Organocatalytic Cascade Reaction of 2-Nitrocyclohexanone and

α, β-Unsaturated Aldehydes with Unusual Regioselectivity

Yi-ning Xuan,^{*a} Zhen-yu Chen^a and Ming Yan^{*b}

^{*a} College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China. Fax: + 86-20-39352139; Tel: + 86-20-39352139; E-mail: <u>xuanyn@mail3.sysu.edu.cn</u>

^{*b} Industrial Institute of Fine Chemicals and Synthetic Drugs, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China. Fax: + 86-20-39943049; Tel: + 86-20-39943049; E-mail: <u>yanming@mail.sysu.edu.cn</u>

INDEX

A)	General details	S1
B)	Screening of additives for the reaction of 2-nitrocyclohexanone and cinnamaldehyde	S2
C)	General experimental procedure for the reaction of 2-nitrocyclohexanone and α , β -unsa	turated
	aldehydes	S2
D)	Mechanism investigation	S2
E)	Elaboration of the products 4a and 4g	S3
F)	X-ray Structure of 8 g	S3
G)	NMR spectrum	S10
H)	HPLC chromatogram	S32

(A) General details

¹H and ¹³C NMR spectrum were recorded on a Bruker Advance 400 MHz spectrometer as solutions in CDCl₃. Chemical shifts are reported in ppm relative to residual solvent signals (CDCl3, 7.26 ppm for ¹H NMR, CDCl₃, 77.0 ppm for ¹³C NMR), Coupling constants are reported in Hertz (abbreviated for Hz). The following abbreviations are used to designate chemical shift mutiplicities: s= singlet, d= doublet, m= multiplet, br=broad. High-resolution mass spectrum were obtained with Shimadazu LCMS-IT-TOF mass spectrometer. Optical rotations were measured using a 1 mL cell with a 1 dm path length on a Perkin-Elmer 341 digital polarimeter and are reported as follows: $[\alpha]_D^{20}$ (*c* in gram per 100 mL of solvent). The flash column chromatography was carried out over silica gel (230–400 mesh), purchased from Qingdao Haiyang Chemical Co., Ltd. Melting points were recorded on an electrothermal digital melting point apparatus and were

uncorrected. TLC analysis was performed on precoated silica gel GF_{254} slides, and visualised by either UV irradiation or I₂ staining. Infrared (IR) spectrum were recorded on a Bruker Tensor 37 spectrophotometer. Data are represented as frequency of absorption (cm⁻¹). Unless otherwise stated, all reagents were obtained from commercial sources and used as received. The solvents were used as commercial anhydrous grade without further purification. 2-Nitrocyclohexanone¹ and 2-methyl-6-nitrocyclohexanone² were prepared according to the literature procedure respectively. Enantiomeric excesses were determined by HPLC using a Daicel Chiralcel AD-H column (4.6 mm × 25 cm) and eluting with *n*-hexane/*i*-PrOH solution.

Table 1 Screening of additives ^a							
entry	time (h)	additive	yield (%) ^b	dr ^c	ee (%) ^d		
1	19	PhCOOH	25	85:15	98		
2	9	Na ₂ CO ₃	15	85:15	-		
3	9	K ₂ CO ₃	24	83:17	-		
4	9	KOAc	23	81:19	-		
5	9	Et ₃ N	84	85:15	99		
6	9	DMAP^{e}	89	85:15	99		
7	9	N-methyl-pyrrolidine	90	86:14	99		
8	3	DABCO ^f	96	88:12	99		
9	9	DIPEA ^g	35	81:19	99		
10	9	NMM^h	23	82:18	-		
11	9	2,6-lutidine	4	-	-		

(B) Screening of additives for the reaction of 2-nitrocyclohexanone and cinnamaldehyde.

^{*a*} Unless otherwise stated, all reactions were performed with **1** (0.24 mmol), **2a** (0.2 mmol), **3c** (0.02 mmol) and additive (0.02 mmol) in THF (0.5 mL). ^{*b*} Determined by HPLC analysis. ^{*c*} Determined by ¹H NMR analysis of the crude mixture. ^{*d*} Values of the major diastereoisomers and were determined by chiral HPLC. ^{*e*} 4-Dimethylaminopyridine. ^{*f*} 1, 4-Diazabicyclo[2.2.2]octane. ^{*g*} *N*,*N*-Diisopropylethylamine. ^{*h*} *N*-methyl-morpholine.

(C) General experimental procedure for the reaction of 2-nitrocyclohexanone and α ,

β-unsaturated aldehydes.

