | [Bu <sub>4</sub> N]Br                        | 1.6<br>mol%         | 125 °C / 2 MPa /<br>1 h     | 73.1     | 45  | 45  | 3(b)            |
|                                     |                                              |                     |                             |          | 111 | 111 |                 |
|                                     | [Bu <sub>4</sub> N]Br                        |                     |                             | 55.7     |     |     |                 |
|                                     |                                              |                     |                             | 63.3     | 126 | 126 |                 |
|                                     |                                              |                     |                             | 26.6     | 53  | 53  |                 |
| Imidazolium<br>II s                 | [EMIm]Br                                     |                     |                             | 82.4     | 51  | 51  |                 |
|                                     | [BMIm]Br                                     |                     |                             | 52       | 104 | 104 |                 |
|                                     | [BMIm]Cl                                     |                     |                             | 45       | 90  | 90  |                 |
|                                     | [BMIm]I                                      |                     |                             | 52.6     | 105 | 105 |                 |
| Phosph<br>-onium ILs                | [PPh <sub>3</sub> Bu]Br                      |                     |                             | 54       | 108 | 108 |                 |
|                                     | [PPh <sub>3</sub> Bu]Cl                      |                     |                             | 64.6     | 129 | 129 |                 |
|                                     | [PPh <sub>3</sub> Bu]I                       |                     |                             | 24       | 49  | 49  |                 |
|                                     | [PPh <sub>3</sub> Et]Br                      |                     |                             | 50       | 100 | 100 |                 |
|                                     | [PPh <sub>3</sub> He]Br                      |                     |                             | 60.5     | 121 | 121 |                 |
| Hydroxyl<br>functional<br>-ized ILs | HEMImB                                       |                     |                             | 99       | 62  | 62  |                 |
|                                     | HETBAB                                       |                     |                             | 95       | 59  | 59  |                 |
|                                     | HETEAB                                       |                     |                             | 87.1     | 54  | 54  |                 |
| Acid-base<br>functional<br>-ized    | [(CH <sub>2</sub> COOH) <sub>2</sub> im]Br   |                     |                             | 77       | 77  | 77  |                 |
|                                     | [(CH <sub>2</sub> COOH) <sub>2</sub> im]Cl   |                     |                             | 11       | 11  | 11  |                 |
|                                     | [{(CH <sub>2</sub> ) <sub>3</sub> COOH}im]Br |                     |                             | 98       | 98  | 98  |                 |
|                                     | [{(CH <sub>2</sub> ) <sub>3</sub> COOH}im]Cl |                     |                             | 29       | 29  | 29  |                 |
| ILs                                 |                                              |                     |                             |          |     |     |                 |
| Alkanol                             | DMPA                                         | 0.5<br>mol%         | 125 °C / 2 MPa /<br>1 h     | 60       | 120 | 120 | Present<br>work |
|                                     | DMEA                                         |                     |                             | 58       | 116 | 116 |                 |
|                                     | MEA                                          |                     |                             | 49       | 98  | 98  |                 |
|                                     | MDEA                                         |                     |                             | 49       | 98  | 98  |                 |
|                                     | DMPA                                         |                     |                             | 91       | 114 | 38  |                 |
| -amines                             | DMEA                                         | 0.8                 | 120 °C / 1 MPa /            | 82       | 102 | 34  |                 |
|                                     | MEA                                          | mol%                | 3 h                         | 71       | 89  | 30  |                 |
|                                     | MDEA                                         |                     |                             | 76       | 95  | 32  |                 |

Comparative activities of various homogeneous ionic liquids and alkanolamines in propylene carbonate synthesis from  $\mathrm{CO}_2$  and propylene oxide



DFT figures of DMPA catalyzed cycloaddition of PO with CO<sub>2</sub>

A plausible mechanism of the alkanolamine catalyzed cycloaddition of PO and CO<sub>2</sub>, illustrated using DMEA catalyst utilizing the results of DFT simulations.



|   |                      | Epoxide                 | Product          | Yield(%<br>) | Selectivity (%) |
|---|----------------------|-------------------------|------------------|--------------|-----------------|
| 1 |                      | Propylene oxide         |                  | 91           | >99             |
| 2 |                      | cı<br>Epichlorohydrin   | CIO              | 92           | >99             |
| 3 | Terminal<br>Epoxides | Allylglycidyl ether     |                  | 87           | >98*            |
| 4 |                      | 1,2-epoxy-5-hexene      | 2-epoxy-5-hexene |              | >95             |
| 5 |                      | Glycidyl isobutyl ether |                  | 88           | >96*            |
| 6 | Internal Epoxides    | Cyclopentene oxide      |                  | 19           | 96              |
| 7 |                      | Cyclohexene oxide       |                  | 6            | 98              |
| 8 | Aromatic<br>Epoxide  | Ph<br>Styrene oxide     | Ph               | 83           | 94*             |

Activity of DMPA in the conversion of various epoxides to its corresponding cyclic carbonates

Reaction conditions: Epoxide 42.8 mmol, 0.8 mol% DMPA, 120 °C, 1 MPa initial pressure, 3 h (yield and selectivity calculated from GC/GCMS.\*the main by-products were corresponding 1,2-diols.