To a solution of α , β -unsaturated aldehyde (0.2 mmol) in THF (0.5 mL) was added catalyst **3c** (7.2 mg, 0.02 mmol, 10 mol %), DABCO (2.2 mg, 0.02 mmol) at room temperature. After the reaction mixture was stirred for 10 minutes, 2-nitrocyclohexanone (1, 34 mg, 0.24 mmol, 1.2 eq) was added. The mixture was stirred at room temperature for 3h. Then it was concentrated under vacuum and purified by flash column chromatography using ethyl acetate / petrol ether as eluent.

The racemic product was obtained by mixing equal amounts of **4** and ent-**4** independently obtained by using catalyst **3c** and its enatiomer.

(D) Mechanism investigation

To the three portions of solution of **1** (14 mg, 0.1 mmol) in 2.5 mL CDCl₃was added one equivalent of **3c**, DABCO, DABCO and **3c** respectively. After stirring for 0.5 h, the mixtures were subjected to NMR analysis.

(E) Elaboration of 4a and 4g

Synthesis of 8a:

The solution of 4a (27.5 mg, 0.1 mmol) in 1 mL CH₃OH was refluxed for 3h. Then it was concentrated under vacuum and the residue was purified by flash column chromatography using ethyl acetate / petrol ether as eluent. **8a** was obtained as a white solid.

According to the same procedure, 8g was also obtained.

Synthesis of 10a:

To a solution of **8a** (29 mg, 0.1 mmol) in 2.5 mL THF was added Zinc powder (169 mg, 2.6 mmol) and HOAc (162 μ L, 2.8 mmol). After the mixture was stirred overnight, it was diluted with EtOAc (30 mL). The organic layer was washed with saturated Na₂CO₃ (10 mL × 2,) and brine (10 mL). The organic layer was dried over MgSO₄ and concentrated under vacuum. The residue was purified by flash column chromatography.

(F) X-ray Structure of 8g

Figure 1. X-ray Structure of 8g

(*1R*,2*S*,4*R*,5*R*)-2-hydroxy-1-nitro-4-phenylbicyclo[3.3.1]nonan-9-one, sticky pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.41 - 7.37(m, 2H), 7.32-7.25(m, 3H), δ 5.05 (ddd, *J* = 11.4, 6.8, 1.6 Hz, 1H), 3.24 (dt, *J* = 14.0, 4.8 Hz, 1H), 2.95-2.80(m, 3H), 2.70 (td, *J* = 14.0, 11.4 Hz, 1H), 2.62 (shift to 2.79 in concentrated solution, br, 1H,), 2.47-2.40 (m, 1H), 2.23-2.10 (m, 1H), 1.94-1.84 (m, 2H), 1.83-1.73 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 203.79, 138.75, 128.91, 127.47, 127.44, 101.32, 72.37, 51.89, 41.10, 32.61, 31.24, 26.91, 20.14; IR (KBr) *v*/cm⁻¹: 3446, 2937, 1733, 1550, 1033; HRMS (ESI) calcd for C₁₅H₁₆NO₄(M - H)⁻: 274.1085, found: 274.1098; [α]_D²⁰ = + 106.6 (c = 1.0, CHCl₃); The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (4.6 mm × 25 cm) (*n*-hexane/*i*-PrOH = 90/10, λ = 220 nm, 0.8 mL/min); t_R (minor enantiomer) = 20.1 min, t_R (major enantiomer) = 31.8 min, 99% ee.

(*1R*,2*S*,4*R*,5*R*)-2-hydroxy-1-nitro-4-(p-tolyl)bicyclo[3.3.1]nonan-9-one , sticky pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.17 (q, *J* = 8.2 Hz, 4H), 5.04 (ddd, *J* = 11.4, 6.6, 1.5 Hz, 1H), 3.20 (dt, *J* = 14.0, 4.8 Hz, 1H), 2.94 – 2.80 (m, 4H), 2.67 (td, *J* = 14.0, 11.4 Hz, 1H), 2.44 – 2.37 (m, 1H), 2.35 (s, 3H), 2.20-2.10 (m, 1H), 1.94 – 1.88 (m, 1H), 1.85 – 1.71 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 203.98, 137.10, 135.69, 129.53, 127.31, 101.33, 72.39, 51.94, 40.72, 32.77, 31.22, 26.92, 26.88, 20.94, 20.12; IR (KBr) ν/cm^{-1} : 3526, 2926, 1734, 1550, 1079, 1041; HRMS (ESI) calcd for C₁₆H₁₈NO₄(M - H)⁻: 288.1241, found: 288.1249; [α]_D²⁰ = + 99.0 (c = 1.1, CHCl₃); The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (4.6 mm × 25 cm) (*n*-hexane/*i*-PrOH = 90/10, λ = 230 nm, 0.8 mL/min); t_R (minor enantiomer) = 16.5 min, t_R (major enantiomer) = 31.3 min, 99% ee.