(1) 4-methyl-1,3-dioxolan-2-one (propylene carbonate) : δH (CDCl<sub>3</sub>, 400 MHz) : 1.50 (d, 3H, CH<sub>3</sub>), 4.04 (d, 1H, OCH<sub>2</sub>), 4.57 (t, 1H, OCH<sub>2</sub>), 4.8–4.9 (m, 1H, OCH).

(2) 4-chloromethyl-1,3-dioxolan-2-one (epichlorohydrin carbonate) :  $\delta H$  (CDCl<sub>3</sub>, 400 MHz) : 4.9 (m, 1H, OCH), 4.62 (dd, 1H, OCH<sub>2</sub>), 4.47 (dd, 1H, OCH<sub>2</sub>), 3.78–3.72 (m, 2H, ClCH<sub>2</sub>).

(3) 4-allyoxymethyl-1,3-dioxan-2-one (allyl glycidyl carbonate) :  $\delta H$  (CDCl<sub>3</sub>, 400 MHz): 5.84–5.77 (m, 1H, CH=CH<sub>2</sub>), 5.38–5.26 (m, 2H, CH=CH<sub>2</sub>), 4.84–4.80 (m, 1H, OCH), 4.49 (t, 1H, OCH<sub>2</sub>), 4.36 (t, 1H, OCH<sub>2</sub>), 4.01–3.97 (m, 2H, OCH<sub>2</sub>), 3.63 (m, 2H, OCH<sub>2</sub>).

(4) 4-(but-3-en-1-yl)-1,3-dioxolan-2-one :  $\delta$ H (CDCl<sub>3</sub>, 400 MHz) : 4.36 (m, 1H, -OCH<sub>2</sub>), 4.12 (m, 1H, -OCH<sub>2</sub>), 4.26 (m, 1H, -OCH), 1.63 (m, 2H, -CH-CH<sub>2</sub>), 1.96 (m, 2H, -CH=CH<sub>2</sub>), 5.73 (m, 1H, -CH=CH<sub>2</sub>), 4.99 (dd, 1H, =CH<sub>2</sub>), 4.96 (dd, 1H, =CH<sub>2</sub>)

(5) 4-(isobutoxymethyl)-1,3-dioxolan-2-one (glycidyl isobutyl carbonate) :  $\delta H$  (CDCl<sub>3</sub>, 400 MHz) : 4.36 (m, 1H, -OCH<sub>2</sub>), 4.12 (m, 1H, -OCH<sub>2</sub>), 4.56 (m, 1H, -OCH), 3.70 (dd, 1 H, -OCH<sub>2</sub>), 3.51 (dd, 1 H, -OCH<sub>2</sub>), 3.6 (d, 2H, -OCH<sub>2</sub>), 1.92 (m, 1H, -CH (CH<sub>3</sub>)<sub>2</sub>), 1.10 (d, 6H, -CH(CH<sub>3</sub>)<sub>2</sub>).

(6) *cis*-1,2-cyclohexene carbonate : δH (CDCl<sub>3</sub>, 400 MHz) : 4.71–4.66 (m, 2H, OCHCHO), 1.9–1.86 (m, 4H, CH<sub>2</sub>), 1.44–1.36 (m, 2H, CH<sub>2</sub>), 1.70–1.64 (m, 2H, CH<sub>2</sub>),

(7) *cis*-1,2-cyclopentene carbonate : δH (CDCl<sub>3</sub>, 400 MHz) : 5.19 (m, 2H, OCHCHO), 2.25-2.19 (m, 2H, CH<sub>2</sub>), 1.80–1.62 (m, 4H, CH<sub>2</sub>).

(8) 4-phenyl-1,3-dioxolan-2-one (styrene carbonate) : δH (CDCl<sub>3</sub>, 400 MHz): δ 7.48–7.41
(m, 3H, Ar-H), 7.38–7.36 (m, 2H, Ar-H), 5.68 (t, 1H, OCH), 4.81 (t, 1H, OCH<sub>2</sub>), 4.35 (t, 1H, OCH<sub>2</sub>).