(1R,2S,4R,5R)-2-hydroxy-4-(4-methoxyphenyl)-1-nitrobicyclo[3.3.

1]nonan-9-one, sticky pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, J = 8.5 Hz, 2H), 6.91 (d, J = 8.5 Hz, 2H), 5.05 – 5.01 (m, 1H), 3.81 (s, 3H), 3.19 (dt, J = 13.8, 4.3 Hz, 1H), 2.92 – 2.80 (m, 3H), 2.64 (q, J = 13.8Hz, 1H), 2.44 – 2.37(m, 1H); 2.20 -2.09 (m, 1H), 1.89 – 1.83 (m, 2H), 1.80 – 1.74 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 204.01, 158.81, 130.69, 128.43, 114.25, 101.30, 72.35, 55.30, 52.05, 40.38, 32.94, 31.22, 26.86, 20.12; IR (KBr) ν/cm^{-1} : 3447, 2935, 1734, 1550, 1514, 1253, 1034; HRMS (ESI) calcd for C₁₆H₁₈NO₅(M - H) ⁻: 304.1190, found: 304.1188; [α]_D²⁰ = + 84.8 (c = 0.9, CHCl₃); The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (4.6 mm × 25 cm) (*n*-hexane/*i*-PrOH = 90/10, λ = 230 nm, 0.8 mL/min); t_R (minor enantiomer) = 27.5min, t_R (major enantiomer) = 47.7 min, 99% ee.

(1R,2S,4R,5R)-4-(2-chlorophenyl)-2-hydroxy-1-nitrobicyclo[3.3.1]nonan-9-

one, sticky pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.38 (m, 2H), 7.36 – 7.32 (m, 1H), 7.29 – 7.24 (m, 1H), 5.09 (ddd, *J* = 11.3, 6.6, 1.6 Hz, 1H), 3.67 (dt, *J* = 14.0, 4.5 Hz, 1H), 3.00 (q, *J* = 4.5 Hz, 1H), 2.97 – 2.83 (m, 3H), 2.76 (td, *J* = 14.0, 11.3 Hz, 1H), 2.31 (dt, *J* = 14.0, 6.0 Hz, 1H), 2.24 – 2.17 (m, 1H), 1.87 – 1.82 (m, 2H), 1.81 – 1.74 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 203.13, 135.92, 134.18, 130.42, 128.66, 128.00, 126.99, 101.27, 76.70, 76.68, 72.17, 48.17, 37.73, 32.51, 31.20, 26.95, 20.05; IR (KBr) ν/cm^{-1} : 3512, 2927, 1734, 1551, 1531, 1082, 1033; HRMS (ESI) calcd for C₁₅H₁₅ClNO₄ (M - H)⁻: 308.0695, found: 308.0709; [α]_D²⁰ = + 116.1 (c = 1.2, CHCl₃); The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (4.6 mm × 25 cm) (*n*-hexane/*i*-PrOH = 90/10, λ = 220 nm, 0.8 mL/min); t_R (minor enantiomer) = 20.1 min, t_R (major enantiomer) = 32.1 min, 99% ee.

(1R,2S,4R,5R)-4-(3-chlorophenyl)-2-hydroxy-1-nitrobicyclo[3.3.1]nonan-9-

one , sticky pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.26 (m, 3H), 7.16 – 7.15 (m, 1H), 5.04 (dd, *J* = 11.3, 6.6 Hz, 1H), 3.21 (dt, *J* = 13.9, 4.9 Hz, 1H), 2.94 – 2.80 (m, 4H), 2.65 (td, *J* = 13.9, 11.3 Hz, 1H), 2.46 – 2.39 (m, 1H), 2.22 – 2.06 (m, 1H), 1.91 – 1.85 (m, 2H), 1.83 – 1.75 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 203.34, 140.90, 134.90, 130.14, 127.66, 125.66, 101.16, 72.17, 51.58, 40.71, 32.50, 31.16, 26.88, 20.10; IR (KBr) ν/cm^{-1} : 3447, 2928, 1734, 1596, 1549, 1081, 1042; HRMS (ESI) calcd for C₁₅H₁₅ClNO₄ (M - H) ⁻: 308.0695, found: 308.0712; [α]_D²⁰ = + 107.6 (c = 0.9, CHCl₃); The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (4.6 mm × 25 cm) (*n*-hexane/*i*-PrOH = 90/10, λ = 220 nm, 0.8 mL/min); t_R (minor enantiomer) = 19.9 min, t_R (major enantiomer) = 22.6 min, 99% ee.

(1R,2S,4R,5R)-4-(4-chlorophenyl)-2-hydroxy-1-nitrobicyclo[3.3.1]non

an-9-one, sticky pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.5 Hz, 2H), 7.20 (d, J = 8.5 Hz, 2H), 5.09 – 4.99 (m, 1H), 3.22 (dt, J = 14.0, 4.8 Hz, 1H), 2.94 – 2.78 (m, 4H), 2.64 (td, J = 14.0, 11.2 Hz, 1H), 2.41 (dt, J = 14.0, 6.1 Hz, 1H), 2.17 – 2.07 (m, 1H), 1.89 – 1.84 (m, 2H), 1.82 – 1.74 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 203.50, 137.24, 133.32, 129.05, 128.76, 101.17, 72.20, 51.68, 40.49, 32.63, 31.16, 26.83, 20.08; IR (KBr) ν/cm^{-1} : 3503, 2928, 1734, 1549, 1493, 1092; HRMS (ESI) calcd for C₁₅H₁₅CINO₄ (M - H)⁻: 308.0695, found: 308.0690; [α]_D²⁰ = + 96.1 (c = 0.9, CHCl₃); The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (4.6 mm × 25 cm) (*n*-hexane/*i*-PrOH = 90/10, λ = 230 nm, 0.8 mL/min); t_R (minor enantiomer) = 25.0 min, t_R (major enantiomer) = 32.6 min, 99% ee.

(1R,2S,4R,5R)-4-(4-bromophenyl)-2-hydroxy-1-nitrobicyclo[3.3.1]non

an-9-one, sticky pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.3 Hz, 2H), 7.14 (d, J =

8.3 Hz, 2H), 5.04 (ddd, J = 11.3, 6.7, 1.6 Hz, 1H), 3.20 (dt, J = 14.0, 4.8 Hz, 1H), 2.93 – 2.75 (m, 4H), 2.64 (td, J = 14.0, 11.3 Hz, 1H), 2.41 (dt, J = 14.0, 6.0 Hz, 1H), 2.17 – 2.07 (m, 1H), 1.89 – 1.84 (m, 2H), 1.82 – 1.74 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 203.56, 137.79, 131.98, 129.13, 121.33, 101.17, 72.17, 51.62, 40.50, 32.58, 31.13, 26.85, 20.06; IR (KBr) ν/cm^{-1} :3448, 2928, 1733, 1549, 1489, 1454, 1077; HRMS (ESI) calcd for C₁₅H₁₅BrNO₄ (M - H) ⁻: 352.0190, found: 352.0179; [α]_D²⁰ = + 87.7 (c = 1.0, CHCl₃); The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (4.6 mm × 25 cm) (*n*-hexane/*i*-PrOH = 90/10, λ = 220 nm, 0.8 mL/min); t_R (minor enantiomer) = 26.2 min, t_R (major enantiomer) = 33.7 min, 99% ee.

(1R,2S,4R,5R)-2-hydroxy-1-nitro-4-(4-nitrophenyl)bicyclo[3.3.1]non

an-9-one, sticky pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 8.8 Hz, 2H), 7.46 (d, J = 8.8 Hz, 2H), 5.07 (ddd, J = 11.2, 6.7, 1.7 Hz, 1H), 3.35 (dt, J = 13.9, 4.7 Hz, 1H), 2.96 – 2.82 (m, 4H), 2.72 (td, J = 13.9, 11.2 Hz, 1H), 2.51 – 2.45 (m, 1H), 2.23 – 2.09 (m, 1H), 1.95 – 1.87 (m, 1H), 1.85 – 1.76 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 202.82, 147.27, 146.25, 128.40, 124.10, 101.01, 72.01, 51.31, 40.91, 32.37, 31.10, 26.83, 20.06; IR (KBr) ν/cm^{-1} :3445, 2922, 2851, 1719, 1551, 1520, 1347, 1054; HRMS (ESI) calcd for C₁₅H₁₅N₂O₆ (M - H) ⁻: 319.0936, found: 319.0955; [α]_D²⁰ = + 80.9 (c = 0.6, CHCl₃); The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (4.6 mm × 25 cm) (*n*-hexane/*i*-PrOH = 80/20, λ = 254 nm, 0.8 mL/min); t_R (minor enantiomer) = 25.7 min, t_R (major enantiomer) = 33.6 min, 99% ee.

4-((1R,2R,4S,5R)-4-hydroxy-5-nitro-9-oxobicyclo[3.3.1]nonan-2-yl)be

nzonitrile , sticky pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H), 5.06 (ddd, J = 11.3, 6.7, 1.6 Hz, 1H), 3.29 (dt, J = 14.0, 4.8 Hz, 1H), 2.94 – 2.79 (m, 4H), 2.68 (td, J = 14.0, 11.3 Hz, 1H), 2.48 – 2.41 (m, 1H), 2.20 – 2.06 (m, 1H), 1.94 – 1.85 (m, 1H), 1.84 – 1.76 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 203.10, 144.31, 132.67, 128.30, 118.33, 111.39, 101.03, 71.98, 51.32, 40.95, 32.32, 31.04, 26.88, 20.01; IR (KBr) ν /cm⁻¹: 3442, 1734, 1638, 1551, 1082; HRMS (ESI) calcd for C₁₆H₁₅N₂O₄ (M - H)⁻: 299.1037, found: 299.1026; [α]_D²⁰ = + 90.3 (c = 1.0, CHCl₃); The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (4.6 mm × 25 cm) (*n*-hexane/*i*-PrOH = 90/10, λ = 230 nm, 0.8 mL/min); t_R (minor enantiomer) = 22.9 min, t_R (major enantiomer) = 30.5 min, 99% ee.

(1R,2S,4R,5R)-2-hydroxy-1-nitro-4-(4-(trifluoromethyl)phenyl)bicycl

o[3.3.1]nonan-9-one, sticky pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 5.09 – 5.05 (m, 1H), 3.31 (dt, J = 14.0, 4.8 Hz, 1H), 2.96 – 2.81 (m, 4H), 2.71 (td, J = 14.0, 11.3 Hz, 1H), 2.45 (dt, J = 14.0, 6.1 Hz, 1H), 2.21– 2.09 (m, 1H), 1.93 – 1.83 (m, 2H), 1.82 –1.73 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 203.29, 142.88, 129.99, 129.67, 127.87, 125.86 (q, J = 3.9 Hz), 125.28, 122.57, 101.15, 72.17, 51.54, 40.85, 32.47, 31.15, 26.89, 20.08; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.63; IR (KBr) ν/cm^{-1} : 3525, 2943, 1735, 1551, 1328, 1167, 1124, 1069; HRMS (ESI) calcd for C₁₆H₁₅F₃NO₄ (M - H)⁻: 342.0959, found: 342.0950; [α]_D²⁰ = + 75.3 (c = 1.0, CHCl₃); The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (4.6 mm × 25 cm) (*n*-hexane/*i*-PrOH = 90/10, λ = 230 nm, 0.8 mL/min); t_R (minor enantiomer) = 19.8 min, t_R (major enantiomer) = 21.4 min, 95% ee.

 $(1R,2S,4R,5R)-4-(furan-2-yl)-2-hydroxy-1-nitrobicyclo[3.3.1]nonan-9-one, sticky pale yellow oil, ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 7.38 (d, J = 1.8 Hz, 1H), 6.35 (dd, J = 3.3, 1.8 Hz, 1H), 6.20 (d, J = 3.3 Hz, 1H), 5.04 – 4.99 (m, 1H), 3.29 (td, J = 9.8, 4.6 Hz, 1H), 3.06 – 3.03 (m, 1H), 2.88 – 2.77 (m, 3H), 2.53 – 2.49 (m, 2H), 2.14 – 2.04 (m, 1H), 1.97 – 1.86 (m, 2H), 1.78 – 1.71 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 203.28, 152.80, 142.25, 110.27, 106.73, 101.28, 71.94, 49.26, 35.67, 31.86, 31.14, 27.91, 19.90; IR (KBr) ν/cm^{-1} : 3542, 2948, 2921, 1737, 1545, 1083, 1009; HRMS (ESI) calcd for C₁₃H₁₄NO₅ (M - H) ^{-:} 264.0877, found: 264.0883; [α]_D²⁰ = + 93.1 (c = 0.8, CHCl₃); The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (4.6 mm × 25 cm) (*n*-hexane/*i*-PrOH = 90/10, λ = 230 nm, 0.8 mL/min); t_R (minor enantiomer) = 18.1 min, t_R (major enantiomer) = 24.8 min, 99% ee.

(*1R*,2*S*,4*R*,5*R*)-2-hydroxy-1-nitro-4-(thiophen-2-yl)bicyclo[3.3.1]nonan-9-o ne, pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.26 (m, 1H), 7.02 (dd, *J* = 5.1, 3.6 Hz, 1H), 6.93 (dt, *J* = 3.6, 1.1 Hz, 1H), 5.04 – 4.99 (m, 1H), 3.53 – 3.47 (m, 1H), 2.95 – 2.90 (m, 1H), 2.90 – 2.81 (m, 2H), 2.63 – 2.57 (m, 2H), 2.18 – 1.90 (m, 4H), 1.81 – 1.73 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 203.47, 142.56, 127.06, 124.58, 124.43, 101.16, 71.84, 52.13, 37.08, 34.47, 31.13, 27.36, 19.90; IR (KBr) *v*/cm⁻¹: 3582, 2942, 1731, 1545, 1077; HRMS (ESI) calcd for C₁₃H₁₄NO₄S (M - H) : 280.0649, found: 280.0638; [α]_D²⁰ = + 107.1 (c = 1.1, CHCl₃); The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (4.6 mm × 25 cm) (*n*-hexane/*i*-PrOH = 90/10, λ = 230 nm, 0.8 mL/min); t_R (minor enantiomer) = 20.5 min, t_R (major enantiomer) = 28.9 min, 99% ee.

(1R,2S,4S,5R)-2-hydroxy-5-methyl-1-nitro-4-phenylbicyclo[3.3.1]nonan-9-one, sticky pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.30 (m, 3H), 7.28 – 7.22 (m, 2H), 5.07 – 5.01 (m, 1H), 3.02 – 2.96 (m, 1H), 2.93 – 2.85 (m, 1H), 2.83 – 2.71 (m, 3H), 2.51 – 2.33 (m, 2H), 2.18 (ddd,*J*= 12.5, 5.7, 2.9 Hz, 1H), 1.90 – 1.81 (m, 1H), 1.64 – 1.55 (m, 1H), 0.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 204.77, 138.05, 129.20, 128.52, 127.68, 101.97, 72.01, 50.64, 48.37, 35.25, 31.31, 22.41, 20.07. IR (KBr) ν/cm⁻¹: 2931, 1720, 1547, 1456, 1287, 1037, 770; HRMS (ESI) calcd for C₁₆H₁₈NO₄ (M - H)⁻: 288.1241, found: 288.1236; [α]_D²⁰ = + 66.3 (c = 1.1, CHCl₃); The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (4.6 mm × 25 cm) (*n*-hexane/*i* $-PrOH = 90/10, <math>\lambda$ = 220 nm, 0.8 mL/min); t_R (minor enantiomer) = 15.7 min, t_R (major enantiomer) = 28.9 min, 86% ee.

MeOOC[•] (*1R*,2*R*)-methyl 5-nitro-2-phenylcyclooct-4-enecarboxylate , white solid ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 3H), 7.23 – 7.19 (m, 1H), 7.15 (d, *J* = 7.4 Hz, 2H), 3.36 (s, 4H), 3.05 – 2.99 (m, 1H), 2.82 – 2.75 (m, 3H), 2.57 (dt, *J* = 14.1, 7.4 Hz, 1H), 2.02 – 1.98 (m, 2H), 1.83 – 1.81 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 175.31, 152.57, 142.92, 133.80, 128.67, 127.13, 127.07, 51.46, 49.67, 48.23, 33.25, 30.04, 27.67, 25.36; mp: 98~99 °C; IR (KBr) ν/cm^{-1} : 2946, 2855, 1730, 1521, 1437, 1367, 1332,1162; HRMS (ESI) calcd for C₁₆H₁₈NO₄ (M -H)⁻: 288.1241, found: 288.1233; [α]_D²⁰ = – 44.9 (c = 1.0, CHCl₃); The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (4.6 mm × 25 cm) (*n*-hexane/*i*-PrOH = 98/2, λ = 254 nm, 0.8 mL/min); t_R (minor enantiomer) = 14.5 min, t_R (major enantiomer) = 15.7 min, 99% ee.

MeOOC (*IR,2R*)-methyl 5-oxo-2-phenylcyclooctanecarboxylate , white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.24 (m, 2H), 7.22 – 7.15 (m, 3H), 3.32 (s, 3H), 3.12 – 3.01 (m, 2H), 2.85 – 2.80 (m, 1H), 2.51 – 2.44 (m, 1H), 2.41 – 2.26 (m, 2H), 2.16 (ddd, J = 16.1, 7.9, 3.3 Hz, 1H), 2.07 – 1.81 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 176.05, 162.64, 144.16, 128.22, 127.76, 126.37, 51.27, 48.26, 47.05, 31.90, 29.77, 29.57, 27.17, 24.85. mp: 88~90 °C; IR (KBr) ν/cm^{-1} : 3062, 3028, 2923, 1735, 1434, 1162, 962; HRMS (ESI) calcd for C₁₆H₁₉O₃ (M - H) : 259.1340, found: 259.1348; [α]_D²⁰ = + 2.6 (c = 0.5, CHCl₃); The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (4.6 mm × 25 cm) (*n*-hexane/*i*-PrOH = 85/15, λ = 208 nm, 0.8 mL/min); t_R (minor enantiomer) = 16.3 min, t_R (major enantiomer) = 17.1 min, 99% ee.

(1R,2R)-methyl 2-(4-bromophenyl)-5-nitrocyclooct-4-enecarboxylate,

white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.4 Hz, 2H), 7.25 (dd, *J* = 9.8, 7.4 Hz, 1H), 7.04 (d, *J* = 8.4 Hz, 2H), 3.40 (s, 3H), 3.35 (ddd, *J* = 11.3, 7.1, 4.2 Hz, 1H), 3.06 – 2.99 (m, 1H), 2.81 – 2.73 (m, 3H), 2.53 (dt, *J* = 14.2, 7.4 Hz, 1H), 2.05 – 1.97 (m, 2H), 1.85 – 1.78 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.07, 152.75, 141.89, 133.24, 131.82, 128.85, 120.90, 51.67, 49.42, 47.54, 33.04, 30.05, 27.66, 25.35. mp: 107~109 °C; IR (KBr) ν/cm^{-1} : 2947, 2870, 1720, 1522, 1436, 1333, 1158, 1010; HRMS (ESI) calcd for C₁₆H₁₇BrNO₄ (M - H) ⁻: 366.0346, found: 366.0340; [α]_D²⁰ = – 80.9 (c = 1.0, CHCl₃); The enantiomeric excess was determined by HPLC with a Chiralcel AD-H column (4.6 mm × 25 cm) (*n*-hexane/*i*-PrOH = 95/5, λ = 230 nm, 0.8 mL/min); t_R (minor enantiomer) = 14.9 min, t_R (major enantiomer) = 17.2 min, 99% ee.

Reference:

1 P. Dampawan and W. W. Zajac, Jr., Synthesis, 1983, 545.

2 R. Ballini, G. Bartoli, R. Castagnani, E. Marcantoni and M. Petrini, Synlett, 1992, 64.

S10

H, H-Cosy spectrum

HMQC spectrum

NOE spectrum

¹⁹F spectrum

Dept 90 spectrum

Dept 135 spectrum

(H) HPLC chromatogram

1 PDA Multi 2/220nm 4nm

				Pe	eakTable		
P	PDA Ch2 220nm 4nm						
	Peak#	Ret. Time	Area	Height	Area %	Height %	
	1	19.990	2979531	94909	51.137	60.879	
Γ	2	31.795	2847004	60988	48.863	39.121	
	Total		5826535	155897	100.000	100.000	

PeakTable

1 PDA Multi 2/220nm 4nm

PDA Ch2 220nm 4nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	20.051	10298	396	0.424	0.764	
2	31.847	2416659	51496	99.576	99.236	
Total		2426957	51893	100.000	100.000	

PeakTable

			1	eak lable	
PDA Ch3 2	30nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.552	2746242	81720	50.683	60.784
2	31.769	2672242	52724	49.317	39.216
Total		5418485	134445	100.000	100.000

1 PDA Multi 3/230nm 4nm

PDA Ch3 2	30nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.489	51615	1806	0.500	0.888
2	31.292	10279551	201622	99.500	99.112
Total		10331167	203427	100.000	100.000

PeakTable

			1	Car laoic	
PDA Ch3 2	30nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	27.590	9468371	237180	50.182	63.635
2	47.999	9399630	135539	49.818	36.365
Total		18868001	372719	100.000	100.000

1 PDA Multi 3/230nm 4nm

PDA Ch3 230nm 4nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	27.507	40418	1141	0.645	1.223	
2	47.722	6226576	92152	99.355	98.777	
Total		6266994	93294	100.000	100.000	

	PDA Ch2 220nm 4nm						
	Peak#	Ret. Time	Area	Height	Area %	Height %	
ĺ	1	20.119	15058615	443708	49.694	59.111	
	2	32.210	15244168	306924	50.306	40.889	
	Total		30302783	750631	100.000	100.000	

PDA Ch2 2	PDA Ch2 220nm 4nm						
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	20.100	42731	1407	0.235	0.385		
2	32.144	18136069	364487	99.765	99.615		
Total		18178801	365895	100.000	100.000		

			10	akiaole	
PDA Ch2 2	20mm 4mm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	19.856	7651067	246040	50.306	54.517
2	22.596	7557944	205265	49.694	45.483
Total		15209011	451305	100.000	100.000

PDA Ch2 2	'DA Ch2 220nm 4nm						
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	19.906	42510	1482	0.346	0.443		
2	22.643	12231349	332966	99.654	99.557		
Total		12273859	334448	100.000	100.000		

PeakTable

			re	akiaute	
PDA Ch3 2	30nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	24.903	6097521	160967	50.874	56.752
2	32.512	5887942	122665	49.126	43.248
Total		11985463	283631	100.000	100.000

1	P	DA	۱M	ulti	3/2	30	nm	4nm

	PDA Ch3 2	30nm 4nm				
1	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	24.982	33199	1099	0.263	0.424
	2	32.564	12572322	258104	99.737	99.576
]	Total		12605521	259203	100.000	100.000

PDA Ch2 220nm 4nm

PeakTable Area Height Area %

Peak#	Ret. Time	Area	Height	Area %	Height %
1	26.179	10806832	271325	50.314	56.568
2	33.740	10671816	208322	49.686	43.432
Total		21478649	479646	100.000	100.000

1 PDA Multi 2/220nm 4nm

			Pea	kTable				
PDA Ch2 2	DA Ch2 220nm 4nm							
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	26.167	65254	2244	0.198	0.345			
2	33.656	32972173	648673	99.802	99.655			
Total		33037426	650917	100.000	100.000			

PDA Ch4 254mm 4mm

DA CIH 20HIII HIII							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	25.673	1966665	52590	51.437	57.912		
2	33.460	1856801	38221	48.563	42.088		
Total		3823466	90811	100.000	100.000		

PDA Ch4 254nm 4nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	25.701	43917	1246	0.363	0.503		
2	33.568	12057281	246532	99.637	99.497		
Total		12101198	247778	100.000	100.000		

PeakTable

			FG	akiaole	
PDA Ch3 2	30nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	22.871	1747479	47960	53.065	60.350
2	30.787	1545603	31510	46.935	39.650
Total		3293082	79470	100.000	100.000

1 PDA Multi 3/230nm 4nm

				1 Cult I dole			
PDA Ch3 230nm 4nm							
	Peak#	Ret. Time	Area	Height	Area %	Height %	
	1	22.958	132165	3520	0.531	0.723	
	2	30.477	24738079	483277	99.469	99.277	
	Total		24870244	486797	100.000	100.000	

PeakTable PDA Ch3 230nm 4nm Area 2573969 2367146 Peak# Ret. Time Height Area % Height % 19.143 54.317 69387 52.093 58356 47.907 2 21.120 45.683 Total 4941115 127743 100.000 100.000

PDA Ch3 230nm 4nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	19.819	830115	24156	2.471	2.870		
2	21.386	32765677	817521	97.529	97.130		
Total		33595792	841677	100.000	100.000		

			PeakTable				
PDA Ch3 230nm 4nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	18.052	6275865	183853	50.652	57.131		
2	25.011	6114239	137954	49.348	42.869		
Tota	1	12390104	321807	100.000	100.000		

1 PDA Multi 3/230nm 4nm

			PeakTable				
PDA Ch3 230nm 4nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	18.108	113606	3851	0.411	0.615		
2	24.768	27496088	621959	99.589	99.385		
Total		27609694	625810	100.000	100.000		

1	PD/	A Mult	i 3/230)nm 4	lnn

PeakTable

PDA Ch3 2	30nm 4nm					
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	20.129	8797882	282595	51.788	59.282	
2	28.388	8190224	194099	48.212	40.718	
Total		16988106	476694	100.000	100.000	

	1 cux tuble					
PDA Ch3 2	30nm 4nm					
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	20.514	23823	864	0.523	0.744	
2	28.927	4533673	115322	99.477	99.256	
Total		4557496	116186	100.000	100.000	

		PeakTable					
PDA Ch4 2	254nm 4nm						
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	14.161	4656505	194889	50.798	51.097		
2	15.422	4510169	186520	49.202	48.903		
Total		9166673	381408	100.000	100.000		

		Peak Table					
PDA Ch4 254nm 4nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	14.488	36529	1627	0.588	0.620		
2	15.685	6171052	260967	99.412	99.380		
Total		6207581	262594	100.000	100.000		

PeakTable

		r cak lable					
PDA Ch3 2	30mm 4mm						
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	14.819	2653593	115173	50.589	51.385		
2	17.229	2591844	108963	49.411	48.615		
Total		5245437	224136	100.000	100.000		

PeakTable PDA Ch3 230nm 4nm Area % 0.396 99.604 100.000 Height % 0.432 Peak# Ret. Time Height Area 28029 7058363 7086392 14.854 17.244 1329 306572 307901 1 99.568 2 100.000 Total

Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.384	5806583	231247	49.952	51.383
2	17.147	5817629	218796	50.048	48.617
Total		11624213	450043	100.000	100.000

			PeakTable					
F	PDA Ch1 208nm 4nm							
Γ	Peak#	Ret. Time	Area	Height	Area %	Height %		
Γ	1	16.317	39370	1904	0.339	0.422		
Γ	2	17.070	11569675	449729	99.661	99.578		
	Total		11609045	451632	100.000	100.000		

PDA Ch2 2	20nm 4nm					
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	15.668	3009582	102287	52.979	61.389	
2	28.937	2671156	64334	47.021	38.611	
Total		5680738	166620	100.000	100.000	

		PeakTable					
PDA Ch2 220nm 4nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	15.746	115538	4852	7.059	11.139		
2	28.979	1521195	38704	92.941	88.861		
Total		1636733	43555	100.000	100.000		